首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Cryptosporidium hominis, which has an anthroponotic transmission cycle and Cryptosporidium parvum, which is zoonotic, are the primary species of Cryptosporidium that infect humans. The present study identified the species/genotypes and subgenotypes of Cryptosporidium in 7 human and 15 cattle cases of sporadic cryptosporidiosis in rural western NSW during the period from November 2005 to January 2006. The species/genotype of isolates was determined by PCR sequence analysis of the 18S rRNA and C. parvum and C. hominis isolates were subgenotyped by sequence analysis of the GP60 gene. Fourteen of 15 cattle-derived isolates were identified as C. parvum and 1 as a C. bovis/C. parvum mixture. Of the human isolates, 4 were C. parvum and 3 were C. hominis. Two different subgenotypes were identified with the human C. hominis isolates and six different subgenotypes were identified within the C. parvum species from humans and cattle. All four of the C. parvum subtypes found in humans were also found in the cattle, indicating that zoonotic transmission may be an important contributor to sporadic human cases cryptosporidiosis in rural NSW.  相似文献   

2.
A glycoprotein (Cpgp40/15)-encoding gene of Cryptosporidium parvum was analyzed to reveal intraspecies polymorphism within C. parvum isolates. Forty-one isolates were collected from different geographical origins (Japan, Italy, and Nepal) and hosts (humans, calves, and a goat). These isolates were characterized by means of DNA sequencing, PCR-restriction fragment length polymorphism (PCR-RFLP), and RFLP-single-strand conformational polymorphism (RFLP-SSCP) analyses of the gene for Cpgp40/15. The sequence analysis indicated that there was DNA polymorphism between genotype I and II, as well as within genotype I, isolates. The DNA and amino acid sequence identities between genotypes I and II differed, depending on the isolates, ranging from 73.3 to 82.9% and 62.4 to 80.1%, respectively. Those among genotype I isolates differed, depending on the isolates, ranging from 69.0 to 85.4% and 54.8 to 79.2%, respectively. Because of the high resolution generated by PCR-RFLP and RFLP-SSCP, the isolates of genotype I could be subtyped as genotypes Ia1, Ia2, Ib, and Ie. The isolates of genotype II could be subtyped as genotypes IIa, IIb, and IIc. The isolates from calves, a goat, and one Japanese human were identified as genotype II. Within genotype II, the isolates from Japan were identified as genotype IIa, those from calves in Italy were identified as genotype IIb, and the goat isolate was identified as genotype IIc. All of the genotype I isolates were from humans. The Japanese isolate (code no. HJ3) and all of the Nepalese isolates were identified as genotypes Ia1 and Ia2, respectively. The Italian isolates were identified as genotype Ib, and the Japanese isolate (code no. HJ2) was identified as genotype Ie. Thus, the PCR-RFLP-SSCP analysis of this glycoprotein Cpgp40/15 gene generated a high resolution that has not been achieved by previous methods of genotypic differentiation of C. parvum.  相似文献   

3.
Sequence alignment of a polymerase chain reaction-amplified 713-base pair region of the Cryptosporidium 18S rDNA gene was carried out on 15 captive reptile isolates from different geographic locations and compared to both Cryptosporidium parvum and Cryptosporidium muris isolates. Random amplified polymorphic DNA (RAPD) analysis was also performed on a smaller number of these samples. The data generated by both techniques were significantly correlated (P < 0.002), providing additional evidence to support the clonal population structure hypothesis for Cryptosporidium. Phylogenetic analysis of both 18S sequence information and RAPD analysis grouped the majority of reptile isolates together into 1 main group attributed to Cryptosporidium serpentis, which was genetically distinct but closely related to C. muris. A second genotype exhibited by 1 reptile isolate (S6) appeared to be intermediate between C. serpentis and C. muris but grouped most closely with C. muris, as it exhibited 99.15% similarity with C. muris and only 97.13% similarity with C. serpentis. The third genotype identified in 2 reptile isolates was a previously characterized 'mouse' genotype that grouped closely with bovine and human C. parvum isolates.  相似文献   

4.
We investigated the application of an oligonucleotide microarray to (i) specifically detect Cryptosporidium spp., (ii) differentiate between closely related C. parvum isolates and Cryptosporidium species, and (iii) differentiate between principle genotypes known to infect humans. A microarray of 68 capture probes targeting seven single-nucleotide polymorphisms (SNPs) within a 190-bp region of the hsp70 gene of Cryptosporidium parvum was constructed. Labeled hsp70 targets were generated by PCR with biotin- or Cy3-labeled primers. Hybridization conditions were optimized for hybridization time, temperature, and salt concentration. Two genotype I C. parvum isolates (TU502 and UG502), two C. parvum genotype II isolates (Iowa and GCH1), and DNAs from 22 non-Cryptosporidium sp. organisms were used to test method specificity. Only DNAs from C. parvum isolates produced labeled amplicons that could be hybridized to and detected on the array. Hybridization patterns between genotypes were visually distinct, but identification of SNPs required statistical analysis of the signal intensity data. The results indicated that correct mismatch discrimination could be achieved for all seven SNPs for the UG502 isolate, five of seven SNPs for the TU502 isolate, and six of seven SNPs for both the Iowa and GCH1 isolates. Even without perfect mismatch discrimination, the microarray method unambiguously distinguished between genotype I and genotype II isolates and demonstrated the potential to differentiate between other isolates and species on a single microarray. This method may provide a powerful new tool for water utilities and public health officials for assessing point and nonpoint source contamination of water supplies.  相似文献   

5.
Nucleotide sequencing of polymerase chain reaction amplified intron region of the Cryptosporidium parvum beta-tubulin gene in 26 human and 15 animal isolates revealed distinct genetic polymorphism between the human and bovine genotypes. The separation of 2 genotypes of C. parvum is in agreement with our previous genotyping data based on the thrombospondin-related adhesion protein (TRAP-C2) gene, indicating these genotype characteristics are linked at 2 genetic loci. Characterization of Cryptosporidium muris and Cryptosporidium serpentis has further shown that non-parvum Cryptosporidium parasites have beta-tubulin intron sequences identical to bovine genotype of C. parvum. Thus, results of this study confirm the lineage of 2 genotypes of C. parvum at 2 genetic loci and suggest a need for extensive characterization of various Cryptosporidium spp.  相似文献   

6.
7.
Oocysts of the protozoan parasite Cryptosporidium parvum are found in most surface waters and can contaminate municipal water supplies, as demonstrated by recent outbreaks of cryptosporidiosis. A method capable of fingerprinting C. parvum isolates from the environment would facilitate the study of epidemiology and transmission cycles and aid in the implementation of preventive measures to reduce water contamination by oocytes. In this study, we report polymorphism in C. parvum isolates on the basis of analysis of random amplified polymorphic DNA and nucleotide sequences in a region of the 18S rRNA and the internal transcribed spacer 1. Isolate-specific primers for these two regions were designed, and PCR tests capable of discriminating between isolates were developed. In both PCR assays, the five C. parvum isolates analyzed segregated into two subgroups. One group consisted of isolates that originated directly from human patients, and the other group had various host origins and had been propagated in laboratory animals. These results demonstrate the feasibility of distinguishing C. parvum isolates by sequence-specific PCR tests.  相似文献   

8.
A polymerase chain reaction (PCR)-restriction fragment length polymorphism analysis of a 587-bp region of the Cryptosporidium parvum 70-kDa heat shock protein (HSP70) gene was developed for the detection and discrimination of the two major genotypes of C. parvum, genotype 1 and genotype 2. Ten Cryptosporidium isolates from non-immunocompromised people were identified as genotypes 1 and 2 (five each) by DNA sequencing of the 587-bp PCR product. This distinction was also achieved with the combination of two endonucleases, HinfI and ScaI, which generated a specific pattern for each genotype. A thorough screening of published sequences showed that this combination of enzymes could also be used for the discrimination of other species/genotypes of Cryptosporidium, especially Cryptosporidium meleagridis and the 'dog' genotype of C. parvum, both of which are infectious in humans. The PCR, conducted on genotypes 1 and 2 of C. parvum, could detect one oocyst per reaction. This new and sensitive genotyping procedure should be of particular interest when applied to the monitoring of water resources in which low concentrations of parasites usually occur.  相似文献   

9.
Two species of Cryptosporidium are known to infect man; C. hominis which shows anthroponotic transmission between humans, and C. parvum which shows zoonotic transmission between animals or between animals and man. In this study, we focused on identifying genotypes of Cryptosporidium prevalent among inhabitants and domestic animals (cattle and goats), to elucidate transmittal routes in a known endemic area in Hwasun-gun, Jeollanam-do, Republic of Korea. The existence of Cryptosporidium oocysts was confirmed using a modified Ziehl-Neelsen stain. Human infections were found in 7 (25.9%) of 27 people examined. Cattle cryptosporidiosis cases constituted 7 (41.2%) of 17 examined, and goat cases 3 (42.9%) of 7 examined. Species characterizations were performed on the small subunit of the rRNA gene using both PCR-RFLP and sequence analysis. Most of the human isolates were mixtures of C. hominis and C. parvum genotypes and similar PCR-RFLP patterns were observed in cattle and goat isolates. However, sequence analyses identified only C. hominis in all isolates examined. The natural infection of cattle and goats with C. hominis is a new and unique finding in the present study. It is suggested that human cryptosporidiosis in the studied area is caused by mixtures of C. hominis and C. parvum oocysts originating from both inhabitants and domestic animals.  相似文献   

10.
Biological data support the hypothesis that there are multiple species in the genus Cryptosporidium, but a recent analysis of the available genetic data suggested that there is insufficient evidence for species differentiation. In order to resolve the controversy in the taxonomy of this parasite genus, we characterized the small-subunit rRNA genes of Cryptosporidium parvum, Cryptosporidium baileyi, Cryptosporidium muris, and Cryptosporidium serpentis and performed a phylogenetic analysis of the genus Cryptosporidium. Our study revealed that the genus Cryptosporidium contains the phylogenetically distinct species C. parvum, C. muris, C. baileyi, and C. serpentis, which is consistent with the biological characteristics and host specificity data. The Cryptosporidium species formed two clades, with C. parvum and C. baileyi belonging to one clade and C. muris and C. serpentis belonging to the other clade. Within C. parvum, human genotype isolates and guinea pig isolates (known as Cryptosporidium wrairi) each differed from bovine genotype isolates by the nucleotide sequence in four regions. A C. muris isolate from cattle was also different from parasites isolated from a rock hyrax and a Bactrian camel. Minor differences were also detected between C. serpentis isolates from snakes and lizards. Based on the genetic information, a species- and strain-specific PCR-restriction fragment length polymorphism diagnostic tool was developed.  相似文献   

11.
A group I intron of 418 base pairs in the Monilinia fructicola ribosomal small-subunit sequence was characterized. The absence of such an intron in M. laxa and M. fructigena led to a PCR test for M. fructicola identification based on the presence of this intron. The failure to amplify a PCR fragment for some isolates of M. fructicola recently lead to speculation that the intron might not be present always in M. fructicola. In this study, we analyzed 13 isolates of M. fructicola and found that the intron was absent in four isolates and we determined from sequence analysis that there are several nucleotide variations that allow the M. fructicola ribosomal SSU intron to be grouped into 6 polymorphic types.  相似文献   

12.
运用同源序列克隆技术结合反转录PCR技术和3′,5′cDNA末端快速扩增技术得到了牛FABGL基因的完整CDS,3′非翻译区和部分5′非翻译区.序列分析和生物信息学研究表明,所获得的牛FABGL基因的cDNA包含994个核苷酸和780 bp的开放阅读框及198 bp的完整的3′非翻译区.该基因编码260个氨基酸残基蛋白,在氨基酸水平上与人的同源基因具有高度的相似性(88%).采用PCR-SSCP方法,在递交的包含完整CDS的长为1 925 bp的该基因的基因组DNA序列(GenBank接受号DQ409814)1 065 bp 和1 792 bp处,分别发现了两个单核苷酸碱基突变Y=C/T,R=A/G;它们分别位于该基因的第五和第八内含子.对包含这两个多态位点的3个品种(安格斯、海福特和西门塔尔)牛的共179个个体等位基因频率与部分肉质及生长性状进行了关联分析,结果发现,在第八内含子内具有GG基因型的个体的肉用性能指数(4.283±.0.475kg/cm)较具有AA基因型个体的(4.008±0.465kg/cm)高(P≤0.01);而且同一位点具有GG基因型的个体的眼肌面积(73.380±13.005 cm2)显著高于具有AA基因型的个体(67.744±12.777 cm2)(P≤0.05).在第五内含子内,具有CC、CT、TT3种不同基因型的个体之间,平均日增重差异均达到极显著水平(P≤0.01),以具有TT基因型的个体平均日增重最高(0.652±0.330kg/d),CC基因型的最低(0.421±0.178kg/d).  相似文献   

13.
14.
15.
Little is known about the genetic characteristics, distribution, and transmission cycles of Cryptosporidium species that cause human disease in New Zealand. To address these questions, 423 fecal specimens containing Cryptosporidium oocysts and obtained from different regions were examined by the PCR-restriction fragment length polymorphism technique. Indeterminant results were resolved by DNA sequence analysis. Two regions supplied the majority of isolates: one rural and one urban. Overall, Cryptosporidium hominis accounted for 47% of the isolates, with the remaining 53% being the C. parvum bovine genotype. A difference, however, was observed between the Cryptosporidium species from rural and urban isolates, with C. hominis dominant in the urban region, whereas the C. parvum bovine genotype was prevalent in rural New Zealand. A shift in transmission cycles was detected between seasons, with an anthroponotic cycle in autumn and a zoonotic cycle in spring. A novel Cryptosporidium sp., which on DNA sequence analysis showed a close relationship with C. canis, was detected in two unrelated children from different regions, illustrating the genetic diversity within this genus.  相似文献   

16.
Genomic DNAs from human Cryptosporidium isolates previously typed by analysis of the 18S ribosomal DNA locus (Cryptosporidium parvum bovine genotype, C. parvum human genotype, Cryptosporidium meleagridis, and Cryptosporidium felis) were used to amplify the diagnostic fragment described by Laxer et al. (M. A. Laxer, B. K. Timblin, and R. J. Patel, Am. J. Trop. Med. Hyg., 45:688-694, 1991). The obtained 452-bp amplified fragments were sequenced and aligned with the homologous Cryptosporidium wrairi sequence. Polymorphism was exploited to develop a restriction fragment length polymorphism method able to discriminate Cryptosporidium species and C. parvum genotypes.  相似文献   

17.
Cryptosporidium parvum is a common contaminant in surface waters and presents significant problems for the water industry, public health and agriculture. Consequently, ascertaining the contaminating source of waterborne oocysts is of paramount importance. Based on currently available information, isolates of C. parvum can be differentiated into at least two genotypes using polymorphic genetic markers: genotype 1, to date isolated almost exclusively from humans, and genotype 2 isolates from humans and many other animals. Differentiation into these two genotypes has been based on either restriction fragment length polymorphisms or sequencing of PCR amplified gene fragments. The objective of this study was to evaluate the reproducibility of genotyping methods using a single isolate of C. parvum. A 620 bp fragment of the C. parvum -tubulin gene, generated by PCR from multiple aliquots of a single preparation of oocysts of the Iowa isolate, was sequenced. Significant sequence heterogeneity was detected within this single isolate; there was more sequence variation between clones originating from the Iowa isolate (up to 0.9 %) than between individual clones originating from different isolates of C. parvum. Over 6 % of the -tubulin gene sequence positions (38 out of 620 bp) were variable when comparing multiple clones from the one isolate. The results indicated that while the various procedures used for genotyping isolates may introduce some sequence errors, the Iowa isolate used for this investigation appeared to be composed of multiple sub-genotypes. While none of the sequence variations resulted in clones of the Iowa isolate (genotype 2) being mis-identified as genotype 1, the results have important implications if minor sequence variations are to be used for subtyping isolates and drawing conclusions regarding the origin of, or relationships between, C. parvum oocysts in water and the community.  相似文献   

18.
A glycoprotein (Cpgp40/15)-encoding gene of Cryptosporidium parvum was analyzed to reveal intraspecies polymorphism within C. parvum isolates. Forty-one isolates were collected from different geographical origins (Japan, Italy, and Nepal) and hosts (humans, calves, and a goat). These isolates were characterized by means of DNA sequencing, PCR-restriction fragment length polymorphism (PCR-RFLP), and RFLP-single-strand conformational polymorphism (RFLP-SSCP) analyses of the gene for Cpgp40/15. The sequence analysis indicated that there was DNA polymorphism between genotype I and II, as well as within genotype I, isolates. The DNA and amino acid sequence identities between genotypes I and II differed, depending on the isolates, ranging from 73.3 to 82.9% and 62.4 to 80.1%, respectively. Those among genotype I isolates differed, depending on the isolates, ranging from 69.0 to 85.4% and 54.8 to 79.2%, respectively. Because of the high resolution generated by PCR-RFLP and RFLP-SSCP, the isolates of genotype I could be subtyped as genotypes Ia1, Ia2, Ib, and Ie. The isolates of genotype II could be subtyped as genotypes IIa, IIb, and IIc. The isolates from calves, a goat, and one Japanese human were identified as genotype II. Within genotype II, the isolates from Japan were identified as genotype IIa, those from calves in Italy were identified as genotype IIb, and the goat isolate was identified as genotype IIc. All of the genotype I isolates were from humans. The Japanese isolate (code no. HJ3) and all of the Nepalese isolates were identified as genotypes Ia1 and Ia2, respectively. The Italian isolates were identified as genotype Ib, and the Japanese isolate (code no. HJ2) was identified as genotype Ie. Thus, the PCR-RFLP-SSCP analysis of this glycoprotein Cpgp40/15 gene generated a high resolution that has not been achieved by previous methods of genotypic differentiation of C. parvum.  相似文献   

19.
Recent studies have revealed extensive genetic variation among isolates of Cryptosporidium parvum, an Apicomplexan parasite that causes gastroenteritis in both humans and animals worldwide. The parasite's population structure is influenced by the intensity of transmission, the host-parasite interaction, and husbandry practices. As a result, C. parvum populations can be panmictic, clonal, or even epidemic on both a local scale and a larger geographical scale. To extend the study of C. parvum populations to an unexplored region, 173 isolates of C. parvum collected in Italy from humans and livestock (calf, sheep, and goat) over a 10-year period were genotyped using a multilocus scheme based on 7 mini- and microsatellite loci. In agreement with other studies, extensive polymorphism was observed, with 102 distinct multilocus genotypes (MLGs) identified among 173 isolates. The presence of linkage disequilibrium, the confinement of MLGs to individual farms, and the relationship of many MLGs inferred using network analysis (eBURST) suggest a predominantly clonal population structure, but there is also evidence that part of the diversity can be explained by genetic exchange. MLGs from goats were found to differ from bovine and sheep MLGs, supporting the existence of C. parvum subpopulations. Finally, MLGs from isolates collected between 1997 and 1999 were also identified as a distinct subgroup in principal-component analysis and eBURST analysis, suggesting a continuous introduction of novel genotypes in the parasite population.  相似文献   

20.
Cryptosporidium parvum is an apicomplexan parasite that infects humans and ruminants. C. parvum isolated from cattle in northeastern Turkey and in Israel was genotyped using multiple polymorphic genetic markers, and the two populations were compared to assess the effect of cattle husbandry on the parasite's population structure. Dairy herds in Israel are permanently confined with essentially no opportunity for direct herd-to-herd transmission, whereas in Turkey there are more opportunities for transmission as animals range over wider areas and are frequently traded. A total of 76 C. parvum isolates from 16 locations in Israel and seven farms in the Kars region in northeastern Turkey were genotyped using 16 mini- and microsatellite markers. Significantly, in both countries distinct multilocus genotypes confined to individual farms were detected. The number of genotypes per farm was higher and mixed isolates were more frequent in Turkey than in Israel. As expected from the presence of distinct multilocus genotypes in individual herds, linkage disequilibrium among loci was detected in Israel. Together, these observations show that genetically distinct populations of C. parvum can emerge within a group of hosts in a relatively short time. This may explain the frequent detection of host-specific genotypes with unknown taxonomic status in surface water and the existence of geographically restricted C. hominis genotypes in humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号