首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 0 毫秒
1.
Mesenchymal stem cells (MSCs) favor cancer growth by facilitating immunosuppression status in tumor microenvironment. However, the function and mechanism of MSCs in initiating and developing prostate cancer remains to be fully understood. In this study, we first found that MSCs promoted prostate cancer (PCa) tumor growth in vivo and cell proliferation in vitro by using PCs cell strain RM‐1. Both exogenous and endogenous MSCs could be recruited into the tumor microenvironment by using bone‐marrow transplantation model. We further demonstrated that PDGF‐BB produced by RM‐1 cell promoted MSCs proliferation in vivo and in vitro, which was abrogated by Si‐RNA specific to PDGF‐BB. And inflammatory cytokines, such as interferon gamma, tumor necrosis factor alpha, and anti‐inflammatory cytokine transformation growth factor alpha, further increased the ability of RM‐1 to produce PDGF‐BB. Overall, PCa cells produced PDGF‐BB favors the proliferation of MSCs, which may elicit immunosuppressive function and enable PCa cells to escape from the immunity surveillance in tumor inflammatory microenvironment. J. Cell. Biochem. 114: 1510–1518, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

2.
3.
Human mesenchymal stromal or stem cells (hMSCs) are being investigated for cell therapy in a wide range of diseases. MSCs are a potent source of trophic factors and actively remodel their immediate microenvironment through the secretion of bioactive factors in response to external stimuli such as oxygen tension. In this study, we examined the hypothesis that hypoxia influences hMSC properties in part through the regulation of extracellular milieu characterized by the extracellular matrix (ECM) matrices and the associated fibroblast growth factor‐2 (FGF‐2). The decellularized ECM matrices derived from hMSC culture under both hypoxic (e.g., 2% O2) and the standard culture (e.g., 20% O2) conditions have different binding capacities to the cell‐secreted and exogenenous FGF‐2. The reduced hMSC proliferation in the presence of FGF‐2 inhibitor and the differential capacity of the decellularized ECM matrices in regulating hMSC osteogeneic and adipogenic differentiation suggest an important role of the endogenous FGF‐2 in sustaining hMSC proliferation and regulating hMSC fate. Additionally, the combination of the ECM adhesion and hypoxic culture preserved hMSC viability under serum withdrawal. Together, the results suggest the synergistic effect of hypoxia and the ECM matrices in sustaining hMSC ex vivo expansion and preserving their multi‐potentiality and viability under nutrient depletion. The results have important implication in optimizing hMSC expansion and delivery strategies to obtain hMSCs in sufficient quantity with required potency and to enhance survival and function upon transplantation. J. Cell. Biochem. 114: 716–727, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

4.
Ultraviolet A (UVA) irradiation is responsible for a variety of changes in cell biology. The purpose of this study was to investigate the effects of UVA irradiation on the stemness properties of human adipose tissue‐derived mesenchymal stem cells (hAMSCs). Furthermore, we examined the UVA‐antagonizing effects of L ‐cysteine ethylester hydrochloride (ethylcysteine) and elucidated its action mechanisms. The results of this study showed that UVA reduced the proliferative potential and stemness of hAMSCs, as evidenced by reduced proliferative activity in the 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide (MTT) assay and downregulation of OCT4, NANOG, and SOX2, stemness‐related genes. The mRNA level of hypoxia‐inducible factor (HIF)‐1α, but not HIF‐2α was reduced by UVA. Moreover, the knockdown of HIF‐1α using small interfering RNA (siRNA) for HIF‐1α was found to downregulate stemness genes, suggesting that UVA reduces the stemness through downregulation of HIF‐1α. In addition, we examined the mechanisms underlying the UVA‐mediated effects and found that UVA induced production of prostaglandin (PG) E2 and 3′‐5′‐cyclic adenosine monophosphate (cAMP), and that this effect was mediated through activation of activating protein‐1 (AP‐1) and nuclear factor‐κB (NF‐κB). The UVA effects were antagonized by ethylcysteine, and the effects were found to be mediated by reduced production of PGE2 through the inhibition of JNK and p42/44 MAPK. Taken together, these findings show for the first time that UVA regulates the stemness of hAMSCs and its effects are mediated by downregulation of HIF‐1α via the activation of PGE2–cAMP signaling. In addition, ethylcysteine may be used as an antagonizing agent to mitigate the effects of UVA. J. Cell. Biochem. 113: 3681–3691, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

5.
Adipose tissue‐derived mesenchymal stem cells (AD‐MSCs) have been shown to be capable of differentiating into multiple cell type and exert immunomodulatory effects. Since the selection of ideal stem cell is apparently crucial for the outcome of experimental stem cell therapies, therefore, in this study we compared AD‐MSCs conditioned media (CM) from BALB/c, C57BL/6, and DBA mouse strains. No significant difference was found in the morphology, cell surface markers, in vitro differentiation and proliferation potentials of AD‐MSCs isolated from C57BL/6, BALB/c, and DBA mice. The immunological assays showed some variation among the strains in the cytokines, nitric oxide (NO), and indoleamine 2,3‐dioxygenase (IDO) production and immunomodulatory effects on splenocytes functions. Our results indicated a suppression of splenocytes proliferation in the presence of AD‐MSC CM from the three inbred mouse strains. However, BALB/c CM exerted a higher suppression of splenocytes proliferation. AD‐MSCs isolated from C57BL/6 and BALB/c mice produced higher levels of TGF‐β than those from DBA mice. Furthermore, IL‐17 and IDO production was higher in AD‐MSCs isolated from BALB/c mice. Our results indicated an increased production of TGF‐β, IL‐4, IL‐10, NO, and IDO by splenocytes in response to CM from BALB/c AD‐MSCs. In conclusion, our results showed that the immunomodulatory properties of mouse AD‐MSCs is strain‐dependent and this variation should be considered during selection of appropriate stem cell source for in vivo experiments and stem cell therapy strategies. J. Cell. Biochem. 114: 955–965, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

6.
Mesenchymal stem cells (MSCs) are an important cell population in the bone marrow microenvironment. MSCs have the capacity to differentiate in vitro into several mesenchymal tissues including bone, cartilage, fat, tendon, muscle, and marrow stroma. This study was designed to isolate, expand, and characterize the differentiation ability of sheep bone marrow‐derived MSCs and to demonstrate the possibility to permanently express a reporter gene. Bone marrow was collected from the iliac crest and mononuclear cells were separated by density gradient centrifugation. Sheep MSCs cell lines were stable characterized as CD44+ and CD34? and then transfected with a green fluorescent protein (GFP) reporter gene. The GFP expression was maintained in about half (46.6%) of cloned blastocysts produced by nuclear transfer of GFP+ sheep MSCs, suggesting the possibility to establish multipotent embryonic cells' lines carrying the fluorescent tag for comparative studies on the differentiation capacity of adult stem cells (MSCs) versus embryonic stem cells. We found that sheep MSCs under appropriate culture conditions could be induced to differentiate into adipocytes, chondrocytes, and osteoblast lineages. Our results confirm the plasticity of sheep MSCs and establish the foundation for the development of a pre‐clinical sheep model to test the efficiency and safety of cell replacement therapy. J. Cell. Biochem. 114: 134–143, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

7.
Silibinin, an effective chemo-preventive agent in various cancer types, suppresses cancer cell growth, but its effects on cancer stem-like cells (CSLCs) remain unclear. This study aimed to examine whether silibinin inhibited the development of CSLCs and disclose the underlying signaling. The colorectal cancer spheroid culture system was used for enriching CSLCs. The effects of silibinin on CSLCs were evaluated by counting sphere numbers, and calculating the percentage of CD133+ cells by flow cytometry and immunofluorescence both in the absence and presence of different concentrations of silibinin. The results showed the sphere number of CCS was 36 ± 9.6 after 15 days of CSLC enrichment in spheroid culture, and the percentage of CD133+ cells increased to 18 ± 6.4% compared to 3 ± 0.8% before enrichment. Treatment with silibinin reduced the sphere formation to 5 ± 3.3 and decreased the CD133+ percentage to 8 ± 2.3%. Interestingly, treatment of silibinin suppressed the activation of the AKT Ser473/mTOR pathway in spheroid culture through suppressing the activity of protein phosphatase 2Ac subunit (PP2Ac). In a xenograft tumor model, treatment with silibinin also inhibited tumor formation rate and tumor growth. Silibinin, which inhibits colon CSLCs self-renewal and sphere formation by suppressing the PP2Ac/AKT Ser473/mTOR pathway, may be a compound for developing new strategies in modulating CSLCs in cancer therapy.  相似文献   

8.
This study was designed to investigate the effect of platelet‐derived growth factor (PDGF) on the proliferation of human umbilical cord mesenchymal stem cells (UC‐MSCs) and further explore the mechanism of PDGF in promoting the proliferation of UC‐MSCs. The human UC‐MSCs were treated with different concentrations of PDGF, and the effects were evaluated by counting the cell number, the cell viability, the expression of PDGF receptors analyzed by RT‐PCR, and the detection of the gene expression of cell proliferation, cell cycle and pluripotency, and Brdu assay by immunofluorescent staining and Quantitative real‐time (QRT‐PCR). The results showed that PDGF could promote the proliferation of UC‐MSCs in vitro in a dose‐dependent way, and 10 to 50 ng/ml PDGF had a significant proliferation effect on UC‐MSCs; the most obvious concentration was 50 ng/ml. Significant inhibition on the proliferation of UC‐MSCs was observed when the concentration of PDGF was higher than 100 ng/ml, and all cells died when the concentration reached 200 ng/ml PDGF. The PDGF‐treated cells had stronger proliferation and antiapoptotic capacity than the control group by Brdu staining. The expression of the proliferation‐related genes C‐MYC, PCNA and TERT and cell cycle–related genes cyclin A, cyclin 1 and CDK2 were up‐regulated in PDGF medium compared with control. However, pluripotent gene OCT4 was not significantly different between cells cultured in PDGF and cells analyzed by immunofluorescence and QRT‐PCR. The PDGF could promote the proliferation of human UC‐MSCs in vitro. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号