首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The function of HKT1 in roots is controversial. We tackled this controversy by studying Na+ uptake in barley (Hordeum vulgare) roots, cloning the HvHKT1 gene, and expressing the HvHKT1 cDNA in yeast (Saccharomyces cerevisiae) cells. High-affinity Na+ uptake was not detected in plants growing at high K+ but appeared soon after exposing the plants to a K(+)-free medium. It was a uniport, insensitive to external K+ at the beginning of K+ starvation and inhibitable by K+ several hours later. The expression of HvHKT1 in yeast was Na+ (or K+) uniport, Na(+)-K+ symport, or a mix of both, depending on the construct from which the transporter was expressed. The Na+ uniport function was insensitive to external K+ and mimicked the Na+ uptake carried out by the roots at the beginning of K+ starvation. The K+ uniport function only took place in yeast cells that were completely K+ starved and disappeared when internal K+ increased, which makes it unlikely that HvHKT1 mediates K+ uptake in roots. Mutation of the first in-frame AUG codon of HvHKT1 to CUC changed the uniport function into symport. The expression of the symport from either mutants or constructs keeping the first in-frame AUG took place only in K(+)-starved cells, while the uniport was expressed in all conditions. We discuss here that the symport occurs only in heterologous expression. It is most likely related to the K+ inhibitable Na+ uptake process of roots that heterologous systems fail to reproduce.  相似文献   

2.
3.
We screened a rice (Oryza sativa L. 'Nipponbare') full-length cDNA expression library through functional complementation in yeast (Saccharomyces cerevisiae) to find novel cation transporters involved in salt tolerance. We found that expression of a cDNA clone, encoding the rice homolog of Shaker family K(+) channel KAT1 (OsKAT1), suppressed the salt-sensitive phenotype of yeast strain G19 (Deltaena1-4), which lacks a major component of Na(+) efflux. It also suppressed a K(+)-transport-defective phenotype of yeast strain CY162 (Deltatrk1Deltatrk2), suggesting the enhancement of K(+) uptake by OsKAT1. By the expression of OsKAT1, the K(+) contents of salt-stressed G19 cells increased during the exponential growth phase. At the linear phase, however, OsKAT1-expressing G19 cells accumulated less Na(+) than nonexpressing cells, but almost the same K(+). The cellular Na(+) to K(+) ratio of OsKAT1-expressing G19 cells remained lower than nonexpressing cells under saline conditions. Rice cells overexpressing OsKAT1 also showed enhanced salt tolerance and increased cellular K(+) content. These functions of OsKAT1 are likely to be common among Shaker K(+) channels because OsAKT1 and Arabidopsis (Arabidopsis thaliana) KAT1 were able to complement the salt-sensitive phenotype of G19 as well as OsKAT1. The expression of OsKAT1 was restricted to internodes and rachides of wild-type rice, whereas other Shaker family genes were expressed in various organs. These results suggest that OsKAT1 is involved in salt tolerance of rice in cooperation with other K(+) channels by participating in maintenance of cytosolic cation homeostasis during salt stress and thus protects cells from Na(+).  相似文献   

4.
The TRK-HKT family of K(+) transporters mediates K(+) and Na(+) uptake in fungi and plants. In this study, we have investigated the molecular mechanism involved in the movement of alkali cations through the TRK1 transporter of Saccharomyces cerevisiae. The model that best explains the activity of ScTRK1 is a cotransport of two K(+) or Rb(+), both of which bind the two binding sites of ScTRK1 with very high affinities in K(+)-starved cells. Na(+) can be transported in the same way but it exhibits a much lower affinity for the second binding site. Therefore, only at critical concentration ratios between K(+) and Na(+), or Rb(+) and Na(+), the transporter takes up Na(+) together with K(+) or Rb(+). Mutation analyses suggest that the two binding sites are located in the P fragment of the first MPM motif of the transporter, and that Gln(90) is involved in these binding sites. ScTRK1 can be in two states, medium or high affinity, and we have found that Leu(949) is involved in the oscillation of the transporter between these two states. ScTRK1 mediates active K(+) uptake. This is not Na(+)-coupled and direct coupling of ScTRK1 to a source of chemical energy seems more probable than K(+)-H(+) cotransport.  相似文献   

5.
The Na(+)-K(+) co-transporter HKT1, first isolated from wheat, mediates high-affinity K(+) uptake. The function of HKT1 in plants, however, remains to be elucidated, and the isolation of HKT1 homologs from Arabidopsis would further studies of the roles of HKT1 genes in plants. We report here the isolation of a cDNA homologous to HKT1 from Arabidopsis (AtHKT1) and the characterization of its mode of ion transport in heterologous systems. The deduced amino acid sequence of AtHKT1 is 41% identical to that of HKT1, and the hydropathy profiles are very similar. AtHKT1 is expressed in roots and, to a lesser extent, in other tissues. Interestingly, we found that the ion transport properties of AtHKT1 are significantly different from the wheat counterpart. As detected by electrophysiological measurements, AtHKT1 functioned as a selective Na(+) uptake transporter in Xenopus laevis oocytes, and the presence of external K(+) did not affect the AtHKT1-mediated ion conductance (unlike that of HKT1). When expressed in Saccharomyces cerevisiae, AtHKT1 inhibited growth of the yeast in a medium containing high levels of Na(+), which correlates to the large inward Na(+) currents found in the oocytes. Furthermore, in contrast to HKT1, AtHKT1 did not complement the growth of yeast cells deficient in K(+) uptake when cultured in K(+)-limiting medium. However, expression of AtHKT1 did rescue Escherichia coli mutants carrying deletions in K(+) transporters. The rescue was associated with a less than 2-fold stimulation of K(+) uptake into K(+)-depleted cells. These data demonstrate that AtHKT1 differs in its transport properties from the wheat HKT1, and that AtHKT1 can mediate Na(+) and, to a small degree, K(+) transport in heterologous expression systems.  相似文献   

6.
HKT1 is a high affinity K(+) transporter protein that is a member of a large superfamily of transporters found in plants, bacteria, and fungi. These transporters are primarily involved in K(+) uptake and are energized by Na(+) or H(+). HKT1 is energized by Na(+) but also mediates low affinity Na(+) uptake and may therefore be a pathway for Na(+) uptake, which is toxic to plants. The aim of this study was to identify regions of HKT1 that are involved in K(+)/Na(+) selectivity and alter the amino acid composition in those regions to increase the ionic selectivity of the transporter. A highly charged loop was identified, and two deletions were created that resulted in the removal of charged and uncharged amino acids. The functional changes caused by the deletions were studied in yeast and Xenopus oocytes. The deletions improved the K(+)/Na(+) selectivity of the transporter and increased the salt tolerance of the yeast cells in which they were expressed. In light of recent structural models of members of this symporter superfamily, it was necessary to determine the orientation of this highly charged loop. Introduction of an epitope tag allowed us to demonstrate that this loop faces the outside of the membrane where it is likely to facilitate the interaction with cations such as K(+) and Na(+). This study has identified an important structural feature in HKT1 that in part determines its K(+)/Na(+) selectivity. Understanding the structural basis of the functional characteristics in transporters such as HKT1 may have important implications for increasing the salt tolerance of higher plants.  相似文献   

7.
8.
9.
The high-affinity K+ uptake system of plants plays a crucial role in nutrition and has been the subject of extensive kinetic studies. However, major components of this system remain to be identified. We isolated a cDNA from barley roots, HvHAK1, whose translated sequence shows homology to the Escherichia coli Kup and Schwanniomyces occidentalis HAK1 K+ transporters. HvHAK1 conferred high-affinity K+ uptake to a K(+)-uptake-deficient yeast mutant exhibiting the hallmark characteristics of the high-affinity K+ uptake described for barley roots. HvHAK1 also mediated low-affinity Na+ uptake. Another cDNA (HvHAK2) encoding a polypeptide 42% identical to HvHAK1 was also isolated. Analysis of several genomes of Triticeae indicates that HvHAK1 belongs to a multigene family. Translated sequences from bacterial DNAs and Arabidopsis, rice, and possibly human cDNAs show homology to the Kup-HAK1-HvHAK1 family of K+ transporters.  相似文献   

10.
11.
12.
Ectomycorrhizal symbiosis between fungi and woody plants strongly improves plant mineral nutrition and constitutes a major biological process in natural ecosystems. Molecular identification and functional characterization of fungal transport systems involved in nutrient uptake are crucial steps toward understanding the improvement of plant nutrition and the symbiotic relationship itself. In the present report a transporter belonging to the Trk family is identified in the model ectomycorrhizal fungus Hebeloma cylindrosporum and named HcTrk1. The Trk family is still poorly characterized, although it plays crucial roles in K(+) transport in yeasts and filamentous fungi. In Saccharomyces cerevisiae K(+) uptake is mainly dependent on the activity of Trk transporters thought to mediate H(+):K(+) symport. The ectomycorrhizal HcTrk1 transporter was functional when expressed in Xenopus oocytes, enabling the first electrophysiological characterization of a transporter from the Trk family. HcTrk1 mediates instantaneously activating inwardly rectifying currents, is permeable to both K(+) and Na(+), and displays channel-like functional properties. The whole set of data and particularly a phenomenon reminiscent of the anomalous mole fraction effect suggest that the transport does not occur according to the classical alternating access model. Permeation appears to occur through a single-file pore, where interactions between Na(+) and K(+) might result in Na(+):K(+) co-transport activity. HcTrk1 is expressed in external hyphae that explore the soil when the fungus grows in symbiotic condition. Thus, it could play a major role in both the K(+) and Na(+) nutrition of the fungus (and of the plant) in nutrient-poor soils.  相似文献   

13.
14.
Low-affinity Na+ uptake in the halophyte Suaeda maritima   总被引:3,自引:0,他引:3       下载免费PDF全文
Na(+) uptake by plant roots has largely been explored using species that accumulate little Na(+) into their shoots. By way of contrast, the halophyte Suaeda maritima accumulates, without injury, concentrations of the order of 400 mM NaCl in its leaves. Here we report that cAMP and Ca(2+) (blockers of nonselective cation channels) and Li(+) (a competitive inhibitor of Na(+) uptake) did not have any significant effect on the uptake of Na(+) by the halophyte S. maritima when plants were in 25 or 150 mM NaCl (150 mM NaCl is near optimal for growth). However, the inhibitors of K(+) channels, TEA(+) (10 mM), Cs(+) (3 mM), and Ba(2+) (5 mM), significantly reduced the net uptake of Na(+) from 150 mM NaCl over 48 h, by 54%, 24%, and 29%, respectively. TEA(+) (10 mM), Cs(+) (3 mM), and Ba(2+) (1 mm) also significantly reduced (22)Na(+) influx (measured over 2 min in 150 mM external NaCl) by 47%, 30%, and 31%, respectively. In contrast to the situation in 150 mm NaCl, neither TEA(+) (1-10 mM) nor Cs(+) (0.5-10 mM) significantly reduced net Na(+) uptake or (22)Na(+) influx in 25 mM NaCl. Ba(2+) (at 5 mm) did significantly decrease net Na(+) uptake (by 47%) and (22)Na(+) influx (by 36% with 1 mM Ba(2+)) in 25 mM NaCl. K(+) (10 or 50 mM) had no effect on (22)Na(+) influx at concentrations below 75 mM NaCl, but the influx of (22)Na(+) was inhibited by 50 mM K(+) when the external concentration of NaCl was above 75 mM. The data suggest that neither nonselective cation channels nor a low-affinity cation transporter are major pathways for Na(+) entry into root cells. We propose that two distinct low-affinity Na(+) uptake pathways exist in S. maritima: Pathway 1 is insensitive to TEA(+) or Cs(+), but sensitive to Ba(2+) and mediates Na(+) uptake under low salinities (25 mM NaCl); pathway 2 is sensitive to TEA(+), Cs(+), and Ba(2+) and mediates Na(+) uptake under higher external salt concentrations (150 mM NaCl). Pathway 1 might be mediated by a high-affinity K transporter-type transporter and pathway 2 by an AKT1-type channel.  相似文献   

15.
Salinity significantly increased trisodium-8-hydroxy-1,3,6-pyrenetrisulphonic acid (PTS) uptake and decreased the K(+)/Na(+) ratio in salt-sensitive rice (Nipponbare) but did not markedly in salt-tolerant rice (Pokkali). Proline and glycinebetaine (betaine) suppressed the increase in PTS uptake and the decrease in the K(+)/Na(+) ratio in Nipponbare, but did not affect PTS uptake or the K(+)/Na(+) ratio in Pokkali.  相似文献   

16.
Members of class II of the HKT transporters, which have thus far only been isolated from grasses, were found to mediate Na(+)-K(+) cotransport and at high Na(+) concentrations preferred Na(+)-selective transport, depending on the ionic conditions. But the physiological functions of this K(+)-transporting class II of HKT transporters remain unknown in plants, with the exception of the unique class II Na(+) transporter OsHKT2;1. The genetically tractable rice (Oryza sativa; background Nipponbare) possesses two predicted K(+)-transporting class II HKT transporter genes, OsHKT2;3 and OsHKT2;4. In this study, we have characterized the ion selectivity of the class II rice HKT transporter OsHKT2;4 in yeast and Xenopus laevis oocytes. OsHKT2;4 rescued the growth defect of a K(+) uptake-deficient yeast mutant. Green fluorescent protein-OsHKT2;4 is targeted to the plasma membrane in transgenic plant cells. OsHKT2;4-expressing oocytes exhibited strong K(+) permeability. Interestingly, however, K(+) influx in OsHKT2;4-expressing oocytes did not require stimulation by extracellular Na(+), in contrast to other class II HKT transporters. Furthermore, OsHKT2;4-mediated currents exhibited permeabilities to both Mg(2+) and Ca(2+) in the absence of competing K(+) ions. Comparative analyses of Ca(2+) and Mg(2+) permeabilities in several HKT transporters, including Arabidopsis thaliana HKT1;1 (AtHKT1;1), Triticum aestivum HKT2;1 (TaHKT2;1), OsHKT2;1, OsHKT2;2, and OsHKT2;4, revealed that only OsHKT2;4 and to a lesser degree TaHKT2;1 mediate Mg(2+) transport. Interestingly, cation competition analyses demonstrate that the selectivity of both of these class II HKT transporters for K(+) is dominant over divalent cations, suggesting that Mg(2+) and Ca(2+) transport via OsHKT2;4 may be small and would depend on competing K(+) concentrations in plants.  相似文献   

17.
Functional characterization of the human high-affinity choline transporter   总被引:6,自引:0,他引:6  
Okuda T  Haga T 《FEBS letters》2000,484(2):92-97
  相似文献   

18.
Salinity affects large areas of agricultural land, and all major crop species are intolerant to high levels of sodium ions. The principal route for Na(+) uptake into plant cells remains to be identified. Non-selective ion channels and high-affinity potassium transporters have emerged as potential pathways for Na(+) entry. A third candidate for Na(+) transport into plant cells is a low-affinity cation transporter represented by the wheat protein LCT1, which is known to be permeable for a wide range of cations when expressed in yeast (Saccharomyces cerevisiae). To investigate the role of LCT1 in salt tolerance we have used the yeast strain G19, which is disrupted in the genes encoding Na(+) export pumps and as a result displays salt sensitivity comparable with wheat. After transformation with LCT1, G19 cells became hypersensitive to NaCl. We show that LCT1 expression results in a strong decrease of intracellular K(+)/Na(+) ratio in G19 cells due to the combined effect of enhanced Na(+) accumulation and loss of intracellular K(+). Na(+) uptake through LCT1 was inhibited by K(+) and Ca(2+) at high concentrations and the addition of these ions rescued growth of LCT1-transformed G19 on saline medium. LCT1 was also shown to mediate the uptake of Li(+) and Cs(+). Expression of two mutant LCT1 cDNAs with N-terminal truncations resulted in decreased Ca(2+) uptake and increased Na(+) tolerance compared with expression of the full-length LCT1. Our findings strongly suggest that LCT1 represents a molecular link between Ca(2+) and Na(+) uptake into plant cells.  相似文献   

19.
20.
The second member of the PAT (proton-coupled amino acid transporter) family of H(+)-coupled, pH-dependent, Na(+)-independent amino acid transporters was isolated from a rat lung cDNA library. The cDNA for rat PAT2 is 2396bp in length, including 70bp of 5'UTR and a poly(A) tail. The transporter gene, consisting of 10 exons, is located on rat chromosome 10q22. The cDNA codes for a protein of 481 amino acids with 72% identity (over 449 amino acids) with rat PAT1. Tissue expression studies demonstrate that mRNA abundance is generally low with highest levels being detected in lung and spleen, with lower levels in the brain, heart, kidney, and skeletal muscle. Functional expression in either mammalian cells or Xenopus laevis oocytes demonstrates that rat PAT2 mediates pH-dependent, Na(+)-independent uptake of glycine, proline, and alpha(methyl)aminoisobutyric acid (MeAIB). In conclusion PAT2 has a limited tissue distribution, higher affinity (Michaelis-Menten constant for glycine uptake between 0.49 and 0.69mM), and distinct substrate specificity compared to PAT1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号