首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In a previous report, we showed that the in vivo cytotoxic activity of the natural killer (NK) cells isolated from resveratrol‐pretreated rats is significantly enhanced compared with that of the non‐pretreated rats; however, the underlying mechanism remains unclear. In the present study, we use cultured NK92 cell line to examine the possible signaling pathways underlying the resveratrol‐induced activation. Using cultured K562, HepG2, and A549 cells as targets, we show that resveratrol pretreatment increases NK cell cytotoxicity in a dose‐dependent manner. The enhanced cytotoxic effect is accompanied by increases in JNK and ERK‐1/2 MAP kinase activity and perforin expression. Moreover, the expression of NKG2D, an upstream signaling molecule of the MAP kinases pathway, is also enhanced. Resveratrol‐enhanced perforin expression and cytotoxic activity are effectively inhibited by pretreatment with the inhibitors of JNK (SP600125), ERK‐1/2 (PD98059), or by siRNAs against JNK‐1 and ERK‐2. However, the inhibitors or siRNA to p38 exhibits no effect. Since IL‐2 has been shown to induce NKG2D expression and perforin release, we therefore, examined whether IL‐2 and resveratrol act in parallel. We show that IL‐2 also stimulates perforin expression, however, when treated together with resveratrol, they exhibit no additive effect. The results suggest that in NK92 cells, resveratrol may act via a similar or overlapping pathway as that of IL‐2, to enhance perforin expression and cytotoxic activity. Data presented strongly indicate that resveratrol act via NKG2D‐dependent JNK and ERK‐1/2 pathways. J. Cell. Physiol. 223: 343–351, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

2.
Immune cell products such as interferon (IFN)‐γ and interleukin (IL)‐12 are potent inhibitors of osteoclast formation. We previously characterized the human osteoclast inhibitory peptide‐1 (OIP‐1/hSca), a Ly‐6 gene family member and showed IFN‐γ modulation of OIP‐1 expression in bone marrow cells. Whether, IL‐12 regulates OIP‐1 expression in the bone microenvironment is unclear. Real‐time PCR analysis revealed that IL‐12 treatment significantly enhanced OIP‐1 mRNA expression in human bone marrow mononuclear cells. Because IL‐12 induces IFN‐γ production by T cells, we tested whether IFN‐γ participates in IL‐12 stimulation of OIP‐1 gene expression in these cells. IL‐12 treatment in the presence of IFN‐γ neutralizing antibody significantly increased OIP‐1 mRNA expression, suggesting that IL‐12 directly regulates OIP‐1 gene expression. Interestingly, real‐time PCR analysis demonstrated that IL‐12 induces OIP‐1 expression (3.2‐fold) in CD4+ T cells; however, there was no significant change in CD8+ T cells. Also, IL‐12 (10 ng/ml) treatment of Jurkat cells transfected with OIP‐1 gene (?1 to ?1,988 bp) promoter‐luciferase reporter plasmid demonstrated a 5‐fold and 2.7‐fold increase in OIP‐1 gene promoter activity in the presence and absence of antibody against IFN‐γ, respectively. We showed that STAT‐1,3 inhibitors treatment significantly decreased IL‐12 stimulated OIP‐1 promoter activity. Chromatin immunoprecipitation (ChIP) assay confirmed STAT‐3, but not STAT‐1 binding to the OIP‐1 gene promoter in response to IL‐12 stimulation. These results suggest that IL‐12 stimulates the OIP‐1 gene expression through STAT‐3 activation in CD4+ T cells. J. Cell. Biochem. 107: 104–111, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

3.
TNF-related apoptosis-inducing ligand (TRAIL), a new member of TNF family, induces apoptotic cell death of various tumor cells. We recently showed that TRAIL mediates perforin- and Fas ligand (FasL)-independent cytotoxic activity of human CD4+ T cell clones. In the present study, we investigated the expression and function of TRAIL on murine lymphocytes by using newly generated anti-murine TRAIL mAbs. Although freshly isolated T, B, or NK cells did not express a detectable level of TRAIL on their surface, a remarkable level of TRAIL expression was induced preferentially on CD3- NK1.1+ NK cells after stimulation with IL-2 or IL-15. In contrast, TRAIL expression was not induced by IL-18, whereas it efficiently potentiated lymphokine-activated killer activity of NK cells. In addition to perforin inactivation and neutralization of FasL by anti-FasL mAb, neutralization of TRAIL by anti-TRAIL mAb was needed for the complete inhibition of IL-2- or IL-15-activated NK cell cytotoxicity against mouse fibrosarcoma L929 target cells, which were susceptible to both FasL and TRAIL. These results indicated preferential expression of TRAIL on IL-2- or IL-15-activated NK cells and its potential involvement in lymphokine-activated killer activity.  相似文献   

4.
Current advances and expectations in tumor immunology]   总被引:7,自引:0,他引:7  
K Takeda  K Okumura 《Human cell》2001,14(3):159-163
Natural killer (NK) cells and Interferon (IFN)-gamma have been implicated in immune surveillance against tumor. We demonstrated the critical role of perforin in NK cell-mediated cytotoxic activity and anti-tumor effect in IFN-gamma inducible IL-12. And, we recently reported that TRAIL is constitutively expressed on a substantial proportion of murine NK cells in the liver, and which is responsible for spontaneous cytotoxicity and the anti-metastatic activity against TRAIL-sensitive tumor cells along with perforin and Fas ligand. Interestingly, the TRAIL expression on liver NK cells appeared to be regulated by endogenously produced IFN-gamma. Consisting with this finding, IL-12 and NKT cell specific ligand, alpha-Galactosylceramide (alpha-GalCer), induced TRAIL-mediated cytotoxcity and anti-tumor effect, and which was mediated by TRAIL expressed on IFN-gamma-activated NK cells. Tumor necrosis factor(TNF)-related apoptosis-inducing ligand (TRAIL) is a type II transmembrane protein belonging to the TNF family, which preferentially induces apoptotic cell death in various tumor cells in vitro. Preclinical studies in mice and nonhuman primates have shown that administration of recombinant soluble forms of TRAIL could suppress the growth of TRAIL-sensitive tumor xenografts with no apparent systemic toxicity. These studies suggested a potential utility of TRAIL as a cancer therapeutic, although TRAIL expression at protein levels and its physiological roles in tumor surveillance has remained unknown. Presented findings provide the first evidence for the physiological function of TRAIL as a tumor suppressor.  相似文献   

5.
Natural killer (NK) cells trigger cytotoxicity and interferon (IFN)‐γ secretion on engagement of the natural‐killer group (NKG)2D receptor or members of the natural cytotoxicity receptor (NCR) family, such as NKp46, by ligands expressed on tumour cells. However, it remains unknown whether T cells can regulate NK cell‐mediated anti‐tumour responses. Here, we investigated the early events occurring during T cell–tumour cell interactions, and their impact on NK cell functions. We observed that on co‐culture with some melanomas, activated CD4+ T cells promoted degranulation, and NKG2D‐ and NKp46‐dependent IFN‐γ secretion by NK cells, probably owing to the capture of NKG2D and NKp46 ligands from the tumour‐cell surface (trogocytosis). This effect was observed in CD4+, CD8+ and resting T cells, which showed substantial amounts of cell surface major histocompatibility complex class I chain‐related protein A on co‐culture with tumour cells. Our findings identify a new, so far, unrecognized mechanism by which effector T cells support NK cell function through the capture of specific tumour ligands with profound implications at the crossroad of innate and adaptive immunity.  相似文献   

6.
Airway epithelium functions not only as a physical barrier, but also a regulator of lung inflammation. IFN‐γ plays a critical role in airway inflammation associated with respiratory viral infection. We investigated differential protein profiling in IFN‐γ‐stimulated normal human bronchial epithelial cells (HBEC) using a 2‐dimensional gel electrophoresis followed by MALDI‐TOF‐MS/MS. IFN‐γ markedly stimulated apolipoprotein L2 (ApoL2) protein expression in normal HBEC. ApoL2 mRNA expression was also elevated in normal human lung fibroblasts and smooth muscle cells stimulated with IFN‐γ, in lung tissues from an IFN‐γ‐predominant influenza A virus‐infected mouse lung injury model, and in cancer lung tissues from human patients. Normal HBEC showed strong resistance to IFN‐γ‐induced cytotoxicity. ApoL2 knockdown by siRNA promoted IFN‐γ‐induced cytotoxicity as revealed by a significant drop in cell viability using MTT and CyQUANT NF cell proliferation assays, and a marked increase in hypodiploid sub‐G1 cell population in cell cycle analysis. Furthermore, depletion of ApoL2 facilitated IFN‐γ‐induced membrane damage and chromatin condensation as observed in Hoechst and propidium iodide‐double staining and in transmission electron microscopy, and DNA fragmentation using a DNA laddering assay, in a caspase‐dependent manner. Our results reveal a novel function for ApoL2 in conferring anti‐apoptotic ability of human bronchial epithelium to the cytotoxic effects of IFN‐γ, in maintaining airway epithelial layer integrity. J. Cell. Physiol. 226: 397–406, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

7.
We aimed to assess the immunoregulatory effects of IFN‐β in patients with tuberculous pleurisy. IFN‐β, IFN‐γ and IL‐17 expression levels were detected, and correlations among these factors in different culture groups were analyzed. Pleural fluid mononuclear cells (PFMC) from tuberculous pleural effusions, but not peripheral blood mononuclear cells (PBMC) from healthy donors, spontaneously expressed IFN‐β, IL‐17 and IFN‐γ. Moreover, exogenous IFN‐β significantly inhibited the expression of IL‐17 in PFMC. By contrast, IFN‐β simultaneously enhanced the levels of IFN‐γ. To further investigate the regulation of IL‐17 and IFN‐γ by endogenous IFN‐β, an IFN‐β neutralizing antibody was simultaneously added to bacillus Calmette‐Guérin (BCG)‐stimulated PFMC. IL‐17 expression was significantly increased, but IFN‐γ production was markedly decreased in the experimental group supplemented with the IFN‐β neutralizing antibody. Simultaneously, IL‐17 production was remarkably increased in the experimental group supplemented with the IFN‐γ neutralizing antibody. Taken together, in our study, we first found that freshly isolated PFMC, but not PBMC from healthy donors, spontaneously expressed IFN‐β, IL‐17 and IFN‐γ in vivo. Moreover, IFN‐β suppressed IL‐17 expression and increased IFN‐γ production. Furthermore, both IFN‐β and IFN‐γ down‐regulated IL‐17 expression. These observations suggest that caution is required when basing anti‐tuberculosis treatment on the inhibition of IFN‐β signaling.  相似文献   

8.
The role of adaptive immunity in obesity‐associated adipose tissue (AT) inflammation and insulin resistance (IR) is controversial. We employed flow cytometry and quantitative PCR to assess T‐cell recruitment and activation in epididymal AT (eAT) of C57BL/6 mice during 4–22 weeks of a high‐fat diet (HFD (60% energy)). By week 6, eAT mass and stromal vascular cell (SVC) number increased threefold in mice fed HFD, coincident with onset of IR. We observed no increase in the proportion of CD3+ SVCs or in gene expression of CD3, interferon‐γ (IFN‐γ), or regulated upon activation, normal T‐cell expressed and secreted (RANTES) during the first 16 weeks of HFD. In contrast, CD11c+ macrophages (MΦ) were enriched sixfold by week 8 (P < 0.01). SVC enrichment for T cells (predominantly CD4+ and CD8+) and elevated IFN‐γ and RANTES gene expression were detected by 20–22 weeks of HFD (P < 0.01), coincident with the resolution of eAT remodeling. HFD‐induced T‐cell priming earlier in the obesity time course is suggested by (i) elevated (fivefold) interleukin‐12 (IL‐12)p40 gene expression in eAT by week 12 (P ≤ 0.01) and (ii) greater IFN‐γ secretion from phorbol myristate acetate (PMA)/ionophore‐stimulated eAT explants at week 6 (onefold, P = 0.08) and week 12 (fivefold, P < 0.001). In conclusion, T‐cell enrichment and IFN‐γ gene induction occur subsequent to AT macrophage (ATMΦ) recruitment, onset of IR and resolution of eAT remodeling. However, enhanced priming for IFN‐γ production suggests the contribution of CD4+ and/or CD8+ effectors to cell‐mediated immune responses promoting HFD‐induced AT inflammation and IR.  相似文献   

9.
10.
Cationic materials exhibit remarkable anti‐inflammatory activity in experimental arthritis models. Our aim was to confirm this character of cationic materials and investigate its possible mechanism. Adjuvant‐induced arthritis (AIA) models were used to test cationic materials for their anti‐inflammatory activity. Cationic dextran (C‐dextran) with different cationic degrees was used to investigate the influence of the cationic elements of materials on their anti‐inflammatory ability. Peritoneal macrophages and spleen cells were used to test the expression of cytokines stimulated by cationic materials. Interferon (IFN)‐γ receptor‐deficient mice and macrophage‐depleted rats were used to examine the possible mechanisms of the anti‐inflammatory activity of cationic materials. In AIA models, different cationic materials shared similar anti‐inflammatory characters. The anti‐inflammatory activity of C‐dextran increased with as the cationic degree increased. Cationic materials stimulated interleukin (IL)‐12 expression in peritoneal macrophages, and strong stimulation of IFN‐γ secretion was subsequently observed in spleen cells. In vivo experiments revealed that circulating IL‐12 and IFN‐γ were enhanced by the cationic materials. Using IFN‐γ receptor knockout mice and macrophage‐depleted rats, we found that IFN‐γ and macrophages played key roles in the anti‐inflammatory activity of the materials towards cells. We also found that neutrophil infiltration at inflammatory sites was reduced when AIA animals were treated with C‐dextran. We propose that cationic signals act through an unknown receptor on macrophages to induce IL‐12 secretion, and that IL‐12 promotes the expression of IFN‐γ by natural killer cells (or T cells). The resulting elevated systemic levels of IFN‐γ inhibit arthritis development by preventing neutrophil recruitment to inflammatory sites.  相似文献   

11.
Although IFN enhance the cytotoxic activity of NK cells, K cells, and monocytes, IFN-alpha/beta and IFN-gamma did not stimulate the cytotoxic activity of rat peritoneal mast cells (PMC), but had an inhibitory effect. Preincubation for 2 h with 100 and 200 U/ml of IFN-gamma and IFN-alpha/beta, respectively, inhibited PMC cytotoxicity against WEHI-164 target cells. Lower concentrations of IFN-gamma (12.5 U/ml) and IFN-alpha/beta (25 U/ml) inhibited cytotoxicity of PMC after 8 h preincubation. The inhibitory effect of IFN was concentration and time dependent. In contrast to cytotoxicity, the release of histamine by PMC was not stimulated by the target cells WEHI-164 and there was no correlation between histamine release and cytotoxic activity of PMC. Specific antibody to subclasses of IFN prevented the inhibition of PMC cytotoxic activity, but preincubation with antibodies to the alternate subclass of IFN did not affect the observed inhibition. Moreover, the presence of both subclasses of IFN showed an additive inhibition of PMC cytotoxicity. The cytotoxic activity of PMC can be completely inhibited by the addition of anti-TNF during the assay. At high concentrations (400 U/ml), IFN inhibited the release of TNF from PMC. In the presence of RNA or protein synthesis inhibitors, IFN did not inhibit cytotoxicity of PMC further. We postulate that IFN may alter gene expression in mast cells in a manner that down-regulates their functions.  相似文献   

12.
LIGHT recruits and activates naive T cells in the islets at the onset of diabetes. IFN‐γ secreted by activated T lymphocytes is involved in beta cell apoptosis. However, whether LIGHT sensitizes IFNγ‐induced beta cells destruction remains unclear. In this study, we used the murine beta cell line MIN6 and primary islet cells as models for investigating the underlying cellular mechanisms involved in LIGHT/IFNγ – induced pancreatic beta cell destruction. LIGHT and IFN‐γ synergistically reduced MIN6 and primary islet cells viability; decreased cell viability was due to apoptosis, as demonstrated by a significant increase in Annexin V+ cell percentage, detected by flow cytometry. In addition to marked increases in cytochrome c release and NF‐κB activation, the combination of LIGHT and IFN‐γ caused an obvious decrease in expression of the anti‐apoptotic proteins Bcl‐2 and Bcl‐xL, but an increase in expression of the pro‐apoptotic proteins Bak and Bax in MIN6 cells. Accordingly, LIGHT deficiency led to a decrease in NF‐κB activation and Bak expression, and peri‐insulitis in non‐obese diabetes mice. Inhibition of NF‐κB activation with the specific NF‐κB inhibitor, PDTC (pyrrolidine dithiocarbamate), reversed Bcl‐xL down‐regulation and Bax up‐regulation, and led to a significant increase in LIGHT‐ and IFN‐γ‐treated cell viability. Moreover, cleaved caspase‐9, ‐3, and PARP (poly (ADP‐ribose) polymerase) were observed after LIGHT and IFN‐γ treatment. Pretreatment with caspase inhibitors remarkably attenuated LIGHT‐ and IFNγ‐induced cell apoptosis. Taken together, our results indicate that LIGHT signalling pathway combined with IFN‐γ induces beta cells apoptosis via an NF‐κB/Bcl2‐dependent mitochondrial pathway.  相似文献   

13.
Although CD4+ T cells are generally regarded as helper T cells, some activated CD4+ T cells have cytotoxic properties. Given that CD4+ cytotoxic T lymphocytes (CTLs) often secrete IFN‐γ, CTL activity among CD4+ T cells may be attributable to Th1 cells, where a T‐box family molecule, T‐bet serves as the “master regulator”. However, although the essential contribution of T‐bet to expression of IFN‐γ has been well‐documented, it remains unclear whether T‐bet is involved in CD4+ T cell‐mediated cytotoxicity. In this study, to investigate the ability of T‐bet to confer cytolytic activity on CD4+ T cells, the T‐bet gene (Tbx21) was introduced into non‐cytocidal CD4+ T cell lines and their cytolytic function analyzed. Up‐regulation of FasL (CD178), which provided the transfectant with cytotoxicity, was observed in Tbx21transfected CD4+ T cells but not in untransfected parental cells. In one cell line, T‐bet transduction also induced perforin gene (Prf1) expression and Tbx21 transfectants efficiently killed Fas? target cells. Although T‐bet was found to repress up‐regulation of CD40L (CD154), which controls FasL‐mediated cytolysis, the extent of CD40L up‐regulation on in vitro‐differentiated Th1 cells was similar to that on Th2 cells, suggesting the existence of a compensatory mechanism. These results collectively indicate that T‐bet may be involved in the expression of genes, such as FasL and Prf1, which confer cytotoxicity on Th1 cells.
  相似文献   

14.
Many B‐cell acute and chronic leukaemias tend to be resistant to killing by natural killer (NK) cells. The introduction of chimeric antigen receptors (CAR) into T cells or NK cells could potentially overcome this resistance. Here, we extend our previous observations on the resistance of malignant lymphoblasts to NK‐92 cells, a continuously growing NK cell line, showing that anti‐CD19‐CAR (αCD19‐CAR) engineered NK‐92 cells can regain significant cytotoxicity against CD19 positive leukaemic cell lines and primary leukaemia cells that are resistant to cytolytic activity of parental NK‐92 cells. The ‘first generation’ CAR was generated from a scFv (CD19) antibody fragment, coupled to a flexible hinge region, the CD3ζ chain and a Myc‐tag and cloned into a retrovirus backbone. No difference in cytotoxic activity of NK‐92 and transduced αCD19‐CAR NK‐92 cells towards CD19 negative targets was found. However, αCD19‐CAR NK‐92 cells specifically and efficiently lysed CD19 expressing B‐precursor leukaemia cell lines as well as lymphoblasts from leukaemia patients. Since NK‐92 cells can be easily expanded to clinical grade numbers under current Good Manufactoring Practice (cGMP) conditions and its safety has been documented in several phase I clinical studies, treatment with CAR modified NK‐92 should be considered a treatment option for patients with lymphoid malignancies.  相似文献   

15.
NK cells are important innate immune cells with potent cytotoxicity that can be activated by type I IFN from the host once infected. How NK cell cytotoxicity is activated by type I IFN and then tightly regulated remain to be fully elucidated. MicroRNAs (miRNAs, or miRs) are important regulators of innate immune response, but the full scale of miRNome in human NK cells remains to be determined. In this study, we reported an in-depth analysis of miRNomes in resting and IFN-α-activated human NK cells, found two abundant miRNAs, miR-378 and miR-30e, markedly decreased in activated NK cells by IFN-α, and further proved that miR-378 and miR-30e directly targeted granzyme B and perforin, respectively. Thus, IFN-α activation suppresses miR-378 and miR-30e expression to release cytolytic molecule mRNAs for their protein translation and then augments NK cell cytotoxicity. Importantly, the phenomena are also confirmed in human NK cells activated by other cytokines and even in the sorted CD16(+)CD56(dim)CD69(+) human NK cell subset. Finally, miR-378 and miR-30e were proved to be suppressors of human NK cell cytotoxicity. Taken together, our results reveal that downregulated miR-378 and miR-30e during NK cell activation are negative regulators of human NK cell cytotoxicity, providing a mechanistic explanation for regulation of NK cell function by miRNAs.  相似文献   

16.
Hazeldine J  Hampson P  Lord JM 《Aging cell》2012,11(5):751-759
Physiological aging is accompanied by a marked reduction in natural killer (NK) cell cytotoxicity (NKCC) at the single cell level, but the underlying mechanisms are unknown. To address this issue, we isolated NK cells from healthy young (≤ 35 years) and old (≤ 60 years) subjects and examined the effect of age on events fundamental to the process of NKCC. Simultaneous assessment of NKCC and NK cell–target cell conjugate formation revealed a marked age‐associated decline in NK cell killing but comparable conjugate formation, indicating a post‐target cell binding defect was responsible for impaired NKCC. Despite a reduction in the proportion of NK cells expressing the activatory receptor NKp46, NK cells from old donors were not hyporesponsive to stimulation, as no age‐associated difference was observed in the expression of the early activation marker CD69 following target cell coculture. Furthermore, intracellular levels of the key cytotoxic effector molecules perforin and granzyme B, and the fusion of secretory lysosomes with the NK cell membrane were also similar between the two groups. However, when we examined the binding of the pore‐forming protein perforin to the surface of its target cell, an event that correlated strongly with target cell lysis, we found the percentage of perforin positive target cells was lower following coculture with NK cells from old subjects. Underlying this reduction in binding was an age‐associated impairment in perforin secretion, which was associated with defective polarization of lytic granules towards the immunological synapse. We propose that reduced perforin secretion underlies the reduction in NKCC that accompanies physiological aging.  相似文献   

17.
Lung cancer stem cell (LCSC) is critical in cancer initiation, progression, drug resistance and relapse. Disadvantages showed in conventional lung cancer therapy probably because of its existence. In this study, lung cancer cell line A549 cells propagated as spheroid bodies (named as A549 sphere cells) in growth factors‐defined serum‐free medium. A549 sphere cells displayed CSC properties, including chemo‐resistance, increased proportion of G0/G1 cells, slower proliferation rate, ability of differentiation and enhanced tumour formation ability in vivo. Oncolytic adenovirus ZD55 carrying EGFP gene, ZD55‐EGFP, infected A549 sphere cells and inhibited cell growth. Tumour necrosis factor‐related apoptosis‐inducing ligand (TRAIL) armed oncolytic adenovirus, ZD55‐TRAIL, exhibited enhanced cytotoxicity and induced A549 sphere cells apoptosis through mitochondrial pathway. Moreover, small molecules embelin, LY294002 and resveratrol improved the cytotoxicity of ZD55‐TRAIL. In the A549 sphere cells xenograft models, ZD55‐TRAIL significantly inhibited tumour growth and improved survival status of mice. These results suggested that gene armed oncolytic adenovirus is a potential approach for lung cancer therapy through targeting LCSCs.  相似文献   

18.
IFNalpha regulates NK cell cytotoxicity through STAT1 pathway   总被引:2,自引:0,他引:2  
Liang S  Wei H  Sun R  Tian Z 《Cytokine》2003,23(6):190-199
  相似文献   

19.
Adiponectin is a negative regulator of NK cell cytotoxicity   总被引:2,自引:0,他引:2  
NK cells are a key component of innate immune systems, and their activity is regulated by cytokines and hormones. Adiponectin, which is secreted from white adipose tissues, plays important roles in various diseases, including hypertension, cardiovascular diseases, inflammatory disorders, and cancer. In this study the effect of adiponectin on NK cell activity was investigated. Adiponectin was found to suppress the IL-2-enhanced cytotoxic activity of NK cells without affecting basal NK cell cytotoxicity and to inhibit IL-2-induced NF-kappaB activation via activation of the AMP-activated protein kinase, indicating that it suppresses IL-2-enhanced NK cell cytotoxicity through the AMP-activated protein kinase-mediated inhibition of NF-kappaB activation. IFN-gamma enhances NK cell cytotoxicity by causing an increase in the levels of expression of TRAIL and Fas ligand. The production of IFN-gamma, one of the NF-kappaB target genes in NK cells, was also found to be suppressed by adiponectin, accompanied by the subsequent down-regulation of IFN-gamma-inducible TRAIL and Fas ligand expression. These results clearly demonstrate that adiponectin is a potent negative regulator of IL-2-induced NK cell activation and thus may act as an in vivo regulator of anti-inflammatory functions.  相似文献   

20.
Hyperthermia, which is used as an adjunctive therapy for cancer, is known to modulate the activity of natural killer (NK) cells in vitro, but its effect in vivo is unclear. In the present study, we used a whole body hyperthermia (WBH) device heated by infrared rays to evaluate the effect of WBH on mice models. We demonstrate here that wild type C57BL/6J mice exposed to 42 degrees C for 60min had reduced NK cell cytolytic activity against YAC-1 target cells as determined by cytolytic assay. This result was confirmed using Rag-2 knockout mice, which possess functional NK but not cytolytic T or NK-T cells. Moreover, WBH decreased the mRNA expression of perforin and granzyme B in spleens of mice. But the expression of TNF cytokines (Fas ligand and TRAIL) was unchanged. These data suggest that the suppression of NK cell activity induced by WBH could be mediated through the perforin/granzyme pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号