首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Studies were carried out on 11 habitual cigarette smokers to ascertain whether there was a difference in the regional deposition of particles during cigarette smoking compared with tidal breathing and also to investigate whether the ventilatory maneuvers associated with smoking influence the deposition site. A cigarette holder was constructed that permitted cigarette smoke to mix with a radioaerosol. An added resistance simulated the airflow resistance present in a filter-tipped cigarette. Respiratory patterns for the control period of tidal breathing and during smoking were monitored with a respiratory inductance plethysmograph. Smoking resulted in greater apical and central deposition than expected from the distribution of resting ventilation. The changes in the site of deposition during smoking are probably influenced mainly by the properties of the particles concerned, namely, its size, reactivity, and hygroscopicity. Changes in respiratory patterns that occur during inhalation of cigarette smoke may also have an effect but are difficult to quantify and show marked intersubject variation. In selected subjects smoking caused apical deposition to exceed that of the lower zones.  相似文献   

2.
The effect of urethan anesthesia on cigarette smoke-induced airway responsiveness and permeability was studied in the guinea pig. Airway responsiveness was determined by measuring changes to airway resistance to graded doses of aerosolized histamine, and mucosal permeability was determined by measuring the appearance of fluorescein isothiocyanate-dextran (FITC-D) in the blood and examining its distribution in lung tissue after it had been delivered to the lung in an aerosol. The results confirm previous studies that smoke exposure increased airway responsiveness and mucosal permeability. They also show that urethan anesthesia administered before smoke exposure prevented the smoke-related changes in airway reactivity and mucosal permeability. In animals that remained conscious during the smoke exposure, there was increased deposition of the dextran in the regions of the bronchioloalveolar junctions with a more rapid uptake of FITC-D into the blood. We postulate that, when urethan anesthesia is administered before smoke exposure, the exudative phase of the inflammatory reaction produced by smoke exposure is suppressed.  相似文献   

3.
4.
Cigarette smoke contains about 5,000 chemicals that include organic and metallic compounds. The current study was undertaken to investigate the effects of selenium and vitamin E on oxidative stress-induced damage in rats exposed to cigarette smoke. Forty male rats were equally divided into four groups. The first and second groups were used as control and cigarette smoke groups, respectively. Selenium was administered to rats constituting the third group for 27 days. The Se and vitamin E combination was given to animals in fourth group for 27 days. All groups except the control, were exposed to cigarette smoke starting at the third day of the experiment and continuing for 27 days. The blood samples from all groups were taken at the end of 27 days. Plasma lipid peroxidation, triacylglycerol, and total cholesterol levels were higher in the cigarette smoke group than in the control, although erythrocytic superoxide dismutase and glutathione peroxidase activities were lower in the cigarette smoke group than in the control. The plasma lipid peroxidation, triacylglycerol, and total cholesterol levels were lower in cigarette smoke+Se+VE group than in the cigarette smoke group, although erythrocytic superoxide dismutase activity and glutathione peroxidase activity in selenium and vitamin E-administered groups were higher than in the exposed to cigarette smoke group. High-density lipoprotein-cholesterol level was not affect by selenium and vitamin E administrations. In conclusion, selenium and vitamin E seem to have protective effects on the cigarette smoke-induced blood toxicity by supporting the enzymatic antioxidant redox systems.  相似文献   

5.

Background

Skeletal muscle dysfunction is common in chronic obstructive pulmonary disease (COPD), a disease mainly caused by chronic cigarette use. An important proportion of patients with COPD have decreased muscle mass, suggesting that chronic cigarette smoke exposure may interfere with skeletal muscle cellular equilibrium. Therefore, the main objective of this study was to investigate the kinetic of the effects that cigarette smoke exposure has on skeletal muscle cell signaling involved in protein homeostasis and to assess the reversibility of these effects.

Methods

A mouse model of cigarette smoke exposure was used to assess skeletal muscle changes. BALB/c mice were exposed to cigarette smoke or room air for 8 weeks, 24 weeks or 24 weeks followed by 60 days of cessation. The gastrocnemius and soleus muscles were collected and the activation state of key mediators involved in protein synthesis and degradation was assessed.

Results

Gastrocnemius and soleus were smaller in mice exposed to cigarette smoke for 8 and 24 weeks compared to room air exposed animals. Pro-degradation proteins were induced at the mRNA level after 8 and 24 weeks. Twenty-four weeks of cigarette smoke exposure induced pro-degradation proteins and reduced Akt phosphorylation and glycogen synthase kinase-3β quantity. A 60-day smoking cessation period reversed the cell signaling alterations induced by cigarette smoke exposure.

Conclusions

Repeated cigarette smoke exposure induces reversible muscle signaling alterations that are dependent on the duration of the cigarette smoke exposure. These results highlights a beneficial aspect associated with smoking cessation.  相似文献   

6.
P H Yu  A A Boulton 《Life sciences》1987,41(6):675-682
Inhibitory activity towards monoamine oxidase has been found in a solution of cigarette smoke. The inhibition was irreversible. When tissue slices of rat lung were incubated in the cigarette smoke solution or alternatively, exposed directly to cigarette smoke, monoamine oxidase activities were reduced drastically. Similarly, human saliva after cigarette smoking also exhibits considerable MAO inhibitory activity. When the amine substrates p-tyramine, serotonin and beta-phenylethylamine were incubated with the cigarette smoke solution, lipophilic adducts were formed non-enzymatically. The irreversible inhibition of MAO by cigarette smoke may well be related to the low platelet MAO associated with cigarette smokers as previously reported. The implication of such cigarette smoke-caused reduction of MAO activity in relation to Parkinsonism is discussed.  相似文献   

7.
Summary To test the hypothesis that cigarette smoke produces changes in the morphology of tight junctions guinea pigs were exposed to cigarette smoke or air in a previously standardized fashion (Simani et al. 1974). Permeability is greatest one half hour following exposure to cigarette smoke (Hulbert et al. 1981). The animals were sacrificed at that time. The tracheal epithelium was studied using both thin-section and freeze-fracture techniques. A quantitative analysis of the organization and integrity of junctional complexes was performed for each animal. Organization was assessed by measuring and comparing areas delimited by PF fibers and EF furrows. PF fiber integrity was assessed by measuring uninterrupted lengths of fibers and furrows from freeze-fracture replicas. This assessment did not demonstrate a change in tight-junction morphology following exposure to cigarette smoke.  相似文献   

8.
N-demethylation of aminopyrine and C-hydroxylation of aniline by hepatic microsomal enzymes were measured during in vitro exposure to cigarette smoke. Metabolism of aminopyrine during smoke exposure was not significantly altered. Metabolism of aniline during smoke exposure was inhibited 70–80% (P < .001) thus indicating that an initial effect of exposure to cigarette smoke is a decreased rate of biotransformation via C-hydroxylation. This finding, coupled with the findings of other investigators who have shown that the delayed effect of exposure to cigarette smoke is induction of hydroxylase activity, suggests that cigarette smoke produces a biphasic alteration in certain hepatic biotransformation processes.  相似文献   

9.
Cigarette smoke is the major risk factor associated with the development of chronic obstructive pulmonary disease and alters expression of proteolytic enzymes that contribute to disease pathology. Previously, we reported that smoke exposure leads to the induction of matrix metalloproteinase-1 (MMP-1) through the activation of ERK1/2, which is critical to the development of emphysema. To date, the upstream signaling pathway by which cigarette smoke induces MMP-1 expression has been undefined. This study demonstrates that cigarette smoke mediates MMP-1 expression via activation of the TLR4 signaling cascade. In vitro cell culture studies demonstrated that cigarette smoke-induced MMP-1 was regulated by TLR4 via MyD88/IRAK1. Blockade of TLR4 or inhibition of IRAK1 prevented cigarette smoke induction of MMP-1. Mice exposed to acute levels of cigarette smoke exhibited increased TLR4 expression. To further confirm the in vivo relevance of this signaling pathway, rabbits exposed to acute cigarette smoke were found to have elevated TLR4 signaling and subsequent MMP-1 expression. Additionally, lungs from smokers exhibited elevated TLR4 and MMP-1 levels. Therefore, our data indicate that TLR4 signaling, through MyD88 and IRAK1, plays a predominant role in MMP-1 induction by cigarette smoke. The identification of the TLR4 pathway as a regulator of smoke-induced protease production presents a series of novel targets for future therapy in chronic obstructive pulmonary disease.  相似文献   

10.
The effect of cigarette smoke on lipid peroxidation and antioxidant enzymes such as catalase, superoxide dismutase, glutathione peroxidase and on the concentration of N-methyl-d-aspartate receptor (NMDAR) subunits 2A and 2B in the hippocampus of Sprague-Dawley rats exposed to cigarette smoke for 2h/day for a period of 4 weeks was determined. It was observed that NMDAR 2A and 2B concentrations in the hippocampus were enhanced in the case of animals exposed to cigarette smoke, whereas lipid peroxidation and antioxidant enzyme activities did not show any change as compared to control animals. The results of our study suggest that cigarette smoke induces NMDAR 2A and 2B expression in the hippocampus, and that this is not due to an increased lipid peroxidation, because cigarette smoke has no effect on lipid peroxidation and antioxidant enzyme activities in the hippocampus.  相似文献   

11.
To study effects of cigarette smoke on the cytoplasmic motility (CM) of alveolar macrophages (AM), we measured remanent field strength (RFS) in dogs in vivo. Four days after instillation of ferrimagnetic particles (Fe3O4, 3 mg/kg) into the right lower lobe bronchus, RFS was measured at the body surface immediately after magnetization of the Fe3O4 particles by an externally applied magnetic field. RFS decreased with time due to particle rotation (relaxation), which is thought to be inversely related to CM of AM (J. Appl. Physiol. 55: 1196-1202, 1983). The initial relaxation curve was fitted to an exponential function. The relaxation rate (lambda 0) increased during cigarette smoke inhalation and returned to base-line values within 15 min. With the inhalation of the smoke of up to five cigarettes, peak lambda 0 was increased; with a further increase in the number of cigarettes, the effect of cigarette smoke decreased or disappeared. Nicotine injection and acetylcholine inhalation increased respiratory resistance to a degree similar to that observed with cigarette smoke but did not change lambda 0. However, either substance P (SP) or capsaicin injection increased lambda 0 in a fashion similar to that noted with cigarette smoke inhalation. Repeated administration of SP produced a significant tachyphylaxis of the effect, and capsaicin did not increase lambda 0 after the cigarette smoke-induced tachyphylaxis of the effect. Colchicine inhibited the cigarette smoke-induced increase in lambda 0. These results suggest that cigarette smoke increases CM of AM, probably through the release of tachykinins including SP from sensory nerves in the lung.  相似文献   

12.
Goblet cell metaplasia is an important morphological feature in the airways of patients with chronic airway diseases; however, the precise mechanisms that cause this feature are unknown. We investigated the role of endogenous platelet-activating factor (PAF) in airway goblet cell metaplasia induced by cigarette smoke in vivo. Guinea pigs were exposed repeatedly to cigarette smoke for 14 consecutive days. The number of goblet cells in each trachea was determined with Alcian blue-periodic acid-Schiff staining. Differential cell counts and PAF levels in bronchoalveolar lavage fluid were also evaluated. Cigarette smoke exposure significantly increased the number of goblet cells. Eosinophils, neutrophils, and PAF levels in bronchoalveolar lavage fluid were also significantly increased after cigarette smoke. Treatment with a specific PAF receptor antagonist, E-6123, significantly attenuated the increases in the number of airway goblet cells, eosinophils, and neutrophils observed after cigarette smoke exposure. These results suggest that endogenous PAF may play a key role in goblet cell metaplasia induced by cigarette smoke and that potential roles exist for inhibitors of PAF receptor in the treatment of hypersecretory airway diseases.  相似文献   

13.
Cigarette smoking is associated with human cancers. It has been reported that most of the lung cancer deaths are caused by cigarette smoking (5,6,7,12). Although tobacco tars and related products in the particle phase of cigarette smoke are major causes of carcinogenic and mutagenic related diseases, cigarette smoke contains significant amounts of free radicals that are also considered as an important group of carcinogens(9,10). Free radicals attack cell constituents by damaging protein structure, lipids and DNA sequences and increase the risks of developing various types of cancers. Inhaled radicals produce adducts that contribute to many of the negative health effects of tobacco smoke in the lung(3). Studies have been conducted to reduce free radicals in cigarette smoke to decrease risks of the smoking-induced damage. It has been reported that haemoglobin and heme-containing compounds could partially scavenge nitric oxide, reactive oxidants and carcinogenic volatile nitrosocompounds of cigarette smoke(4). A 'bio-filter' consisted of haemoglobin and activated carbon was used to scavenge the free radicals and to remove up to 90% of the free radicals from cigarette smoke(14). However, due to the cost-ineffectiveness, it has not been successfully commercialized. Another study showed good scavenging efficiency of shikonin, a component of Chinese herbal medicine(8). In the present study, we report a protocol for introducing common natural antioxidant extracts into the cigarette filter for scavenging gas phase free radicals in cigarette smoke and measurement of the scavenge effect on gas phase free radicals in mainstream cigarette smoke (MCS) using spin-trapping Electron Spin Resonance (ESR) Spectroscopy(1,2,14). We showed high scavenging capacity of lycopene and grape seed extract which could point to their future application in cigarette filters. An important advantage of these prospective scavengers is that they can be obtained in large quantities from byproducts of tomato or wine industry respectively(11,13).  相似文献   

14.
Smoking is the leading cause of preventable death worldwide. Though cigarette smoke is an established cause of head and neck cancer (including oral cancer), molecular alterations associated with chronic cigarette smoke exposure are poorly studied. To understand the signaling alterations induced by chronic exposure to cigarette smoke, we developed a cell line model by exposing normal oral keratinocytes to cigarette smoke for a period of 12 months. Chronic exposure to cigarette smoke resulted in increased cellular proliferation and invasive ability of oral keratinocytes. Proteomic and phosphoproteomic analyses showed dysregulation of several proteins involved in cellular movement and cytoskeletal reorganization in smoke exposed cells. We observed overexpression and hyperphosphorylation of protein kinase N2 (PKN2) in smoke exposed cells as well as in a panel of head and neck cancer cell lines established from smokers. Silencing of PKN2 resulted in decreased colony formation, invasion and migration in both smoke exposed cells and head and neck cancer cell lines. Our results indicate that PKN2 plays an important role in oncogenic transformation of oral keratinocytes in response to cigarette smoke. The current study provides evidence that PKN2 can act as a potential therapeutic target in head and neck squamous cell carcinoma, especially in patients with a history of smoking.  相似文献   

15.
Prior experiments have shown that the functioning of hamster oviducts is impaired by in vitro exposure to cigarette smoke. To determine if cigarette smoke affects oviductal functioning in vivo, an inhalation experiment was done in which hamsters were exposed to doses of smoke similar to those received by human smokers. The effects of mainstream smoke (the bolus of smoke inhaled by active smokers) and sidestream smoke (the main component in environmental tobacco smoke) were compared. Transport of preimplantation embryos through the hamster oviduct was retarded in females inhaling doses of mainstream or sidestream smoke that produced serum cotinine levels within the range reported for women who actively or passively smoke during pregnancy. In addition, hamster oviductal muscle contraction rate decreased significantly during a single exposure of animals to either mainstream or sidestream smoke, and contraction rate failed to return to initial control values during a 25-min recovery period. Both preimplantation embryo transport and muscle contraction were more sensitive to sidestream than mainstream smoke. These data demonstrate that inhalation of doses of mainstream and sidestream cigarette similar to those received by active and passive human smokers adversely affects functioning of the oviduct and may explain the increased incidence of ectopic pregnancies reported in women who smoke.  相似文献   

16.
Cigarette smoking has been established as a major risk factor for atherosclerosis and also for lung cancer. Nicotine is one of the major components of cigarette smoke which is believed to be partly responsible for the deleterious effect of cigarette smoke. There was significant alteration in the concentration of glycosaminoglycans (GAG) in rats exposed to cigarette smoke. Administration of nicotine to rats has been found to decrease many of GAG fractions in the aorta, liver and heart and increase in the lungs. The increase in GAG now observed in lung tissue in rats administered nicotine and those exposed to cigarette smoke may be involved in the increased incidence of lung cancer in smokers. Increased activity of many of GAG hydrolysing enzymes indicates increased degradation of GAG. Sulphate metabolism in the liver is also significantly altered by nicotine. Thus administration of nicotine to rats caused alteration in the metabolism of GAG which are similar to those observed on exposure of rats to cigarette smoke, indicating that nicotine content of the tobacco smoke may partly be responsible for the effect on GAG observed on exposure to cigarette smoke.  相似文献   

17.
Cigarette smoking causes lung inflammation, and a characteristic of inflammation is an increase in vascular permeability. To determine if cigarette smoke could alter endothelial permeability, we studied flux of radiolabeled albumin across monolayers of porcine pulmonary artery endothelium grown in culture on microporous membranes. Extracts (in either dimethylsulfoxide or phosphate-buffered saline) of cigarette smoke in a range estimate of concentrations simulating cigarette smoke exposure to the lungs in vivo caused a dose-dependent increase in albumin flux that was dependent on extracellular divalent cations and associated with polymerization of cellular actin. The effect was reversible, independent of the surface of endothelial cells exposed (either luminal or abluminal), and due primarily to components of the vapor phase of smoke. The effects occurred without evidence of cell damage, but subtle morphological changes were produced by exposure to the smoke extracts. These findings suggest that cigarette smoke can alter permeability of the lung endothelium through effects on cytoskeletal elements.  相似文献   

18.
Pulmonary tuberculosis (TB), caused by Mycobacterium tuberculosis, is the leading cause of death due to a bacterial pathogen. Emerging epidemiologic evidence suggests that the leading risk factor associated with TB mortality is cigarette smoke exposure. Despite this, it remains poorly understood what is the effect of cigarette smoke exposure on anti-TB immunity and whether its potential detrimental effect can be reversed by cigarette smoking cessation. In our current study, we have investigated the impact of both continuous and discontinuous cigarette smoke exposure on the development of anti-mycobacterial type 1 immunity in murine models. We find that while continuous cigarette smoke exposure severely impairs type 1 immunity in the lung, a short-term smoking cessation allows rapid restoration of anti-mycobacterial immunity. The ability of continuous cigarette smoke exposure to dampen type 1 protective immunity is attributed locally to its affects on innate immune cells in the lung. Continuous cigarette smoke exposure locally, by not systemically, impairs APC accumulation and their production of TNF, IL-12, and RANTES, blunts the recruitment of CD4+IFN-γ+ T cells to the lung, and weakens the formation of granuloma. On the other hand, smoking cessation was found to help restore type 1 immunity by rapidly improving the functionality of lung APCs, enhancing the recruitment of CD4+IFN-γ+ T cells to the lung, and promoting the formation of granuloma. Our study for the first time demonstrates that continuous, but not discontinuous, cigarette smoke exposure severely impedes the lung expression of anti-TB Th1 immunity via inhibiting innate immune activation and lung T cell recruitment. Our findings thus suggest cigarette smoking cessation to be beneficial to the control of pulmonary TB.  相似文献   

19.
研究了多级溶媒提取酸角浸膏,分析了酸角浸膏的主要成分,并进行了卷烟加料试验.加料实验表明卷烟的烟气柔和细腻、香气量增加、刺激降低口感改善;低沸点部分挥发性成分种类和含量明显增加,酒石酸和还原糖含量明显较高,而蛋白质和果胶含量明显较低.  相似文献   

20.
Cigarette smoke has been directly implicated in the disease pathogenesis of a plethora of different human cancer subtypes, including breast cancers. The prevailing view is that cigarette smoke acts as a mutagen and DNA damaging agent in normal epithelial cells, driving tumor initiation. However, its potential negative metabolic effects on the normal stromal microenvironment have been largely ignored. Here, we propose a new mechanism by which carcinogen-rich cigarette smoke may promote cancer growth, by metabolically “fertilizing” the host microenvironment. More specifically, we show that cigarette smoke exposure is indeed sufficient to drive the onset of the cancer-associated fibroblast phenotype via the induction of DNA damage, autophagy and mitophagy in the tumor stroma. In turn, cigarette smoke exposure induces premature aging and mitochondrial dysfunction in stromal fibroblasts, leading to the secretion of high-energy mitochondrial fuels, such as L-lactate and ketone bodies. Hence, cigarette smoke induces catabolism in the local microenvironment, directly fueling oxidative mitochondrial metabolism (OXPHOS) in neighboring epithelial cancer cells, actively promoting anabolic tumor growth. Remarkably, these autophagic-senescent fibroblasts increased breast cancer tumor growth in vivo by up to 4-fold. Importantly, we show that cigarette smoke-induced metabolic reprogramming of the fibroblastic stroma occurs independently of tumor neo-angiogenesis. We discuss the possible implications of our current findings for the prevention of aging-associated human diseases and, especially, common epithelial cancers, as we show that cigarette smoke can systemically accelerate aging in the host microenvironment. Finally, our current findings are consistent with the idea that cigarette smoke induces the “reverse Warburg effect,” thereby fueling “two-compartment tumor metabolism” and oxidative mitochondrial metabolism in epithelial cancer cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号