首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have investigated the role of Vitamin A (retinoid) proteins in hepatic retinoid processing under normal conditions and during chemical stress induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a chemical known to interfere with retinoid turnover and metabolism. Three separate studies were performed in wildtype control mice and transgenic mice that lack one or more isoforms of retinoic acid receptors (RAR), retinoid X receptors (RXR), or intracellular retinoid-binding proteins (CRABP I, CRABP II, CRBP I). Body and organ weight development was monitored from 2 weeks of age to adult, and hepatic levels of retinyl esters, retinol, and retinoic acid were investigated. In addition, hepatic concentrations of 9-cis-4-oxo-13,14-dihydro-retinoic acid, a recently discovered retinoid metabolite that has proven sensitive to both TCDD exposure and Vitamin A status, were also determined. Mice absent in the three proteins CRBP I, CRABP I, and CRABP II (CI/CAI/CAII-/-) displayed significantly lower hepatic retinyl ester, retinol, and all-trans-retinoic acid levels compared to wildtype mice, whereas the liver concentrations of 9-cis-4-oxo-13,14-dihydro-retinoic acid was considerably higher. After treatment with TCDD, hepatic total retinoids were almost entirely depleted in the CI/CAI/CAII-/- mice, whereas wildtype mice and mice lacking CRABP I, and CRABP II (CAI/CAII-/-) retained approximately 60-70% of their Vitamin A content compared to controls at 28 days. RAR and RXR knockout mice responded similarly to wildtype mice with respect to TCDD-induced retinoid disruption, with the exception of RXRbeta-/- mice which showed no decrease in hepatic Vitamin A concentration, suggesting that the role of RXRbeta in TCDD-induced retinoid disruption should be further investigated. Overall, the abnormal retinoid profile in the triple knockout mice (CI/CAI/CAII-/-), but not double knockout (CAI/CAII-/-) mice, suggests that a loss of CRBP I may account for the difference in retinoid profile in CI/CAI/CAII-/- mice, and is likely to result in an increased susceptibility to hepatic retinoid depletion following dioxin exposure.  相似文献   

2.
A study was conducted on the incorporation of [11-3H]retinyl acetate into various retinyl esters in liver tissues of rats either vitamin A-sufficient, vitamin A-deficient or vitamin A-deficient and maintained on retinoic acid. Further, the metabolism of [11-3H]retinyl acetate to polar metabolites in liver tissues of these three groups of animals was investigated. Retinol metabolites were analyzed by high-performance liquid chromatography. In vitamin A-sufficient rat liver, the incorporation of radioactivity into retinyl palmitate and stearate was observed at 0.25 h after the injection of the label. The label was further detected in retinyl laurate, myristate, palmitoleate, linoleate, pentadecanoate and heptadecanoate 3 h after the injection. The specific radioactivities (dpm/nmol) of all retinyl esters increased with time. However, the rate of increase in the specific radioactivity of retinyl laurate was found to be significantly higher (66-fold) than that of retinyl palmitate 24 h after the injection of the label. 7 days after the injection of the label, the specific radioactivity between different retinyl esters were found to be similar, indicating that newly dosed labelled vitamin A had now mixed uniformly with the endogenous pool of vitamin A in the liver. The esterification of labelled retinol was not detected in liver tissues of vitamin A-deficient or retinoic acid-supplemented rats at any of the time point studied. Among the polar metabolites analyzed, the formation of [3H]retinoic acid from [3H]retinyl acetate was found only in vitamin A-deficient rat liver 24 h after the injection of the label. A new polar metabolite of retinol (RM) was detected in liver of the three groups of animals. The formation of 3H-labelled metabolite RM from [3H]retinyl acetate was not detected until 7 days after the injection of the label in the vitamin A-sufficient rat liver, suggesting that metabolite RM could be derived from a more stable pool of vitamin A.  相似文献   

3.
Abstract. Regulation by vitamin A of cell proliferation and differentiation of epithelial tissues is well-established. Deficiency of vitamin A in experimental animals leads to the development of hyperplasia and squamous metaplasia. The objective of the present study was to examine, for young hamsters, the effects of variable levels of the vitamin in the liver and trachea, on cell proliferation and morphology of tracheal epithelium and on body weights. Newly born litters were maintained on vitamin A-supplemented and vitamin A-deficient diets, and various parameters were examined at different ages. Retinol and retinyl palmitate levels were determined by high performance liquid chromatography. For animals on the supplemented diet, concentrations of liver retinyl palmitate and retinol increased progressively with age, reaching highest levels of approximately 84 and 1 -9 μg/g liver, respectively, at 28 d. In contrast, in animals on the vitamin A-deficient diet, the retinyl palmitate and retinol levels decreased progressively, reaching the lowest levels of approximately 0–32 and 0–09 μg/g, respectively. No significant reduction in retinol was observed in the trachea of animals maintained on the deficient diet for at least 20 d; their tracheas were depleted of retinol at 28 d. No vitamin A-associated differences were, however, observed in the labelling indices, growth fraction or in the morphology of the tracheal epithelium. Both the control and vitamin A-deficient animals gained weight progressively until 36 d of age, although the weight of animals in the latter group remained below those in the former group. These results show that mild-to-severe deficiency of vitamin A had no effects on cell proliferation or tracheal morphology of the hamster. The hyperplasia and squamous metaplasia in the trachea occurs only at an extreme vitamin A-deficiency when the tissue levels of the vitamin are depleted.  相似文献   

4.
Chronic dietary administration of 3,3',4,4',5,5'-hexabromobiphenyl (HBB), 1 mg/kg diet, caused a decrease in retinol (20-fold) and retinyl esters (23-fold) in the livers of female rats, but resulted in a 6.4-fold increase in retinol and 7.4-fold increase in retinyl esters in the kidneys. Liver acyl-CoA:retinol acyltransferase and retinyl palmitate hydrolase activities were reduced while serum concentration of retinol was unaffected by HBB feeding. Metabolism of a physiological dose of [11-3H]retinyl acetate (10 micrograms), was examined in rats fed either vitamin A-adequate diet, or marginal amounts of vitamin A, or vitamin A-adequate diet containing HBB. A 13-fold greater amount of the administered vitamin A was found in kidneys of HBB-treated rats. In rats fed adequate or low amounts of vitamin A, kidney radioactivity was primarily in the retinol fraction, while in HBB-fed rats the radioactivity was associated mostly with retinyl esters. Fecal and urinary excretion of radioactivity was greatly increased in HBB-treated rats. Chronic HBB feeding results in a loss of ability of liver to store vitamin A, and severely alters the uptake and metabolism of vitamin A in the kidneys. We conclude that HBB causes major disturbances in the regulation of vitamin A metabolism.  相似文献   

5.
The physiological functions of the aryl hydrocarbon receptor (AHR) are only beginning to unfold. Studies in wildtype and AHR knockout (AHRKO) mice have recently disclosed that AHR activity is required for obesity and steatohepatitis to develop when mice are fed with a high-fat diet (HFD). In addition, a line of AHRKO mouse has been reported to accumulate retinoids in the liver. Whether these are universal manifestations across species related to AHR activity level is not known yet. Therefore, we here subjected wildtype and AHRKO male rats (on Sprague-Dawley background) to HFD feeding coupled with free access to 10% sucrose solution and water; controls received a standard diet and water. Although the HFD-fed rats consumed more energy throughout the 24-week feeding regimen, they did not get overweight. However, relative weights of the brown and epididymal adipose tissues were elevated in HFD-fed rats, while that of the liver was lower in AHRKO than wildtype rats. Moreover, the four groups exhibited diet- or genotype-dependent differences in biochemical variables, some of which suggested marked dissimilarities from AHRKO mice. Expression of pro- and anti-inflammatory genes was induced in livers of HFD-fed AHRKO rats, but histologically they did not differ from others. HFD reduced the hepatic concentrations of retinyl palmitate, 9-cis-4-oxo-13,14-dihydroretinoic acid and (suggestively) retinol, whereas AHR status had no effect. Hence, the background strain/line of AHRKO rat is resistant to diet-induced obesity, and AHR does not modulate this or liver retinoid concentrations. Yet, subtle AHR-dependent differences in energy balance-related factors exist despite similar weight development.  相似文献   

6.
Relative retinyl ester hydrolase activities of pig liver homogenates (n = 4) toward 9,13-cis-, 13-cis-, 9-cis-, and all-trans-retinyl palmitate were 6.8 +/- 0.5 (SE), 5.7 +/- 0.5, 2.4 +/- 0.1, and 1, respectively. The range of apparent Km values for the four isomers was 142 to 268 microM, and the pH optima were 8-9 in all cases. Peak activities of retinyl ester hydrolase activities in pig liver cytosol toward 13-cis- and all-trans-retinyl palmitate were found in the 20 to 40% and in the 60 to 80% saturated ammonium sulfate (AS) fractions, respectively. By use of size-exclusion chromatography in 2 M KCl, hydrolase activity eluted at volumes corresponding to greater than 2000, 180, and 15 kDa from the 20-40% AS fraction, and at 180 kDa from the 60-80% AS fraction. On the basis of molecular size, different substrate specificities, detergent effects, and susceptibilities to inhibition by phenylmethylsulfonyl fluoride, we conclude that at least three distinct retinyl ester hydrolases are present in pig liver cytosol.  相似文献   

7.
Chronic dietary administration of 3,3′,4,4′,5,5′-hexabromobiphenyl (HBB), 1 mg/kg diet, caused a decrease in retinol (20-fold) and retinyl esters (23-fold) in the livers of female rats, but resulted in a 6.4-fold increase in retinol and 7.4-fold increase in retinyl esters in the kidneys. Liver acyl-CoA: retinol acyltransferase and retinyl palmitate hydrolase activities were reduced while serum concentration of retinol was unaffected by HBB feeding. Metabolism of a physiological dose of [11-3H]retinyl acetate (10 μg), was examined in rats fed either vitamin A-adequate diet, or marginal amounts of vitamin A, or vitamin A-adequate diet containing HBB. A 13-fold greater amount of the administered vitamin A was found in kidneys of HBB-treated rats. In rats fed adequate or low amounts of vitamin A, kidney radioactivity was primarily in the retinol fraction, while in HBB-fed rats the radioactivity was associated mostly with retinyl esters. Fecal and urinary excretion of radioactivity was greatly increased in HBB-treated rats. Chronic HBB feeding results in a loss of ability of liver to store vitamin A, and severely alters the uptake and metabolism of vitamin A in the kidneys. We conclude that HBB causes major disturbances in the regulation of vitamin A metabolism.  相似文献   

8.
Charge effects on phospholipid monolayers in relation to cell motility   总被引:1,自引:0,他引:1  
A new sensitive method for the assay of retinyl ester hydrolase in vitro was developed and applied to liver homogenates of 18 young pigs with depleted-to-adequate liver vitamin A reserves. Radioactive substrate was not required, because the formation of retinol could be adequately quantitated by reversed-phase high-performance liquid chromatography. Optimal hydrolase activity was observed with 500 microM retinyl palmitate, 100 mM 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate, and 2 mg/ml Triton X-100 at pH 8.0. The relative rates of hydrolysis of six different retinyl esters by liver homogenate were: retinyl linolenate (100%), myristate (99%), palmitate (47%), oleate (38%), linoleate (31%), and stearate (29%). The enzyme was found primarily in the membrane-containing fractions of liver (59 +/- 3%, S.E.) and kidney (76 +/- 3%), with considerably lower overall activity in kidney (57-375 nmol/h per g of tissue) than in liver (394-1040 nmol/h per g). Retinyl ester hydrolase activity in these pigs was independent of serum retinol values, which ranged from 3 to 24 micrograms/dl, and of liver vitamin A concentrations from 0 to 32 micrograms/g. Pig liver retinyl ester hydrolase differs from the rat liver enzyme in its substrate specificity, bile acid stimulation, and interanimal variability.  相似文献   

9.
Regulation by vitamin A of cell proliferation and differentiation of epithelial tissues is well-established. Deficiency of vitamin A in experimental animals leads to the development of hyperplasia and squamous metaplasia. The objective of the present study was to examine, for young hamsters, the effects of variable levels of the vitamin in the liver and trachea, on cell proliferation and morphology of tracheal epithelium and on body weights. Newly born litters were maintained on vitamin A-supplemented and vitamin A-deficient diets, and various parameters were examined at different ages. Retinol and retinyl palmitate levels were determined by high performance liquid chromatography. For animals on the supplemented diet, concentrations of liver retinyl palmitate and retinol increased progressively with age, reaching highest levels of approximately 84 and 1.9 micrograms g liver, respectively, at 28 d. In contrast, in animals on the vitamin A-deficient diet, the retinyl palmitate and retinol levels decreased progressively, reaching the lowest levels of approximately 0.32 and 0.09 micrograms/g, respectively. No significant reduction in retinol was observed in the trachea of animals maintained on the deficient diet for at least 20 d: their tracheas were depleted of retinol at 28 d. No vitamin A-associated differences were, however, observed in the labelling indices, growth fraction or in the morphology of the tracheal epithelium. Both the control and vitamin A-deficient animals gained weight progressively until 36 d of age, although the weight of animals in the latter group remained below those in the former group. These results show that mild-to-severe deficiency of vitamin A had no effects on cell proliferation or tracheal morphology of the hamster. The hyperplasia and squamous metaplasia in the trachea occurs only at an extreme vitamin A-deficiency when the tissue levels of the vitamin are depleted.  相似文献   

10.
Experiments were conducted to determine the influence of dietary levels of vitamin A and alpha-tocopherol on the amounts and composition of retinyl esters in the retinal pigment epithelium of light-adapted albino rats. Groups of rats were fed diets containing alpha-tocopherol and either no retinyl palmitate, adequate retinyl palmitate, or excessive retinyl palmitate. Other groups of rats received diets lacking alpha-tocopherol and containing the same three levels of retinyl palmitate. Retinoic acid was added to diets lacking retinyl palmitate. After 27 weeks, the animals were light-adapted to achieve essentially total visual pigment bleaches, and the neural retinas and retinal pigment epithelium-eyecups were then dissected from each eye for vitamin A ester determinations. Almost all of the retinyl esters were found in the retinal pigment epithelium-eyecup portions of the eyes, mainly as retinyl palmitate and retinyl stearate. Maintaining rats on a vitamin A-deficient, retinoic acid-containing diet led to significant reductions in retinal pigment epithelial retinyl ester levels in rats fed both the vitamin E-supplemented and vitamin E-deficient diets; contrary to expectations, the effect of dietary vitamin A deficiency was more pronounced in the vitamin E-supplemented rats. Vitamin A deficiency in retinoic acid-maintained animals also led to significant reductions in retinyl palmitate-to-stearate ester ratios in the retinal pigment epithelia of both vitamin E-supplemented and vitamin E-deficient rats. Excessive dietary intake of vitamin A had little, if any, effect on retinal pigment epithelial retinyl ester content or composition. Vitamin E deficiency resulted in significant increases in retinal pigment epithelial retinyl palmitate content and in palmitate-to-stearate ester ratios in rats fed all three levels of vitamin A, but had little effect on retinal pigment epithelial retinyl stearate content. In other tissues, vitamin E deficiency has been shown to lower vitamin A levels, and it is widely accepted that this effect is due to autoxidative destruction of vitamin A. The increase in retinal pigment epithelial vitamin A ester levels in response to vitamin E deficiency indicates that vitamin E does not regulate vitamin A levels in this tissue primarily by acting as an antioxidant, but rather may act as an inhibitor of vitamin A uptake and/or storage. The effect of vitamin E on pigment epithelial vitamin A levels may be mediated by the vitamin E-induced change in retinyl palmitate-to-stearate ratios.  相似文献   

11.
Serum retinol, retinyl palmitate, beta-carotene, cryptoxanthin, lutein, alpha-tocopherol and gamma-tocopherol were measured in 18 captive Humboldt penguins (Spheniscus humboldti) prior to and following the removal of Columbia River (CR) smelt (Thaleichthys pacificus) from the diet. Dietary vitamin A was reduced from 59.8 to 13.5 IU g-1 (dry matter basis) when CR smelt was removed from the diet. Minimal changes were noted in dietary vitamin E. Serum samples Without-CR smelt had significantly lower circulating retinol (1.19 +/- 0.09 vs. 1.94 +/- 0.08 micrograms ml-1) and retinyl palmitate (0.033 +/- 0.012 vs. 0.105 +/- 0.004 microgram ml-1) compared to samples With-CR. The Without-CR smelt diet resulted in increased serum alpha-tocopherol from 26.4 +/- 0.94 to 39.1 +/- 3.72 micrograms ml-1. More serum samples taken Without-CR smelt had detectable levels of gamma-tocopherol than those With-CR smelt. Serum lutein was higher for the samples taken Without versus With-CR smelt. Serum cryptoxanthin did not differ. beta-Carotene was not detected. Data indicate that high levels of dietary vitamin A can affect circulating levels of retinol, retinyl palmitate and vitamin E. Thus, dietary vitamin A and the interrelationship between vitamins A and E should be considered when assessing captive penguins.  相似文献   

12.
A new sensitive method for the assay of retinyl ester hydrolase in vitro was developed and applied to liver homogenates of 18 young pigs with depleted-to-adequate liver vitamin A reserves. Radioactive substrate was not required, because the formation of retinol could be adequately quantitated by reversed-phase high-performance liquid chromatography. Optimal hydrolase activity was observed with 500 μM retinyl palmitate, 100 mM 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate, and 2 mg/ml Triton X-100 at pH 8.0. The relative rates of hydrolysis of six different retinyl esters by liver homogenate were: retinyl linolenate (100%), myristate (99%), palmitate (47%), oleate (38%), linoleate (31%), and streate (29%). The enzyme was found primarily in the membrane-containing fractions of liver (59±3%, S.E.) and kidney (76±3%), with considerably lower overall activity in kidney (57–375 nmol/h per g of tissue) than in liver (394–1040 nmol/h per g). Retinyl ester hydrolase activity in these pigs was independent of serum retinol values, which ranged from 3 to 24 μg/dl, and of liver vitamin A concentrations from 0 to 32 μg/g. Pig liver retinyl ester hydrolase from the rat liver enzyme in its substrate specificity, bile acid stimulation, and interanimal variability.  相似文献   

13.
The steady-state concentrations of retinol in rat tissues varied as a function of dietary α-tocopherol. The liver, kidney, and intestinal retinol concentrations increased in animals fed an α-tocopherol-deficient diet despite a decrease (liver) or no change (kidney and intestine) in the concentrations of total vitamin A. In contrast, in lung the concentrations of both retinol and total vitamin A decreased. α-Tocopherol inhibited retinyl palmitate hydrolase in vitro in liver, kidney, and intestine; had minimal effect on the testes hydrolase; and stimulated the lung hydrolase. Fifty percent inhibition of the liver hydrolase was provided by an α-tocopherol concentration (100 μm), close to that reported in livers of rats fed a purified diet, constituted with moderately low amounts of α-tocopheryl acetate. Phylloquinone (vitamin K1) inhibited the retinyl palmitate hydrolase in vitro in all tissues tested, and was about fivefold more potent than α-tocopherol. The effects of phylloquinone and α-tocopherol on the liver hydrolase were additive, not synergistic. The antioxidant N,N′-diphenyl-p-phenylenediamine, the most effective synthetic vitamin E substitute known, had little effect on the hydrolase. These data show that α-tocopherol effects vitamin A metabolism in several tissues, and suggest that it may be a physiological effector of tissue retinol homeostasis.  相似文献   

14.
In this study, a method for partly automated sample preparation and fully automated solid-phase extraction method for plasma, kidney and liver samples for various retinoids like all-trans-4-oxo-retinoic acid, 13-cis-4-oxo-retinoic acid, 13-cis-retinoic acid, 9-cis-retinoic acid, all-trans-retinoic acid, retinol and retinyl palmitate was established. Plasma, embryo-, kidney-and liver-homogenates were automatically mixed and extracted on multiple usage solid-phase (C2) extraction cartridges immediately before HPLC analysis. Automated cleaning, preconditioning and incorporation of the loaded cartridge to fully automated HPLC separation and quantification of the various retinoids in a single HPLC run was established. The recovery of the retinoids was generally between 80 and 90%. Intra-day repeatability was < 11.7%. As little as 1.2 ng/ml could be quantified in lipid-mixture standard samples. This method allows a highly automated sample preparation and a fully automated solid-phase extraction with good selectivity for the study of endogenous retinoids and retinoids after nutritional supplementations and pharmacological applications in several biological samples.  相似文献   

15.
The aim of this study was to investigate fatty acid and carotenoid profile as well as vitamin A (retinol and retinol esters) content in gull (Larus fucus) tissues. Palmitic (16:0) and stearic (18:0) fatty acids were major saturates in all the tissues studied. Oleic acid (18:1n-9) was the major monounsaturate in the tissue phospholipids varying from 11.9% (liver) up to 18.2% (lung). Arachidonic acid (20:4n-6) was the major unsaturate in the phospholipid fraction in all the tissues. Liver contained the highest total carotenoid concentration which was 5 and 7 fold higher compared to kidney and pancreas. In the liver beta-carotene was major carotenoid. In contrast, in all other tissues beta-carotene was minor fraction with lutein being major carotenoid. Zeaxanthin, canthaxanthin, beta-cryptoxanthin and echinenone were also identified in the gull tissues. Liver and kidney were characterised by the highest vitamin A concentrations (1067.5 and 867.5 microg/g, respectively). Retinol comprised from 55.3% (pancreas) down to 8% (kidney) of the total vitamin A but was not detected in the abdominal fat. Retinyl palmitate was the major retinyl ester in the liver, kidney and heart (44.2; 38.1 and 46.0% of total retinyl esters). In muscles and abdominal fat retinyl stearate was the major retinyl ester fraction. Therefore high proportions of beta-carotene were found in gull liver and peripheral tissues were enriched by lutein and zeaxanthin compared to the liver, a very high concentration of retinyl esters in the kidney was observed and tissue-specificity in retinyl ester proportions in peripheral tissues was found.  相似文献   

16.
S Takase  T Goda  H Yokogoshi  T Hoshi 《Life sciences》1992,51(18):1459-1466
A study was conducted to investigate the effects of a simulated weightlessness induced by chronic immobilization on vitamin A status. To simulate the stress condition of weightlessness, rats were suspended for 10 days in a special jacket to which metal chains were attached. Animals received a commercial stock diet. Control rats were pair-fed in reference to the suspended rats. As compared with the control, prolonged immobilization resulted in a decrease in body weight gain and an increase in adrenal weight occurred. In the suspended rats, serum concentrations of retinol and retinol-binding protein (RBP) declined. Hepatic retinyl palmitate content increased, and the hepatic retinol level was decreased. The prolonged immobilization led to significantly reduced retinyl palmitate levels in the testis and lung as well as lowered testicular retinol levels. The results suggest that the stress state induced by prolonged immobilization caused accumulation of hepatic retinyl palmitate, decreasing the serum retinol concentration and retinyl ester content in the extrahepatic tissues.  相似文献   

17.
The effects of feeding retinoic acid for 2 and 6 days on the metabolism of labeled retinol in tissues of rats maintained on a vitamin A deficient diet was studied. The metabolites of retinol were analyzed by high performance liquid chromatography. Feeding retinoic acid for 2 days significantly reduced the blood retinol and retinyl ester levels without affecting the vitamin A content of the liver. In intestine and testis the content of labeled retinoic acid was decreased significantly by dietary retinoic acid. Addition of retinoic acid to the diet for 6 days resulted, in addition to decreased blood retinol and retinyl ester values, in an increase in the retinyl ester values in the liver. The accumulation of retinyl ester in the retinoic acid fed rat liver was accompanied by an absence of labeled retinoic acid. Kidney tissue was found to contain the highest levels of labeled retinoic acid, retinol, and retinyl esters; dietary retinoic acid did not alter the concentrations of these retinoids in the kidney during the experimental period. Since kidney retained more vitamin A when the liver vitamin A was low and also dietary retinoic acid did not affect the concentrations of radioactive retinoic acid in the kidney, it is suggested that the kidney may play a major role in the production of retinoic acid from retinol in the body.  相似文献   

18.
The metabolism of vitamin A is a highly regulated process that generates essential mediators involved in the development, cellular differentiation, immunity, and vision of vertebrates. Retinol saturase converts all-trans-retinol to all-trans-13,14-dihydroretinol (Moise, A. R., Kuksa, V., Imanishi, Y., and Palczewski, K. (2004) J. Biol. Chem. 279, 50230-50242). Here we demonstrate that the enzymes involved in oxidation of retinol to retinoic acid and then to oxidized retinoic acid metabolites are also involved in the synthesis and oxidation of all-trans-13,14-dihydroretinoic acid. All-trans-13,14-dihydroretinoic acid can activate retinoic acid receptor/retinoid X receptor heterodimers but not retinoid X receptor homodimers in reporter cell assays. All-trans-13,14-dihydroretinoic acid was detected in vivo in Lrat-/- mice supplemented with retinyl palmitate. Thus, all-trans-13,14-dihydroretinoic acid is a naturally occurring retinoid and a potential ligand for nuclear receptors. This new metabolite can also be an intermediate in a retinol degradation pathway or it can serve as a precursor for the synthesis of bioactive 13,14-dihydroretinoid metabolites.  相似文献   

19.
Previous studies have shown that rats treated with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) show signs of toxicity that are similar to the responses of animals to a vitamin A-deficient diet. These include hypophagia, loss of body weight, loss of hepatic vitamin A, and accumulation of renal retinoids. Male Sprague-Dawley rats treated with 10, 30, or 100 nmol/kg of TCDD accumulated renal vitamin A, with retinyl palmitate concentrations reaching 8 times those of control animals, similar to that of male rats fed a vitamin A-free diet for 26 days. Acyl CoA:retinol acyltransferase (ACARAT) activities in both TCDD-treated rats and rats fed a vitamin A-free diet for 26 days were similarly elevated, and were strongly and positively correlated with the renal retinyl palmitate concentrations. Retinol concentrations in the kidneys of rats treated with TCDD or fed a vitamin A-free diet were only slightly elevated when compared to control rats. We suggest that accumulation of retinyl esters in the kidneys of rats treated with TCDD or fed a vitamin A-free diet occurs as a result of increased rates of retinol esterification.  相似文献   

20.
The effects of supplementation of the maternal diet of quail with three natural sources of carotenoids (alfalfa nutrient concentrate (PX agrotrade mark), tomato powder and marigold extract) on the accumulation of retinol and retinyl esters in egg yolk and in the liver of the new hatchling and maternal were investigated. The present study showed that the vitamin A in quail egg yolk was present in 4 different forms, namely retinol (R 52-62%), retinyl linoleate (RL 9-11%), retinyl stearate (RS 4%), retinyl oleate (RO 11-15%) and retinyl palmitate (RP 13-22%). The retinyl ester profile of the liver of newly hatched quail (R 2-4%, RL 8-12%, RS 19-21%, RO 12-15%, RP 50-55%) differs from that of egg yolk but was similar to that of the liver of adult quail (R 1%, RL 5-6%, RS 21-28%, RO 9-12%, RP 54-63%). It has been shown that RO and RP concentrations in egg yolk and the liver of day old quail chick significantly increased as a result of carotenoid supplementation of the maternal diet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号