首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It is still unclear whether the paradoxical arteriovenous carboxyhemoglobin (COHb) difference found in critical illness is due to increased COHb production by the lung, or whether this gradient is caused by technical artifacts using spectrophotometry. In healthy and matched endotoxemic sheep, blood gases were analyzed with a standard ABL 625 and the updated version, an ABL 725. The latter one was accurately calibrated for COHb wavelengths (SAT 100) to eliminate the FCOHb dependency on oxygen tension. All endotoxemic sheep exhibited a hypotensive-hyperdynamic circulation and a pulmonary hypertension. Interestingly, arteriovenous COHb difference occurred in both healthy and endotoxemic sheep (P<0.001 each). Arterial and central venous COHb concentrations determined with the ABL 625 were significantly lower than those measured with the ABL 725 (P<0.001 each). We conclude that (a) arteriovenous COHb difference per se does not reflect critical illness and (b) measurements with an ABL 625 underestimate COHb concentrations.  相似文献   

2.
Carboxyhemoglobin (COHb) formation is triggered by the inducible isoform of heme oxygenase (HO-1) catalyzing carbon monoxide (CO) production through breakdown of heme molecules, exposure to CO or both. In the setting of CO poisoning, COHb is regarded as a reliable marker characterizing both severity of injury and efficacy of treatment strategies. This study was designed as a prospective laboratory experiment to elucidate potential interdependencies between COHb generation, oxygenation, and pulmonary shunt fraction (Qs/Qt) in an ovine model of smoke inhalation injury. Chronically instrumented ewes (n=15) were repeatedly subjected to cotton smoke (4 x 12 breaths) according to an established protocol. This approach resulted in a progressive increase in COHb formation that was interrelated with the degree of Qs/Qt (P<0.001) and inversely correlated with both arterial and mixed venous HbO(2) saturation (r=-0.96 and -0.93). Although the arteriovenous COHb gradient successively decreased over time, COHb determined in venous blood underestimated the arterial content.  相似文献   

3.
目的和方法 :观察外源性一氧化碳 (CO)对大鼠离体肺动脉环低氧性收缩反应 (HPV)的影响 ,并通过观察血红素氧化酶抑制剂ZnPPIX对HPV的影响 ,探讨内源性一氧化碳在HPV中的作用及机制。结果 :低氧可使苯肾上腺素 (PE)预收缩的肺动脉环出现明显的收缩反应 ,肺动脉cGMP含量下降 ;用ZnPPIX孵育后 ,低氧后的肺动脉cGMP含量增加 ,低氧性肺血管收缩反应 (HPV)受抑 ;外源性CO可明显增加肺动脉cGMP含量 ,HPV明显受抑。结论 :外源性CO及ZnPPIX可增加低氧后的肺动脉cGMP含量 ,抑制HPV ,内源性CO减少导致cGMP含量下降可能是HPV的原因之一  相似文献   

4.
Affinity of carbon monoxide to hemoglobin increases at low oxygen fractions   总被引:3,自引:0,他引:3  
Following systemic inflammation, the lung induces an isoenzyme of heme oxygenase (HO-1), catalyzing carbon monoxide (CO) production through breakdown of heme molecules. However, it is still debated why the paradoxical arterio-venous carboxyhemoglobin (COHb) difference occurs only during critical illness but not in healthy volunteers. To elucidate whether oxygen fractions at (sub-)physiologic ranges alter the affinity of CO to hemoglobin (Hb), we performed an in vitro laboratory experiment, in which we exposed venous blood samples to fixed CO-doses at incrementing oxygen fractions (FiO2). ANOVA demonstrated that the affinity of CO (200 and 400 ppm) to Hb progressively increased with an FiO2 from 0% to 15%, whereas at higher oxygen tensions this effect vanished. This might explain why the arterio-venous COHb difference found in critically ill patients is not reproducible in healthy adults, since the latter ones are characterized by higher venous oxygen saturations.  相似文献   

5.
Infant respiratory distress syndrome (RDS) involves inflammatory processes, causing an increased expression of inducible heme oxygenase with subsequent production of carbon monoxide (CO). We hypothesized that increased production of CO during RDS might be responsible for increased plasma levels of vasodilatory cGMP and, consequently, low blood pressure observed in infants with RDS. Fifty-two infants (no-RDS, n = 21; RDS, n = 31), consecutively admitted to the neonatal intensive care unit (NICU) between January and October 2003 were included. Hemoglobin-bound carbon monoxide (COHb), plasma cGMP, plasma nitric oxide (NOx), and bilirubin were determined at 0-12, 48-72, and at 168 h postnatally, with simultaneous registration of arterial blood pressure. Infants with RDS had higher levels of cGMP and COHb compared with no-RDS infants (RDS vs. no-RDS: cGMP ranging from 76 to 101 vs. 58 to 82 nmol/l; COHb ranging from 1.2 to 1.4 vs. 0.9 to 1.0%). Highest values were reached at 48-72 h [RDS vs. no-RDS mean (SD): cGMP 100 (39) vs. 82 (25) nmol/l (P < 0.001); COHb 1.38 (0.46) vs. 0.91 (0.26)% (P < 0.0001)]. Arterial blood pressure was lower and more blood pressure support was needed in RDS infants at that point of time [RDS vs. no-RDS mean (SD): mean arterial blood pressure 33 (6) vs. 42 (5) mmHg (P < 0.05)]. NOx was not different between groups and did not vary with time. Multiple linear regression analysis showed a significant correlation between cGMP and COHb, suggesting a causal relationship. Mean arterial blood pressure appeared to be primarily correlated to cGMP levels (P < 0.001). We conclude that a CO-mediated increase in cGMP causes systemic vasodilation with a consequent lower blood pressure and increased need for blood pressure support in preterm infants with RDS.  相似文献   

6.
Circadian and seasonal rhythms in daylight affect many physiological processes. In the eye, energy of intense visible light not only initiates a well-studied neural reaction in the retina that modulates the secretory function of the hypothalamus and pineal gland, but also activates the heme oxygenase (HO) to produce carbon monoxide (CO). This study was designed to determine whether the concentration of carbon monoxide (CO) in the ophthalmic venous blood changes depending on the phase of the day and differing extremely light intensity seasons: summer and winter. The concentration of CO in the venous blood flowing out from the nasal cavity, where heme oxygenase (HO) is expressed, but no photoreceptors, was used as a control. Sixteen mature males of a wild boar and pig crossbreed were used for this study. Samples of ophthalmic and nasal venous blood and systemic arterial and venous blood were collected repeatedly for two consecutive days during the longest days of the summer and the shortest days of the winter. The concentrations of CO in blood samples was measured using a standard addition method. During the longest days of the summer the concentration of CO in ophthalmic venous blood averaged 3.32 ± 0.71 and 3.43 ± 0.8 nmol/ml in the morning and afternoon, respectively, and was significantly higher than in the night averaging 0.89 ± 0.12 nmol/ml (p<0.001). During the shortest day of the winter CO concentration in ophthalmic venous blood was 1.11 ± 0.10 and 1.13 ± 0.14 nmol/ml during the light and nocturnal phase, respectively, and did not differ between phases, but was lower than in the light phase of the summer (p<0.01). The CO concentration in the control nasal venous blood did not differ between seasons and day phases and was lower than in ophthalmic venous blood during the summer (p<0.01) and winter (p<0.05). The results indicate that the gaseous messenger carbon monoxide is released from the eye into the ophthalmic venous blood depending on the intensity of sunlight.  相似文献   

7.
Heme oxygenase has been considered to be involved in the predominant pathway of heme degradation in vivo. However, alternative pathways involving cytochrome P-450 reductase, and lipid peroxidation, have previously been demonstrated in vitro, and studies with cultured rat hepatocytes were interpreted to show a majority of endogenous hepatic heme breakdown by non-heme oxygenase pathways. To clarify the pathway of heme breakdown in hepatocytes and the role of heme oxygenase in this process, cultured hepatocytes were pre-labelled with 5-[5-14C]aminolevulinate [( 14C]ALA). Radioactivity in heme, carbon monoxide, and bile pigments was measured for 8-24 h after the removal of [14C]ALA. In cultured chick embryo hepatocytes, which lack biliverdin reductase, the rate of production of biliverdin IXa was closely similar to the rate of catabolism of exogenous heme and radioactivity in carbon monoxide and biliverdin IXa was similar to the loss of radioactivity from endogenous heme. These results support the conclusion that heme breakdown occurred predominantly, if not solely, by heme oxygenase. Also, no evidence of non-heme oxygenase pathways was found in the presence of tin protoporphyrin, an inhibitor of heme oxygenase or mephenytoin, an inducer of both cytochrome P-450 and heme oxygenase. Similarly, in untreated cultured rat hepatocytes, radioactivity in carbon monoxide corresponded with loss of radioactivity in endogenous heme. In other experiments with chick hepatocyte cultures, rates of heme synthesis and breakdown were measured, and data were fitted to various models of hepatic heme metabolism. The results observed were consistent only with models in which an appreciable fraction (control cells, 17%, mephenytoin treated cells, 41%) of the newly synthesized heme was degraded rapidly to biliverdin.  相似文献   

8.
内源性一氧化碳减轻大鼠双侧后肢缺血再灌注所致的肺损伤   总被引:15,自引:0,他引:15  
Zhou JL  Ling YL  Jin GH  Zhang JL  Shi ZL  Huang XL 《生理学报》2002,54(3):229-233
通过观察血红素氧化酶(HO)阻断剂--锌原卟啉(ZnPP)对肺组织、肺泡间质多形核白细胞数目肺组织丙二醛含量和湿重干重之比的影响,并对肺组织HO活性和血内碳氧血红蛋白水平(COHb)进行检测,以探讨内源性HO/一氧化碳(CO)在肢体缺血再灌注(I/R)所致肺损伤中的作用。结果发现,大鼠双侧后肢I/R可导致急性肺损伤,同时使肺组织中HO活性和血内COHb水平显著升高;应用ZnPP预处理可使HO活性和COHb水平显著降低,但肺损伤却进一步加重。上述实验结果表明,肢体I/R致肺损伤时,肺组织中HO活性和内源性CO生成增多或减轻大鼠肢体I/R所致的肺损伤。  相似文献   

9.
Increased carbon monoxide in exhaled air of critically ill patients   总被引:7,自引:0,他引:7  
Heme oxygenase produces carbon monoxide (CO) during breakdown of heme molecules primarily in liver and spleen. Recent data suggest that CO is also produced in the lungs. CO is excreted by exhalation via the lungs. A number of inflammatory agents induce the expression of heme oxygenase, possibly leading to increased CO production. To investigate whether critical illness results in increased CO production we measured the CO concentration in exhaled air in 30 critically ill patients and in healthy controls (n = 6). Critically ill patients showed a significantly higher CO concentration in exhaled air (median 2.4 ppm, 95% CI 1.0-7.0 ppm vs median 1.55 ppm, 95% CI 1.2-1.7 ppm, P = 0.01) as well as total CO production (median 20 ml/min, 95% CI 8 to 90 ml/min vs median 13.5 ml/min, 95% CI 11 to 19 ml/min, P = 0.026) compared to healthy controls. No correlation was found between CO concentration in exhaled air and carboxyhemoglobin concentration in arterial and central venous blood (P > 0.05). The increase of CO concentration in exhaled air in critical illness suggests an induction of inducible heme oxygenase (HO-1) and might reflect the severity of illness.  相似文献   

10.
Carbon monoxide is produced in the endothelial cells and has possible vasodilator activity through three different pathways. The aim of this study was to demonstrate circulatory effects after administration of saturated carbon monoxide blood and to describe the pharmacokinetics of carbon monoxide. Six pigs were anesthetized and 150 ml blood was removed. This blood was bubbled with carbon monoxide until the carboxyhemoglobin (COHb) levels were 90-99%. A specific amount of this blood was then injected back to the animal. At predetermined times; arterial and mixed venous blood was drawn and analyzed for carbon monoxide. Systemic and pulmonary vascular resistance index (SVRi and PVRi) were measured and exhaled air was sampled and measured for carbon monoxide. Blood samples were gathered over 300 minutes along with measurements of invasive pressures, heart rate, cardiac output, oxygen saturation (SpO2), Hb, temperature and blood gases. We conclude that this type of exposure to carbon monoxide appears to have little or no effect on general vasomotor tone and, after correcting for basal levels of carbon monoxide, elimination occurs through the lungs as predicted by a single compartment model. The half-life of carbon monoxide was determined to be 60.5 minutes (SEM 4.7).  相似文献   

11.
Heme oxygenase is an Mr 32,000 microsomal enzyme which catalyzes the rate-limiting step in the oxidative catabolism of heme to yield equimolar quantities of biliverdin IX alpha, carbon monoxide, and iron. In the present investigation, evidence is presented suggesting that immunochemical and structural differences exist between bovine spleen heme oxygenase and heme oxygenase enzymes from other mammalian species. Using an antibody directed against bovine spleen heme oxygenase, enzyme-linked immunosorbent assays, Western blotting experiments, and cell-free translation immunoprecipitation studies showed that bovine spleen heme oxygenase is only weakly immunochemically related to heme oxygenase from rat spleen. This observation was supported by the fact that a rat spleen heme oxygenase cDNA probe did not hybridize significantly to bovine spleen heme oxygenase mRNA in Northern analyses nor to restriction fragments containing the bovine heme oxygenase gene in Southern analyses. Tryptic peptides were prepared from bovine spleen heme oxygenase and the amino acid sequences of nine peptides comprising 94 amino acid residues were determined, providing the first information on the primary structure of bovine spleen heme oxygenase. Comparison of the sequences of these tryptic peptides with regions of the deduced amino acid sequences of rat spleen and human macrophage heme oxygenase revealed sequence similarities ranging from 55 to 100%. Several peptides displaying the highest degree of sequence similarity were found to occur in regions of the heme oxygenase molecule postulated to contain the heme binding site, indicating that despite the immunochemical and apparent structural differences between bovine spleen heme oxygenase and the rat and human enzymes, functionally important amino acid residues have been conserved in the evolution of mammalian heme oxygenase genes.  相似文献   

12.
一氧化碳对大鼠离体肺动脉的舒张作用   总被引:1,自引:0,他引:1  
Ding XQ  Liu GM  Wang JK  Sheng ZR 《生理学报》2002,54(1):38-42
本研究观察了一氧化碳 (CO)对离体大鼠肺动脉的舒张作用。制备Wistar大鼠肺动脉环 ,作出ACh浓度效应曲线之后 ,肺动脉环用一氧化氮合成酶抑制剂L NAME 3 0 μmol/L (n =10 )或血红素氧化酶抑制剂ZnPPIX 10μmol/L +L NAME 3 0 μmol/L (n =10 )孵育 3 0min ,再制备一个ACh的浓度效应曲线 ,观察ZnPPIX对ACh的浓度效应曲线的影响。另取一组肺动脉环 ,分为内皮完整组和去内皮组 ,观察外源性CO对肺动脉环张力的影响。结果表明 ,用L NAME孵育后 ,ACh的血管舒张反应受抑 ,最大抑制率为 5 0 4± 9 2 % ;用ZnPPIX +L NAME孵育后 ,ACh的血管舒张反应进一步受抑 ,最大抑制率为 84 4± 11 2 %。外源性CO无论对内皮完整组还是去内皮组肺动脉都有舒张作用。本研究提示 ,ZnPPIX可抑制ACh的内皮依赖性肺动脉舒张反应 ,CO是一个内皮源性的血管舒张因子 ,外源性CO可舒张肺动脉  相似文献   

13.
The last decade has witnessed an explosion in the elucidation of the role that the heme oxygenase system plays in human physiology. This system encompasses not only the heme degradative pathway, including heme oxygenase and biliverdin reductase, but also the products of heme degradation, carbon monoxide, iron, and biliverdin/bilirubin. Their role in diabetes, inflammation, heart disease, hypertension, transplantation, and pulmonary disease are areas of burgeoning research. The research has focused not only on heme itself but also on its metabolic products as well as endogenous compounds involved in a vast number of genetic and metabolic processes that are affected when heme metabolism is perturbed. It should be noted, however, that although the use of carbon monoxide and biliverdin/bilirubin as therapeutic agents has been successful, these agents can be toxic at high levels in tissue, e.g., kernicterus. Care must be used to ensure that when these compounds are used as therapeutic agents their deleterious effects are minimized or avoided. On balance, however, the strategies to target heme oxygenase-1 as described in this review offer promising therapeutic approaches to clinicians for the effective management of hypertension and renal function. The approaches detailed may prove to be seminal in the development of a new therapeutic strategy to treat hypertension.  相似文献   

14.
Heme oxygenase: who needs it?   总被引:9,自引:0,他引:9  
Heme is a molecule that is synthesized by the sequential actions of eight enzymes and is ubiquitous throughout nature. For many years it has been known that heme is also catabolized to yield biliverdin (which is subsequently reduced to bilirubin), one atom of iron, and one molecule of carbon monoxide. There has been a recent explosion of interest in this degradative process that is catalyzed by the rate-limiting enzyme, heme oxygenase. In particular, there has been a special interest in the potential physiological and pathological roles that may be played by these breakdown products. This minireview will examine some of these potential functional correlates, with special emphasis on potential oxidant and antioxidant effects of the bilirubin, carbon monoxide, and iron that result from the activity of heme oxygenase.  相似文献   

15.
A reconstituted heme oxygenase system which was composed of a purified heme oxygenase from pig spleen microsomes and a partially purified NADPH-cytochrome c reductase from pig liver microsomes could not catalyze the conversion of cobaltic protoporphyrin IX (Co-heme) to biliverdin, although Co-heme could bind with the heme oxygenase protein to form a complex. The heme oxygenase system in the microsomes from pig spleen, rat spleen, and rat kidney also failed to oxidize Co-heme to biliverdin. Properties of the complex of Co-heme and heme oxygenase closely resembled those of cobalt myoglobin and cobalt hemoglobin; the Co-heme bound to the heme oxygenase protein did not react with cyanide and azide, the Co-heme moiety was reduced but only slowly with sodium dithionite, and the reduced form of the Co-heme did not appear to bind carbon monoxide. The co-heme bound to heme oxygenase was not reduced with the NADPH-cytochrome c reductase system in air. These findings further support the views that heme oxygenase may have a heme-binding crevice similar to those of myoglobin and hemoglobin and that reduction of heme is the prerequisite for the oxidative degradation of heme in the heme oxygenase reaction.  相似文献   

16.
The stress-inducible protein heme oxygenase-1 provides protection against oxidative stress. The anti-inflammatory properties of heme oxygenase-1 may serve as a basis for this cytoprotection. We demonstrate here that carbon monoxide, a by-product of heme catabolism by heme oxygenase, mediates potent anti-inflammatory effects. Both in vivo and in vitro, carbon monoxide at low concentrations differentially and selectively inhibited the expression of lipopolysaccharide-induced pro-inflammatory cytokines tumor necrosis factor-alpha, interleukin-1beta, and macrophage inflammatory protein-1beta and increased the lipopolysaccharide-induced expression of the anti-inflammatory cytokine interleukin-10. Carbon monoxide mediated these anti-inflammatory effects not through a guanylyl cyclase-cGMP or nitric oxide pathway, but instead through a pathway involving the mitogen-activated protein kinases. These data indicate the possibility that carbon monoxide may have an important protective function in inflammatory disease states and thus has potential therapeutic uses.  相似文献   

17.
Heme oxygenase (HO) is an essential, rate-limiting protein which catalyses the breakdown of heme to iron, carbon monoxide (CO), and biliverdin. The alpha methene bridge of the heme is eliminated as CO which can be measured as blood carboxyhaemoglobin (COHb). Using blood concentrations of COHb as a measure reflecting HO activity, we tested the postulate that the activity of HO changes with exercise. Ten healthy, nonsmoking volunteers (5 females and 5 males with a mean age?±?standard deviation of 25.7?±?3.2 years), lifetime nonsmokers with no history of respiratory diseases and not taking any medication, were included in the study. Subjects were exposed to filtered air for 2?hrs while alternating exercise for 15?minutes on a cycle ergometer with rest for 15?minutes. Workload was adjusted so that subjects breathed at a ventilatory rate, normalised for body surface area, of 25?L/m2/minute. Immediately before, immediately after, and the day following exercise, blood was drawn by standard venipuncture technique. COHb was determined using the interleukin (IL) 682 Co-Oximeter (Instrumentation Laboratory, Bedford, MA). COHb increased in each participant during the exercise session with the mean value (± standard deviation) almost doubling (1.1?±?1.6 to 2.1?±?1.6%) and returned to baseline by the following day (1.3?±?1.3%). We conclude that exercise increases HO activity.  相似文献   

18.
Heme oxygenase (HO)-1 is an oxygen-dependent enzyme that may regulate vascular tone and cell proliferation through the production of carbon monoxide (CO). We tested the hypothesis that HO-1 is upregulated in the lung in chronic hypoxia by exposing male Sprague-Dawley rats to 17,000 feet (395 Torr) for 0, 1, 3, 7, 14, or 21 days. After exposure, blood gases, carboxyhemoglobin (COHb) levels, and hematocrit were measured, and the lungs were either inflation fixed for immunohistochemistry or frozen for later measurement of HO enzyme activity, Western blot for HO-1 protein, and RT-PCR for HO-1 mRNA. The heart was excised and weighed, and the right-to-left heart weight ratio was determined. During hypoxia, the hematocrit increased progressively, reaching significantly higher values than the control value after 3 days. COHb levels increased above the control value after 1 day of hypoxia and increased progressively between 14 and 21 days, whereas arterial PO(2) and arterial PCO(2) did not vary significantly. HO-1 protein determined by Western blot increased for the first 7 days and declined thereafter; however, enzyme activity was elevated only after 1 day. Changes in HO-1 during hypoxia were localized by immunohistochemistry to inflammatory cells (early) and newly muscularized arterioles (later). Lung HO-1 mRNA normalized to glyceraldehyde-3-phosphate dehydrogenase was increased after 1 and 21 days. The data indicate that lung HO-1 protein and activity are upregulated only during early chronic hypoxia, whereas persistent COHb elevations indicate high endogenous CO production rates at nonpulmonary sites. If CO has antiproliferative properties, the lack of HO enzyme activity in the lung may be permissive for pulmonary vascular proliferation in hypoxia.  相似文献   

19.
Recent findings that heme oxygenase-1 can be induced by oxidative stress and inflammation in many different cellular systems, and that carbon monoxide (CO) produced as a by-product of this enzyme is a signaling molecule, have generated a major research area with hundreds of studies published over the last few years. The measurement of expired CO concentration has been used in humans as a biomarker of induced heme oxygenase resulting from inflammation or oxidative stress, but a precise method of measuring endogenous CO production that can be easily used to study patients is needed. The present study describes such a method. The described method allows calculation of the rate of heme catabolism with a precision of ±2 μmol/h, ~10% of the mean normal rate in subjects used in this investigation. This method, which is subject-patient friendly, precise, and inexpensive to perform, should be applicable to studies performed on humans with induced heme oxygenase and studies of effects of therapy for inflammatory and hemolytic diseases.  相似文献   

20.
A full-length heme oxygenase gene from the gram-negative pathogen Neisseria meningitidis was cloned and expressed in Escherichia coli. Expression of the enzyme yielded soluble catalytically active protein and caused accumulation of biliverdin within the E. coli cells. The purified HemO forms a 1:1 complex with heme and has a heme protein spectrum similar to that previously reported for the purified heme oxygenase (HmuO) from the gram-positive pathogen Corynebacterium diphtheriae and for eukaryotic heme oxygenases. The overall sequence identity between HemO and these heme oxygenases is, however, low. In the presence of ascorbate or the human NADPH cytochrome P450 reductase system, the heme-HemO complex is converted to ferric-biliverdin IXalpha and carbon monoxide as the final products. Homologs of the hemO gene were identified and characterized in six commensal Neisseria isolates, Neisseria lactamica, Neisseria subflava, Neisseria flava, Neisseria polysacchareae, Neisseria kochii, and Neisseria cinerea. All HemO orthologs shared between 95 and 98% identity in amino acid sequences with functionally important residues being completely conserved. This is the first heme oxygenase identified in a gram-negative pathogen. The identification of HemO as a heme oxygenase provides further evidence that oxidative cleavage of the heme is the mechanism by which some bacteria acquire iron for further use.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号