首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
To assess mechanisms of hybridization and speciation, we isolated and characterized 12 dinucleotide microsatellite DNA loci for the toad‐headed lizards, Phrynocephalus przewalskii complex. A total of 48 specimens were examined and all loci were polymorphic with seven to 25 alleles per locus. The observed and expected heterozygosities ranged from 0.282 to 0.946 and 0.400 to 0.937, respectively. These loci are therefore suitable for a wide range of population level studies within the P. przewalskii complex.  相似文献   

2.
Gene flow, maintained through natal dispersal and subsequent mating events, is one of the most important processes in both ecology and population genetics. Among mammalian populations, gene flow is strongly affected by a variety of factors, including the species’ ability to disperse, and the composition of the environment which can limit dispersal. Information on dispersal patterns is thus crucial both for conservation management and for understanding the social system of a species. We used 16 polymorphic nuclear microsatellite loci in addition to mitochondrial DNA sequences (1.61 kbp) to analyse the population structure and the sex‐specific pattern of natal dispersal in the frog‐eating fringe‐lipped bat, Trachops cirrhosus, in Central Panama. Our study revealed that—unlike most of the few other investigated Neotropical bats—gene flow in this species is mostly male‐mediated. Nevertheless, distinct genetic clusters occur in both sexes. In particular, the presence of genetic differentiation in the dataset only consisting of the dispersing sex (males) indicates that gene flow is impeded within our study area. Our data are in line with the Panama Canal in connection with the widening of the Río Chagres during the canal construction acting as a recent barrier to gene flow. The sensitivity of T. cirrhosus to human‐induced habitat modifications is further indicated by an extremely low capture success in highly fragmented areas. Taken together, our genetic and capture data provide evidence for this species to be classified as less mobile and thus vulnerable to habitat change, information that is important for conservation management.  相似文献   

3.
Genetic diversity and spatial structure of populations are important for antagonistic coevolution. We investigated genetic variation and population structure of three closely related European ant species: the social parasite Harpagoxenus sublaevis and its two host species Leptothorax acervorum and Leptothorax muscorum. We sampled populations in 12 countries and analysed eight microsatellite loci and an mtDNA sequence. We found high levels of genetic variation in all three species, only slightly less variation in the host L. muscorum. Using a newly introduced measure of differentiation (Jost’s Dest ), we detected strong population structuring in all species and less male‐biased dispersal than previously thought. We found no phylogeographic patterns that could give information on post‐glacial colonization routes – northern populations are as variable as more southern populations. We conclude that conditions for Thompson’s geographic mosaic of coevolution are ideal in this system: all three species show ample genetic variation and strong population structure.  相似文献   

4.
Amphibians display wide variations in life‐history traits and life cycles that should prove useful to explore the evolution of sex‐biased dispersal, but quantitative data on sex‐specific dispersal patterns are scarce. Here, we focused on Salamandra atra, an endemic alpine species showing peculiar life‐history traits. Strictly terrestrial and viviparous, the species has a promiscuous mating system, and females reproduce only every 3 to 4 years. In the present study, we provide quantitative estimates of asymmetries in male vs. female dispersal using both field‐based (mark–recapture) and genetic approaches (detection of sex‐biased dispersal and estimates of migration rates based on the contrast in genetic structure across sexes and age classes). Our results revealed a high level of gene flow among populations, which stems exclusively from male dispersal. We hypothesize that philopatric females benefit from being familiar with their natal area for the acquisition and defence of an appropriate shelter, while male dispersal has been secondarily favoured by inbreeding avoidance. Together with other studies on amphibians, our results indicate that a species' mating system alone is a poor predictor of sex‐linked differences in dispersal, in particular for promiscuous species. Further studies should focus more directly on the proximate forces that favour or limit dispersal to refine our understanding of the evolution of sex‐biased dispersal in animals.  相似文献   

5.
Dispersal is an important aspect in organism's life history which could influence the rate and outcome of evolution of organism. Plateau pika is the keystone species in community of grasslands in Tibetan Plateau. In this study, we combine genetic and field data to character the population genetic pattern and dispersal dynamics in plateau pika (Ochotona curzoniae). Totally, 1,352 individual samples were collected, and 10 microsatellite loci were analyzed. Results revealed that plateau pika possessed high genetic diversity and inbreeding coefficient in a fine‐scale population. Dispersal distance is short and restricted in about 20 m. An effective sex‐biased dispersal strategy is employed by plateau pika: males disperse in breeding period for mating while females do it after reproduction for offspring and resource. Inbreeding avoiding was shown as the common driving force of dispersal, together with the other two factors, environment and resource. In addition, natal dispersal is female biased. More detailed genetic analyzes are needed to confirm the role of inbreeding avoidance and resource competition as ultimate cause of dispersal patterns in plateau pika.  相似文献   

6.
Patterns of sex‐biased dispersal (SBD) are typically consistent within taxa, for example female‐biased in birds and male‐biased in mammals, leading to theories about the evolutionary pressures that lead to SBD. However, generalizations about the evolution of sex biases tend to overlook that dispersal is mediated by ecological factors that vary over time. We examined potential temporal variation in between‐ and within‐population dispersal over an 11‐year period in a bird, the dark‐eyed junco (Junco hyemalis). We measured between‐population dispersal patterns using genetic assignment indices and found yearly variation in which sex was more likely to have immigrated. When we measured within‐population spatial genetic structure and mark–recapture dispersal distances, we typically found yearly SBD patterns that mirrored between‐population dispersal, indicating common eco‐evolutionary causes despite expected differences due to the scale of dispersal. However, in years without detectable between‐population sex biases, we found genetic similarity between nearby males within our population. This suggests that, in certain circumstances, ecological pressures may act on within‐population dispersal without affecting dispersal between populations. Alternatively, current analytical tools may be better able to detect within‐population SBD. Future work will investigate potential causes of the observed temporal variation in dispersal patterns and whether they have greater effects on within‐population dispersal.  相似文献   

7.
Savannas are highly diverse and dynamic environments that can shift to forest formations due to protection policies. Long‐distance dispersal may shape the genetic structure of these new closed forest formations. We analyzed eight microsatellite loci using a single‐time approach to understand contemporary pollen and effective seed dispersal of the tropical tree, Copaifera langsdorffii Desf. (Fabaceae), occurring in a Brazilian fire‐ and livestock‐protected savanna. We sampled all adult trees found within a 10.24 ha permanent plot, young trees within a subplot of 1.44 ha and open‐pollinated seeds. We detected a very high level of genetic diversity among the three generations in the studied plot. Parentage analysis revealed high pollen immigration rate (0.64) and a mean contemporary pollen dispersal distance of 74 m. In addition, half‐sib production was 1.8 times higher than full‐sibs in significant higher distances, indicating foraging activity preference for different trees at long distances. There was a significant and negative correlation between diameter at breast height (DBH) of the pollen donor with the number of seeds (r = ?0.640, P‐value = 0.032), suggesting that pollen donor trees with a higher DBH produce less seeds. The mean distance of realized seed dispersal (recruitment kernel) was 135 m due to the large home range dispersers (birds and mammals) in the area. The small magnitude of spatial genetic structure found in young trees may be a consequence of overlapping seed shadows and increased tree density. Our results show the positive side of closed canopy expansion, where animal activities regarding pollination and seed dispersal are extremely high.  相似文献   

8.
Western black‐and‐white colobus and Temmink's red colobus are two forest‐dependent African primates with similar ecological requirements, often found in sympatry. Their most striking difference lies in their social system: black‐and‐white colobus live in small groups with mainly male‐mediated dispersal but where females can also disperse, whereas red colobus live in larger groups with males described as philopatric. To investigate whether genetic evidence supports the reported patterns of dispersal based on observational data, we examined eight black‐and‐white and six red colobus social groups from Cantanhez National Park, Guinea‐Bissau. Microsatellite markers revealed a lack of sex‐biased dispersal for black‐and‐white colobus. Gene flow, mainly mediated by females, better explained the genetic patterns found in red colobus, with some evidence for less extensive male dispersal. In contrast to the microsatellite data, low mitochondrial diversity for the black‐and‐white colobus suggests that historical and/or long‐range male‐mediated gene flow might have been favored. In red colobus, the co‐existence of three divergent mitochondrial haplogroups suggests that the Cantanhez population contains a secondary contact zone between divergent lineages that evolved in allopatry. Female‐biased dispersal in this species may be a major factor contributing to the colonization by such differentiated mitochondrial lineages in the region. Overall, we find evidence for a spatio‐temporal change in the dispersal patterns of the colobus monkeys of Cantanhez, with mitochondrial DNA indicating dispersal by mainly a single sex and microsatellite data suggesting that recently both sexes appear to be dispersing within the population. Am J Phys Anthropol, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

9.
Dispersal and local patterns of adaptation play a major role on the ecological and evolutionary trajectory of natural populations. In this study, we employ a combination of genetic (25 microsatellite markers) and field‐based information (seven study years) to analyse the impact of immigration and local patterns of adaptation in two nearby (< 7 km) blue tit (Cyanistes caeruleus) populations. We used genetic assignment analyses to identify immigrant individuals and found that dispersal rate is female‐biased (72%). Data on lifetime reproductive success indicated that immigrant females produced fewer local recruits than their philopatric counterparts whereas immigrant males recruited more offspring than those that remained in their natal location. In spite of the considerably higher immigration rates of females, our results indicate that, in absolute terms, their demographic and genetic impact in the receiving populations is lower than that in immigrant males. Immigrants often brought novel alleles into the studied populations and a high proportion of them were transmitted to their recruits, indicating that the genetic impact of immigrants is not ephemeral. Although only a few kilometres apart, the two study populations were genetically differentiated and showed strong divergence in different phenotypic and life‐history traits. An almost absent inter‐population dispersal, together with the fact that both populations receive immigrants from different source populations, is probably the main cause of the observed pattern of genetic differentiation. However, phenotypic differentiation (PST) for all the studied traits greatly exceeded neutral genetic differentiation (FST), indicating that divergent natural selection is the prevailing factor determining the evolutionary trajectory of these populations. Our study highlights the importance of integrating individual‐ and population‐based approaches to obtain a comprehensive view about the role of dispersal and natural selection on structuring the genotypic and phenotypic characteristics of natural populations.  相似文献   

10.
Understanding connectivity of coral populations among and within reefs over ecologically significant timescales is essential for developing evidence‐based management strategies, including the design of marineprotected areas. Here, we present the first assessment of contemporary connectivity among populations of two Molecular Operational Taxonomic Units (MOTUs) of the brooding coral Pocillopora damicornis. We used individual‐based genetic assignment methods to identify the proportions of philopatric and migrant larval recruits, settling over 12 months at sites around Lizard Island (northern Great Barrier Reef [GBR]) and over 24 months at sites around the Palms Islands (central GBR). Overall, we found spatially and temporally variable rates of self‐recruitment and dispersal, demonstrating the importance of variation in local physical characteristics in driving dispersal processes. Recruitment patterns and inferred dispersal distances differed between the two P. damicornis MOTUs, with type α recruits exhibiting predominantly philopatric recruitment, while the majority of type β recruits were either migrants from identified putative source populations or assumed migrants based on genetic exclusion from all known populations. While P. damicornis invests much energy into brooding clonal larvae, we found that only 15% and 7% of type α and type β recruits, respectively, were clones of sampled adult colonies or other recruits, challenging the hypothesis that reproduction is predominantly asexual in this species on the GBR. We explain high rates of self‐recruitment and low rates of clonality in these MOTUs by suggesting that locally retained larvae originate predominantly from spawned gametes, while brooded larvae are mainly vagabonds.  相似文献   

11.
12.
The biological and genetic structure of common bottlenose dolphins (Tursiops truncatus) that migrate seasonally near Japan remains largely unknown. We investigated the genetic and family structure in a group of 165 common bottlenose dolphins caught off the coast of Japan using mitochondrial DNA (mtDNA) and 20 microsatellite DNA markers. Phylogenetic analysis of the mtDNA control region sequences suggested that the dolphins were related more closely to oceanic types from Chinese waters than other geographic regions. The information on sex, sexual maturation and age together with the genetic markers revealed a strong likelihood for 37 familial relationships related mostly to maternity and an under‐representation of juvenile female offspring. The maternal dolphins had a similar offspring‐birth interval as the coastal types from North Atlantic Ocean, but a slightly younger first‐progeny age. The sex bias in the captured group was particularly marked towards an over‐representation of males among the young and immature dolphins, whereas the mature adults had an equal number of males and females. These results should be useful for future comparative biological, genetic and evolutionary investigations of bottlenose dolphins from the North Pacific Ocean with those from other regions.  相似文献   

13.
Condition‐dependent genetic interactions can reveal functional relationships between genes that are not evident under standard culture conditions. State‐of‐the‐art yeast genetic interaction mapping, which relies on robotic manipulation of arrays of double‐mutant strains, does not scale readily to multi‐condition studies. Here, we describe barcode fusion genetics to map genetic interactions (BFG‐GI), by which double‐mutant strains generated via en masse “party” mating can also be monitored en masse for growth to detect genetic interactions. By using site‐specific recombination to fuse two DNA barcodes, each representing a specific gene deletion, BFG‐GI enables multiplexed quantitative tracking of double mutants via next‐generation sequencing. We applied BFG‐GI to a matrix of DNA repair genes under nine different conditions, including methyl methanesulfonate (MMS), 4‐nitroquinoline 1‐oxide (4NQO), bleomycin, zeocin, and three other DNA‐damaging environments. BFG‐GI recapitulated known genetic interactions and yielded new condition‐dependent genetic interactions. We validated and further explored a subnetwork of condition‐dependent genetic interactions involving MAG1, SLX4, and genes encoding the Shu complex, and inferred that loss of the Shu complex leads to an increase in the activation of the checkpoint protein kinase Rad53.  相似文献   

14.
15.
Evidence shows that social cooperation among kin may evolve even in birds with extensive dispersal. In such cases, maintaining kinship during dispersal is essential to the subsequent expression of kin cooperation. This hypothesis has not been examined for most bird species. We addressed it in the ground tit (Parus humilis), a passerine where kin frequently interact in terms of cooperative polygamy and extra‐pair mating despite fast annual turnover of the breeding population. Pedigree and genotype data showed that while groups varied in composition throughout the non‐breeding season due to continual individual emigration and immigration, they always contained kin coalitions consisting of either local or immigrant individuals of different age and sexes. The first‐order kin coalitions, according to the information from local individuals, stemmed from single‐family lineages (siblings and their parents), and the lower‐order ones from neighbouring, related family lineages that merged after fledging. It was probable that immigrants had formed kin coalitions in similar ways before dispersing. Groups broke up in the breeding season. Pairing between unrelated individuals from different coalitions within a group was more likely, whereas related individuals from the same coalition tended to nest near each other. The resulting fine‐scale population genetic structure is expected to facilitate breeding interactions among kin. Our findings give clues to understanding the evolution of social cooperation in relation to dispersal.  相似文献   

16.
Sex differences in philopatry and dispersal have important consequences on the genetic structure of populations, social groups, and social relationships within groups. Among mammals, male dispersal and female philopatry are most common and closely related taxa typically exhibit similar dispersal patterns. However, among four well‐studied species of baboons, only hamadryas baboons exhibit female dispersal, thus differing from their congenerics, which show female philopatry and close‐knit female social relationships. Until recently, knowledge of the Guinea baboon social system and dispersal pattern remained sparse. Previous observations suggested that the high degree of tolerance observed among male Guinea baboons could be due to kinship. This led us to hypothesize that this species exhibits male philopatry and female dispersal, conforming to the hamadryas pattern. We genotyped 165 individuals from five localities in the Niokolo‐Koba National Park, Senegal, at 14 autosomal microsatellite loci and sequenced a fragment of the mitochondrial hypervariable region I (HVRI) of 55 individuals. We found evidence for higher population structuring in males than in females, as expected if males are the more philopatric sex. A comparison of relatedness between male–male and female–female dyads within and among communities did not yield conclusive results. HVRI diversity within communities was high and did not differ between the sexes, also suggesting female gene flow. Our study is the first comprehensive analysis of the genetic population structure in Guinea baboons and provides evidence for female‐biased dispersal in this species. In conjunction with their multilevel social organization, this finding parallels the observations for human hunter‐gatherers and strengthens baboons as an intriguing model to elucidate the processes that shaped the highly cooperative societies of Homo. Am. J. Primatol. 77:878–889, 2015. © 2015 The Authors. American Journal of Primatology Published by Wiley Periodicals Inc.  相似文献   

17.
The high prevalence of dioecy in marine angiosperms or seagrasses (>50% of all species) is thought to enforce cross‐fertilization. However, seagrasses are clonal plants, and they may still be subject to sibling‐mating or bi‐parental inbreeding if the genetic neighborhood is smaller than the size of the genets. We tested this by determining the genetic neighborhoods of the dioecious seagrass Thalassia testudinum at two sites (Back‐Reef and Mid‐Lagoon) in Puerto Morelos Reef Lagoon, Mexico, by measuring dispersal of pollen and seeds in situ, and by fine‐scale spatial autocorrelation analysis with eight polymorphic microsatellite DNA markers. Prevalence of inbreeding was verified by estimating pairwise kinship coefficients; and by analysing the genotypes of seedlings grown from seeds in mesocosms. Average dispersal of pollen was 0.3–1.6 m (max. 4.8 m) and of seeds was 0.3–0.4 m (max. 1.8 m), resulting in a neighborhood area of 7.4 m2 (range 3.4–11.4 m2) at Back‐Reef and 1.9 (range 1.87–1.92 m2) at Mid‐Lagoon. Neighborhood area (Na) derived from spatial autocorrelation was 0.1–20.5 m2 at Back‐Reef and 0.1–16.9 m2 at Mid‐Lagoon. Maximal extensions of the genets, in 19 × 30 m plots, were 19.2 m (median 7.5 m) and 10.8 m (median 4.8 m) at Back‐Reef and Mid‐Lagoon. There was no indication of deficit or excess of heterozygotes nor were coefficients of inbreeding (FIS) significant. The seedlings did not show statistically significant deficit of heterozygotes (except for 1 locus at Back‐Reef). Contrary to our expectations, we did not find evidence of bi‐parental inbreeding in this dioecious seagrass with large genets but small genetic neighborhoods. Proposed mechanisms to avoid bi‐parental inbreeding are possible selection against homozygotes during fecundation or ovule development. Additionally, the genets grew highly dispersed (aggregation index Ac was 0.09 and 0.10 for Back‐Reef and Mid‐Lagoon, respectively); such highly dispersed guerrilla‐like clonal growth form likely increases the probability of crossing between different potentially unrelated genets.  相似文献   

18.
Miscanthus lutarioriparius is an endemic species that grows along the middle and lower reaches of the Yangtze River and is a valuable source of germplasm for the development of second‐generation energy crops. The plant that propagates via seeds, stem nodes, and rhizomes shows high phenotypic variation and strong local adaptation. Here, we examined the magnitude and spatial distribution of genetic variation in M. lutarioriparius across its entire distributional range and tested underlying factors that shaped its genetic variation. Population genetic analyses were conducted on 644 individuals from 25 populations using 16 microsatellite markers. M. lutarioriparius exhibited a high level of genetic variation (HE = 0.682–0.786; A= 4.74–8.06) and a low differentiation (FST = 0.063; Dest = 0.153). Of the total genetic variation, 10% was attributed to the differences among populations (df = 24, < 0.0001), whereas 90% was attributed to the differences among individuals (df = 619, ≤ 0.0001). Genetic diversity did not differ significantly across longitudes and did not increase in the populations growing downstream of the Yangtze River. However, significant associations were found between genetic differentiation and spatial distance. Six genetic discontinuities were identified, which mostly distributed among downstream populations. We conclude that anthropogenic factors and landscape features both contributed to shaping the pattern of gene flow in M. lutarioriparius, including long‐distance bidirectional dispersal. Our results explain the genetic basis of the high degree of adaptability in M. lutarioriparius and identify potential sources of new germplasm for the domestication of this potential second‐generation energy crop.  相似文献   

19.
It is well accepted that the shape of the dispersal kernel, especially its tail, has a substantial effect on the genetic structure of species. Theory predicts that dispersal by fat‐tailed kernels reshuffles genetic material, and thus, preserves genetic diversity during colonization. Moreover, if efficient long‐distance dispersal is coupled with random colonization, an inverse isolation effect is predicted to develop in which increasing genetic diversity per colonizer is expected with increasing distance from a genetically variable source. By contrast, increasing isolation leads to decreasing genetic diversity when dispersal is via thin‐tailed kernels. Here, we use a well‐established model group for dispersal biology (peat mosses: genus Sphagnum) with a fat‐tailed dispersal kernel, and the natural laboratory of the Stockholm archipelago to study the validity of the inverse isolation hypothesis in spore‐dispersed plants in island colonization. Population genetic structure of three species (Sphagnum fallax, Sphagnum fimbriatum and Sphagnum palustre) with contrasting life histories and ploidy levels were investigated on a set of islands using microsatellites. Our data show (, amova , IBD) that dispersal of the two most abundant species can be well approximated by a random colonization model. We find that genetic diversity per colonizer on islands increases with distance from the mainland for S. fallax and S. fimbriatum. By contrast, S. palustre deviates from this pattern, owing to its restricted distribution in the region, affecting its source pool strength. Therefore, the inverse isolation effect appears to hold in natural populations of peat mosses and, likely, in other organisms with small diaspores.  相似文献   

20.
Organisms commonly experience significant spatiotemporal variation in their environments. In response to such heterogeneity, different mechanisms may act that enhance ecological performance locally. However, depending on the nature of the mechanism involved, the consequences for populations may differ greatly. Building on a previous model that investigated the conditions under which different adaptive mechanisms (co)evolve, this study compares the ecological and evolutionary population consequences of three very different responses to environmental heterogeneity: matching habitat choice (directed gene flow), adaptive plasticity (associated with random gene flow), and divergent natural selection. Using individual‐based simulations, we show that matching habitat choice can have a greater adaptive potential than plasticity or natural selection: it allows for local adaptation while protecting genetic polymorphism despite global mating or strong environmental changes. Our simulations further reveal that increasing environmental fluctuations and unpredictability generally favor the emergence of specialist genotypes but that matching habitat choice is better at preventing local maladaptation by individuals. This confirms that matching habitat choice can speed up the genetic divergence among populations, cause indirect assortative mating via spatial clustering, and hence even facilitate sympatric speciation. This study highlights the potential importance of directed dispersal in local adaptation and speciation, stresses the difficulty of deriving its operation from nonexperimental observational data alone, and helps define a set of ecological conditions which should favor its emergence and subsequent detection in nature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号