首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
I G Rogal' 《Antibiotiki》1979,24(8):570-574
The levels of NADP+ and NAD+ in the mycelium of the highly productive strain 117 and low productive strain B of P. nigricans were studied by the 2nd, 5th, 9th and 13th days of development on the mineral medium in the presence of glucose, succinate or acetate. It was found that at the beginning of the growth the levels of NADP+ in both strains in the presence of the same carbon source were the same, just as the levels of NAD+ in the presence of glucose or succinate. The same strain had different levels of NADP+ in the presence of different carbon sources. The levels of NAD+ depended on both the carbon source and the strain. In the presence of glucose both nucleotides were accumulated by the end of the culture development and in greater amounts by strain 117. In the presence of succinate the maximum levels were observed at the beginning of the culture growth, while in the presence of accetate the maximum levels were recorded by the end of the culture development (strain 117) and by the 19th day (strain B). It is supposed that NAD+ is transformed into adenylates in the fungi.  相似文献   

2.
I G Rogal' 《Antibiotiki》1979,24(7):483-487
The effect of elevated temperature of the medium on the levels of NADP+ and NAD+ in the mycelium of highly productive strain 117 and low productive strain B of P. nigricans Thom was studied at various developmental periods on the mineral medium in the presence of glucose, succinate or acetate. It was found that in the presence of glucose the elevated temperature markedly stimulated the initial growth of the culture, decreased the level of NADP+ in strain 117 by the 48th hour and increased the level of NAD+ in both the strains. At later periods it decreased the rate of the dinucleotide accumulation during the culture development. With the use of succinate under these conditions the levels of NADP+ in both the strains during the growth phase (the 2nd and 5th days) and by the 9th day markedly increased, while the NAD+ concentration increased only by the 2nd day in both the strains and by the 9th day in strain B. When the strains were grown in the presence of acetate, the elevated temperature especially affected the level of NAD+.  相似文献   

3.
4.
5.
The impact of various supplemental carbon sources (oxalate, glyoxylate, glycolate, pyruvate, formate, malate, acetate, and succinate) on growth and oxalate formation (i.e., oxalogenesis) by Sclerotinia sclerotiorum was studied. With isolates D-E7, 105, W-B10, and Arg-L of S. sclerotiorum, growth in an undefined broth medium (0.1% soytone; pH 5) with 25 mM glucose and 25 mM supplemental carbon source was increased by the addition of malate and succinate. Oxalate accumulation occurred in the presence of glucose and a supplemental carbon source, with malate, acetate, and succinate supporting the most oxalate synthesis. With S. sclerotiorum Arg-L, oxalate-to-biomass ratios, an indicator of oxalogenic potential, were dissimilar when the organism was grown in the presence of different carbon sources. The highest oxalate-to-biomass ratios were observed with pyruvate, formate, malate, acetate, and succinate. Time-course studies with acetate-supplemented cultures revealed that acetate and glucose consumption by S. sclerotiorum D-E7 coincided with oxalogenesis and culture acidification. By day 5 of incubation, oxalogenesis was halted when cultures reached a pH of 3 and were devoid of acetate. In succinate-supplemented cultures, oxalogenesis essentially paralleled glucose and succinate utilization over the 9-day incubation period; during this time period, culture pH declined but never fell below 4. Overall, these results indicate that carbon sources can regulate the accumulation of oxalate, a key pathogenicity determinant for S. sclerotiorum.  相似文献   

6.
Escherichia coli strain BL21 is commonly used as a host strain for protein expression and purification. For structural analysis, proteins are frequently isotopically labeled with deuterium (2H), 13C, or 15N by growing E. coli cultures in a medium containing the appropriate isotope. When large quantities of fully deuterated proteins are required, E. coli is often grown in minimal media with deuterated succinate or acetate as the carbon source because these are less expensive. Despite the widespread use of BL21, we found no data on the effect of different minimal media and carbon sources on BL21 growth. In this study, we assessed the growth behavior of E. coli BL21 in minimal media with different gluconeogenic carbon sources. Though BL21 grew reasonably well on glycerol and pyruvate, it had a prolonged lag-phase on succinate (20 h), acetate (10 h), and fumarate (20 h), attributed to the physiological adaptation of E. coli cells. Wild-type strain NCM3722 (K12) grew well on all the substrates. We also examined the growth of E. coli BL21 in minimal media that differed in their salt composition but not in their source of carbon. The commonly used M9 medium did not support the optimum growth of E. coli BL21 in minimal medium. The addition of ferrous sulphate to M9 medium (otherwise lacking it) increased the growth rate of E. coli cultures and significantly increased their cell density in the stationary phase. An erratum to this article can be found at  相似文献   

7.
8.
9.
Intermediary carbon metabolism of Azospirillum brasilense.   总被引:3,自引:2,他引:1       下载免费PDF全文
Azospirillum brasilense Sp 7 grew rapidly in AZO medium containing reduced nitrogen and succinate as an energy source, with a doubling time of 43 min. No growth was measured with glucose as the sole carbon source. In contrast, Azospirillum lipoferum Sp 59b could grow in media containing either succinate or glucose with a doubling time of 69 min and 223 min, respectively. Warburg-Barcroft respirometry showed that the rate of oxygen consumption by A. brasilense Sp 7 on glucose medium (0.034 mumol of O2 min-1 mg-1 of cell protein) was only one-quarter of that on succinate medium (0.14 mumol of O2 min-1 mg-1). Radioisotopic labeling showed that very little glucose was assimilated by A. brasilense Sp 7 as compared to succinate. High respiration rates were measured on A. lipoferum Sp 59b with either succinate (0.15 mumol of O2 min-1 mg-1) or glucose (0.13 mumol of O2 min-1 mg-1) as the sole carbon source. The pattern of CO2 evolution from differentially labeled succinate indicated that A. brasilense Sp 7 had a complete tricarboxylic acid cycle. Assimilation of most of the radioactivity from labeled succinate, pyruvate, and acetate into lipids suggested a strong anabolic metabolism and the presence of an active malic enzyme of phosphoenolpyruvate carboxykinase. The distribution of radioactivity from differentially labeled pyruvate showed that gluconeogenesis competed with pyruvate dehydrogenase. Uptake and incorporation of labeled acetate also indicated the presence of a glyoxylate cycle in A. brasilense Sp 7.  相似文献   

10.
The dynamics of growth ofMycobacterium smegmatis, M. fortuitum andM. phlei in liquid media used also for cultivation of typical mycobacteria (Sauton, Youmans, Kirchner, Šula) was compared with that in Davis and Merrill media. In the Merrill medium glucose (as the only organic component) was replaced with another carbon source and the effect of this modification was investigated. The results obtained show that the Merrill medium, its modification in particular, is suitable for cultivation ofM. smegmatis andM. fortuitum. 2-Oxoglutarate and succinate are important as the sole carbon sources in the case ofM. fortuitum andM. phlei respectively.  相似文献   

11.
Growth of the cultured strain og P. nigricans and dynamics of the adenylate levels in its mycelium on mineral media with 2 per cent of glucose were studied in relation to the means and time of addition of glucose, NaNO3 or their mixture to the medium. It was shown that the maximum yield of the mycelium could be obtained with addition of glucose once at the moment of inoculation. The mixture of glucose with NaNO3 provided even higher yields of the biomass but only with its fractional addition. Introduction of additional amounts of NaNO3 at the moment of inoculation and during the growth phase (5 days) inhibited the subsequent development of the culture providing stable levels of ATP and ADP, while introduction of NaNO3 on the 7th day stimulated the culture growth and the antibiotic yield. The use of NaNO3 in the mixture with glucose eliminated inhibition and increased the ratio of ATP to ADP and the antibiotic yield.  相似文献   

12.
Cyclic AMP inhibits growth rate of E. coli Hfr 3000. Doubling times in glucose minimal medium increased from 60 to about 90 minutes with the addition of 5 mM cAMP. This effect is specific since it was not observed when the cyclic nucleotide was replaced by 5′ AMP, ADP, ATP or adenosine. Half maximal inhibition was obtained with 1 to 3 mM cyclic AMP. This inhibition occurs only with those carbon sources which are known to decrease intracellular cyclic AMP levels, i.e. glucose and pyruvate. No inhibition was observed with succinate, malate or glycerol.  相似文献   

13.
A defined minimal medium was developed for an axenic strain of Peridinium (Indiana Culture No. LB 1336). Thiamine, biotin, and vitamin B12 did not stimulate growth. Of 15 organic carbon sources tried in light, fructose, galactose, glucose, malate, malonate, and pyruvate enhanced growth but propionate retarded growth. In dark-grown cultures only media with succinate permitted growth above the survival level. Stimulation of growth by organic carbon sources was markedly pH dependent.  相似文献   

14.
Succinic acid has drawn much interest as a precursor of many industrially important chemicals. Using a variety of feedstocks for the bio-production of succinic acid would be economically beneficial to future industrial processes. Escherichia coli SBS550MG is able to grow on both glucose and fructose, but not on sucrose. Therefore, we derived a SBS550MG strain bearing both the pHL413 plasmid, which contains Lactococcus lactis pycA gene, and the pUR400 plasmid, which contains the scrK, Y, A, B, and R genes for sucrose uptake and catalyzation. Succinic acid production by this modified strain and the SBS550pHL413 strain was tested on fructose, sucrose, a mixture of glucose and fructose, a mixture of glucose, fructose and sucrose, and sucrose hydrolysis solution. The modified strain can produce succinic acid efficiently from all combinations of different carbon sources tested with minimal byproduct formation and with high molar succinate yields close to that of the maximum theoretic values. The molar succinic acid yield from fructose was the highest among the carbon sources tested. Using the mixture of glucose and fructose as the carbon source resulted in slightly lower yields and much higher productivity than using fructose alone. Fermenting sucrose mixed with fructose and glucose gave a 1.76-fold higher productivity than that when sucrose was used as the sole carbon source. Using sucrose pretreated with sulfuric acid as carbon source resulted in a similar succinic acid yield and productivity as that when using the mixture of sucrose, fructose, and glucose. The results of the effect of agitation rate in aerobic phase on succinate production showed that supplying large amount of oxygen in aerobic phase resulted in higher productions of formate and acetate, and therefore lower succinate yield. This study suggests that fructose, sucrose, mixture of glucose and fructose, mixture of glucose, fructose and sucrose, or sucrose hydrolysis solution could be used for the economical and efficient production of succinic acid by our metabolic engineered E. coli strain.  相似文献   

15.
The strains S3 and F11 which were isolated respectively from static and submerged tanks for vinegar production were identified as Acetobacter rancens. Neither strain grew in an ammonium defined medium containing ethanol, glucose, glycerol or organic acids as the sole carbon source. When casamino acids were added, they grew luxuriantly with lactate, ethanol or glycerol as the carbon source and less well with acetate or glucose. They grew, forming much acetic acid, in defined ethanol medium when alanine was supplied in place of casamino acids, but strain S3 showed a longer lag time than strain Fl1. This lag time could be shortened by addition of aspartate and glutamate. These amino acids could be replaced by succinate, fumarate, malate, lactate, pyruvate or propionate but not by glucose. Both strains required lactate or pyruvate in defined glucose medium but many other organic acids, which were effective in defined ethanol medium, were ineffective or slightly effective in glucose medium.  相似文献   

16.
Three independent 28 or 32-day stationary cultures of Desulfotomaculum acetoxidans DSM 771 strain were carried out under anoxic conditions in acetate or lactate-containing media. The acids were the sole carbon and energy sources in these media. During cultivation the turbidity (for calculation of cell division index) and hydrogen sulfide contents were determined in culture broth and reduced glutathione and protein concentrations were assayed in culture broth supernatant. In these three successive cultures, the bacterium initially grew much faster on lactate than on acetate. However, after two weeks of culture this difference disappeared and in fact the growth rate was higher on acetate than on lactate. The level of H2S formed (product of the dissimilatory pathway of sulfate reduction) demonstrated that this pathway was more effective when lactate was a carbon source and the average H2S concentration was from over 3-fold to about 9-fold greater in lactate than in acetate cultures. Also GSH (glutathione, product of the assimilatory sulfate reduction pathway) average level was about 2-fold higher in lactate-grown cultures. The high negative values of the correlation coefficients between GSH and O2 levels, especially during the first 4 days of cultivation, indicate that GSH is a very important antioxidizing extracellular agent of D. acetoxidans. The rapid increase in GSH level, preceding the release of H2S, indicates the metabolic priority of the assimilation pathway of sulfate reduction. For both carbon sources the highest coefficient of correlation was found between protein and H2S levels. These results suggest that hydrogen sulfide is bound by proteins (which contain cysteinyl residues) secreted by D. acetoxidans cells. Indicated way of H2S bounding could result in its accumulation. This coefficient of correlation increased gradually in the successive cultures. The ratio of H2S concentration to protein concentration increased gradually in the successive cultures, too.  相似文献   

17.
A bacterium was isolated from the waste gas treatment plant at a fishmeal processing company on the basis of its capacity to use 2,3-diethyl-5-methylpyrazine (DM) as a sole carbon and energy source. The strain, designated strain DM-11, grew optimally at 25 degrees C and had a doubling time of 29.2 h. The strain did not grow on complex media like tryptic soy broth, Luria-Bertani broth, or nutrient broth or on simple carbon sources like glucose, acetate, oxoglutarate, succinate, or citrate. Only on L?wenstein-Jensen medium was growth observed. The 16S rRNA gene sequence of strain DM-11 showed the highest similarity (96.2%) to Mycobacterium poriferae strain ATCC 35087T. Therefore, strain DM-11 merits recognition as a novel species within the genus Mycobacterium. DM also served as a sole nitrogen source for the growth of strain DM-11. The degradation of DM by strain DM-11 requires molecular oxygen. The first intermediate was identified as 5,6-diethyl-2-hydroxy-3-methylpyrazine (DHM). Its disappearance was accompanied by the release of ammonium into the culture medium. No other metabolite was detected. We conclude that ring fission occurred directly after the formation of DHM and ammonium was eliminated after ring cleavage. Molecular oxygen was essential for the degradation of DHM. The expression of enzymes involved in the degradation of DM and DHM was regulated. Only cells induced by DM or DHM converted these compounds. Strain DM-11 also grew on 2-ethyl-5(6)-methylpyrazine (EMP) and 2,3,5-trimethylpyrazine (TMP) as a sole carbon, nitrogen, and energy source. In addition, the strain converted many pyrazines found in the waste gases of food industries cometabolically.  相似文献   

18.
研究了在好氧培养基中分别添加不同碳源对两阶段发酵菌体生长、酶活及代谢产物分布的影响,结果表明添加4mmol/L葡萄糖和12,54,80mmol/L乙酸钠均可以提高好氧阶段的菌体密度和相关酶活。将不同条件下培养的菌体转接厌氧发酵后,厌氧阶段的酶活和代谢产物分布也发生改变。进一步对酶活及代谢产物分析表明:Escherichia coli NZN111(sfcA)厌氧发酵过程中,磷酸烯醇式丙酮酸羧化激酶(PCK)是产丁二酸的关键酶,丙酮酸激酶(PYK)主要和副产物丙酮酸的积累有关,异柠檬酸裂解酶(ICL)对丁二酸产量也有一定影响。好氧培养基中添加80mmol/L乙酸钠,厌氧发酵结束时丁二酸的质量收率可达89.0%,相比对照提高了16.6%。  相似文献   

19.
Corynebacterium glutamicum, a model organism in microbial biotechnology, is known to metabolize glucose under oxygen-deprived conditions to l-lactate, succinate, and acetate without significant growth. This property is exploited for efficient production of lactate and succinate. Our detailed analysis revealed that marginal growth takes place under anaerobic conditions with glucose, fructose, sucrose, or ribose as a carbon and energy source but not with gluconate, pyruvate, lactate, propionate, or acetate. Supplementation of glucose minimal medium with tryptone strongly enhanced growth up to a final optical density at 600 nm (OD600) of 12, whereas tryptone alone did not allow growth. Amino acids with a high ATP demand for biosynthesis and amino acids of the glutamate family were particularly important for growth stimulation, indicating ATP limitation and a restricted carbon flux into the oxidative tricarboxylic acid cycle toward 2-oxoglutarate. Anaerobic cultivation in a bioreactor with constant nitrogen flushing disclosed that CO2 is required to achieve maximal growth and that the pH tolerance is reduced compared to that under aerobic conditions, reflecting a decreased capability for pH homeostasis. Continued growth under anaerobic conditions indicated the absence of an oxygen-requiring reaction that is essential for biomass formation. The results provide an improved understanding of the physiology of C. glutamicum under anaerobic conditions.  相似文献   

20.
Derivatives of Escherichia coli C were previously described for succinate production by combining the deletion of genes that disrupt fermentation pathways for alternative products (ldhA::FRT, adhE::FRT, ackA::FRT, focA-pflB::FRT, mgsA, poxB) with growth-based selection for increased ATP production. The resulting strain, KJ073, produced 1.2 mol of succinate per mol glucose in mineral salts medium with acetate, malate, and pyruvate as significant co-products. KJ073 has been further improved by removing residual recombinase sites (FRT sites) from the chromosomal regions of gene deletion to create a strain devoid of foreign DNA, strain KJ091(DeltaldhA DeltaadhE DeltaackA DeltafocA-pflB DeltamgsA DeltapoxB). KJ091 was further engineered for improvements in succinate production. Deletion of the threonine decarboxylase (tdcD; acetate kinase homologue) and 2-ketobutyrate formate-lyase (tdcE; pyruvate formate-lyase homologue) reduced the acetate level by 50% and increased succinate yield (1.3 mol mol(-1) glucose) by almost 10% as compared to KJ091 and KJ073. Deletion of two genes involved in oxaloacetate metabolism, aspartate aminotransferase (aspC) and the NAD(+)-linked malic enzyme (sfcA) (KJ122) significantly increased succinate yield (1.5 mol mol(-1) glucose), succinate titer (700 mM), and average volumetric productivity (0.9 g L(-1) h(-1)). Residual pyruvate and acetate were substantially reduced by further deletion of pta encoding phosphotransacetylase to produce KJ134 (DeltaldhA DeltaadhE DeltafocA-pflB DeltamgsA DeltapoxB DeltatdcDE DeltacitF DeltaaspC DeltasfcA Deltapta-ackA). Strains KJ122 and KJ134 produced near theoretical yields of succinate during simple, anaerobic, batch fermentations using mineral salts medium. Both may be useful as biocatalysts for the commercial production of succinate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号