首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Survival of wampee (Clausena lansium Sksels) axes and maize (Zea mays L.) embryos decreased with rapid and slow dehydration. Damage of wampee axes by rapid dehydration was much less than by slow dehydration, and that was contrary to maize embryos. The malondialdehyde contents of wampee axes and maize embryos rapidly increased with dehydration, those of wampee axes were lower during rapid dehydration than during slow dehydration, and those of maize embryos were higher during rapid dehydration than during slow dehydration. Activities of superoxide dismutsse (SOD), ascorbate peroxidase (APX) and catalase (CAT) of wampee axes markedly increased during the sady phase of dehydration, and then rapidly decreased, and those of rapidly dehydrated axes were higher than those of slow dehydrated axes when they were dehydrated to low water contents. Activities of SOD and APX of maize embryos notable decreased with dehydration. There were higher SOD activities and lower APX activities of slowly dehydrated maize embryos compared with rapidly dehydrated maize embryos. CAT activities of maize embryos markedly increased during the eady phase of dehydration, and then decreased, and those of slowly dehydrated embryos were higher than those of rapidly dehydrated embryos during the late phase of dehydration.  相似文献   

2.
为探讨蝴蝶兰(Phalaenopsis spp.)类原球茎(protocorm-like body,PLB)耐脱水性的主要影响因素,对PLB的平均粒重、含水率、脱水相对湿度、时间、温度、光周期与耐脱水性的关系进行了研究.结果表明,PLB的平均粒重与脱水后失水率、含水率、相对电导率、成活率呈显著或极显著相关.在较高湿度下...  相似文献   

3.
Larvae of the Antarctic midge, Belgica antarctica (Diptera: Chironomidae), are frequently exposed to dehydrating conditions on the Antarctic Peninsula. In this study, we examined how rates and levels of dehydration alter heat and cold tolerance and how these relate to levels of trehalose within the insect. When dehydrated, larvae tolerated cold and heat stress more effectively, although resistance to cold was more pronounced than heat resistance. Slow dehydration was more effective than rapid dehydration in increasing temperature tolerance. Severe dehydration (50% reduction in water content) caused a much greater increase in temperature tolerance than did mild dehydration (e.g. 10% water loss). Larvae severely dehydrated at a slow rate (98% RH) were more temperature tolerant than those dehydrated quickly (0 or 75% RH). These results indicate that the slower dehydration rate allows the larvae to more effectively respond to reduced water levels and that physiological adjustments to desiccation provide cross tolerance to cold and heat. Levels of trehalose increased during dehydration and are likely a major factor increasing subsequent cold and heat resistance. This hypothesis was also supported by experimental results showing that injection of trehalose enhanced resistance to temperature stress and dehydration. We conclude that changes in temperature tolerance in B. antarctica are linked to the rate and severity of dehydration and that trehalose elevation is a probable mechanism enhancing this form of cross tolerance.  相似文献   

4.
The objectives of this study were to investigate and compare the responses of atrial natriuretic peptide (ANP) and B-type natriuretic peptide (BNP) in the circulation of hydrated, dehydrated, and dehydrated losartan - treated camels; and to document the cardiac storage form of B-type natriuretic peptide in the camel heart. Eighteen male camels were used in the study: control or hydrated camels (n = 6), dehydrated camels (n = 6) and dehydrated losartan-treated camels (n = 6) which were dehydrated and received the angiotensin II (Ang II) AT-1 receptor blocker, losartan, at a dose of 5 mg/kg body weight intravenously for 20 days. Control animals were supplied with feed and water ad-libitum while both dehydrated and dehydrated-losartan treated groups were supplied with feed ad-libitum but no water for 20 days. Compared with time-matched controls, dehydrated camels exhibited a significant decrease in plasma levels of both ANP and BNP. Losartan-treated camels also exhibited a significant decline in ANP and BNP levels across 20 days of dehydration but the changes were not different from those seen with dehydration alone. Size exclusion high performance liquid chromatography of extracts of camel heart indicated that proB-type natriuretic peptide is the storage form of the peptide.We conclude first, that dehydration in the camel induces vigorous decrements in circulating levels of ANP and BNP; second, blockade of the renin-angiotensin system has little or no modulatory effect on the ANP and BNP responses to dehydration; third, proB-type natriuretic peptide is the storage form of this hormone in the heart of the one-humped camel.  相似文献   

5.
6.
Permeability of the sheath and cuticle of the infective juveniles (IJs) of Steinernema carpocapsae to glycerol and its effect on biochemical adaptation of the IJs to osmotic dehydration were examined by incubating both sheathed and exsheathed IJs in glycerol-d5 solution then monitoring the changes in levels of deuterium labelled and non-labelled glycerol and trehalose. Energy metabolism of the IJs during osmotic dehydration and subsequent rehydration and the effect of the permeated glycerol on this process were investigated by examining and comparing the changes in mean dry weight and key biochemical composition of the IJs dehydrated in glycerol and sodium chloride solutions. The results show: (1) similarly to evaporative dehydration, osmotic dehydration induces IJs to synthesise the protectants glycerol and trehalose; (2) glycerol permeates the sheath and the cuticle into the body of IJs during dehydration in glycerol solution. Part of the permeated glycerol plays a role as protectant like that synthesised by IJs from their energy reserve materials while part is incorporated into trehalose; (3) the sheath reduces the rate of permeation of glycerol and therefore affects the equilibrium glycerol and trehalose levels of the IJs and also the time needed to reach the equilibrium levels; (4) the reduction in mean dry weight and lipids of the IJs during dehydration in glycerol solution is substantially less than those dehydrated in sodium chloride solution. Both the total protectant level and the ratio of glycerol to trehalose of the IJs dehydrated in glycerol solution are higher than those dehydrated in sodium chloride solution; (5) glycogen reserves of the IJs play a role as a buffer reservoir of the protectants during both dehydration and rehydration but the principal sources of the protectants during dehydration are more likely to be lipids and proteins rather than glycogen.  相似文献   

7.
1. In order to test the hypothesis that peripheral receptors are involved in the control of fluid re-distribution following acute dehydration and rapid rehydration, peripheral rehydrations (oral or intraperitoneal) were compared with central (intrajugular) rehydration. 2. The experiments were carried out with four goats dehydrated to about 20% of their initial mass. 3. Following peripheral rehydration, a higher proportion of water was retained in comparison with central rehydration, and this was related to a more effective kidney retention mechanism, i.e. lower GFR and higher tubular reabsorption. 4. Higher proportions of water were retained in the rumen in the peripheral rehydrations in comparison with the central one apparently due to increased saliva secretion. 5. Thirst saturation was more effective with the peripheral rehydration in comparison with the central one and was related to the amount retained in the rumen and to peripheral blood expansion (or dilution).  相似文献   

8.
A rapid and simple procedure was used for chemical dehydration of plant tissue during sample preparation for light and electron microscopy. Chemically fixed tissues were washed with distilled water and then rapidly dehydrated with either 2,2-dimethoxypropane or 2,2-diethoxypropane for 15 minutes. Light microscopic observation of paraffin-embedded tissue or tissue embedded in Spurr's plastic showed excellent preservation. Electron microscopic examination of plastic-embedded tissue showed well maintained ultrastructural morphology. The dehydration procedure was also successfully applied to plant tissue destined for examination in a scanning electron microscope.  相似文献   

9.
The feasibility of utilizing dehydrated liposomes in the development of a simple immunoassay device for point-of-care diagnostics or field assays was demonstrated. The recovery of liposomes after a cycle of dehydration and rehydration was studied using biotin-tagged, dye-loaded liposomes with antibiotin antibodies immobilized in a defined zone on nitrocellulose strips. Liposomes were vacuum-dehydrated on the strip at a location below the antibiotin zone. The strip was placed in a tube containing a carrier solution and capillary action brought the solution to the dehydrated liposomes, rehydrated them, and caused them to migrate to the antibody zone where intact liposomes were captured and measured optically. High concentrations of either trehalose or sucrose external to the liposomes and both polyvinylpyrrolidone and gelatin in the membrane blocking reagent were essential for preservation of the dehydrated/rehydrated liposomes on nitrocellulose. Between 70 and 80% of the liposomes were recovered on the nitrocellulose strips after a cycle of dehydration and rehydration. The dehydrated liposomes on the strips were stable for at least 1 year when stored in vacuum-sealed plastic bags at 4 degrees C. The technique was successfully applied to the development of a rapid one-step strip immunoassay for biotin.  相似文献   

10.
In order to obtain dry artificial seeds, carrot somatic embryos were encapsulated and dehydrated. Encapsulation in some hydrogels delayed the dehydration and preserved the water content of carrot somatic embryos. In particular, a matrix made of alginate with gellan gum was found to be the most efficient in maintaining a high water activity (aw) around somatic embryos. By delaying dehydration, and also rehydration, encapsulation seemed to protect somatic embryos against desiccation and imbibition damages, giving better germination and emergence of cotyledons. Matrices made of alginate mixed with kaolin or gellan gum were particularly adapted to protect the embryos during the dehydration. Apart from the matrix composition, the control of dehydration speed enhanced the survival and regeneration of encapsulated-dehydrated somatic embryos. Using a slow dehydration protocol (95-15% RH—relative humidity into the chamber—in 11.5 days), it was possible to exert different dehydration speeds. Slowing the dehydration between 70 and 45% RH stabilized the water activity (aw) of the encapsulation matrix, and enhanced the survival and regeneration frequencies of encapsulated-dehydrated embryos. In the absence of any maturing pretreatment, alginate-gellan gum encapsulated carrot somatic embryos, dehydrated to 15% RH, and rehydrated in moistured air (90% RH), germinated up to 72.9%. Therefore, encapsulation in alginate-gellan gum, combined with a slow dehydration, leads to enhance the somatic embryos' desiccation tolerance.  相似文献   

11.
Summary Maize (Zea mays L.) embryogenic type-II calli were grown on medium containing 0,0.1 μM ABA or 60 g/liter sucrose or both before dehydration of solitary somatic embryos under three relative humidity regimes for up to 6 wk. Viability of dehydrated embryos after 2 wk rehydration was assessed by their ability to produce chlorophyll (greening), roots, coleoptiles, and/or leaves. Only embryos sequentially pretreated with ABA and high sucrose remained viable after 2 wk of dehydration at 70% RH. Up to 34% of the somatic embryos survived 2 wk dehydration at 70% RH, whereas embryos dehydrated at 50 or 90% RH exhibited reduced viability (8.7 and 0.8%, respectively). Approximately 15% of the embryos dehydrated at 70% RH developed into plants, whereas 0.9 and 0% of embryos dehydrated at 50 and 90% RH produced plants. Three percent of maize somatic embryos remained viable after 6 wk of dehydration at 70% RH, and 1.7% developed into plants. Embryo size influenced the ability of maize somatic embryos to survive dehydration. Only embryos greater than 5 mm survived 2 wk dehydration at 70% RH.  相似文献   

12.
13.
We sought a technique to preserve lung tissue for micrography with air-space dimensions unchanged from the fresh state. In our hands, conventional techniques were problematical. Aware of the possibility that distortion might be caused by inadequate mechanical fixation of elastin, we dehydrated the still-inflated lung by intravascular perfusion with graded ethanols. Canine and rabbit lungs so prepared had straighter alveolar septa, greater air-space dimensions, and an improved correlation with light-scattering measurements. Bovine ligamentum nuchae (mostly elastin) was only partially fixed by glutaraldehyde or osmium tetroxide but was effectively stiffened by dehydration. We conclude that perfusion dehydration aids in the faithful preservation of parenchymal configuration, probably by mechanical fixation of elastin.  相似文献   

14.
Aims: The frozen and dehydrated state transitions of lactose and trehalose were determined and studied as factors affecting the stability of probiotic bacteria to understand physicochemical aspects of protection against freezing and dehydration of probiotic cultures. Methods and Results: Lactobacillus rhamnosus GG was frozen (–22 or –43°C), freeze‐dried and stored under controlled water vapour pressure (0%, 11%, 23% and 33% relative vapour pressure) conditions. Lactose, trehalose and their mixture (1 : 1) were used as protective media. These systems were confirmed to exhibit relatively similar state transition and water plasticization behaviour in freeze‐concentrated and dehydrated states as determined by differential scanning calorimetry. Ice formation and dehydrated materials were studied using cold‐stage microscopy and scanning electron microscopy. Trehalose and lactose–trehalose gave the most effective protection of cell viability as observed from colony forming units after freezing, dehydration and storage. Enhanced cell viability was observed when the freezing temperature was ?43°C. Conclusions: State transitions of protective media affect ice formation and cell viability in freeze‐drying and storage. Formation of a maximally freeze‐concentrated matrix with entrapped microbial cells is essential in freezing prior to freeze‐drying. Freeze‐drying must retain a solid amorphous state of protectant matrices. Freeze‐dried matrices contain cells entrapped in the protective matrices in the freezing process. The retention of viability during storage seems to be controlled by water plasticization of the protectant matrix and possibly interactions of water with the dehydrated cells. Highest cell viability was obtained in glassy protective media. Significance and Impact of the Study: This study shows that physicochemical properties of protective media affect the stability of dehydrated cultures. Trehalose and lactose may be used in combination, which is particularly important for the stabilization of probiotic bacteria in dairy systems.  相似文献   

15.
Cytological study on water stress during germination of Zea mays   总被引:1,自引:1,他引:0  
Summary Kernels of Zea mays were subjected to dehydration treatment at various times during germination. Embryos from kernels dehydrated during the first 36 h of germination are resistant to dehydration and subsequently germinate earlier than controls. Dehydration of kernels germinated during 72h leads to an irreversible arrest of growth of the embryos. However, autoradiographic observations showed that these embryos are still able to incorporate [3H] uridine and probably [4-5-3H] lysine. Incorporation of [3H] thymidine does not occur. The effect of dehydration on root ultrastructure was studied. In embryos dehydrated after 24 h and 72 h of germination, condensation of chromatin is seen and association of elements of rough endoplasmic reticulum with vacuoles and glyoxysomes can be noted. These changes are reversible in drought-resistant embryos and irreversible in drought-sensitive embryos. However, more notable changes than those seen after 24 h can be observed in embryos dehydrated after 72 h of germination: mitochondria and proplastids can not be distinguished with certainty, glyoxysomes fuse and preferably dispose at the periphery of the cell. Rehydration of drought-sensitive embryos causes breakdown in plasma and nuclear membranes, which leads to the loss of cellular compartimentalization. Moreover, the chromatin remains definitively condensed and has lost its function of genetic regulation.  相似文献   

16.
Boea hygroscopica is a resurrection plant that is able to pass from biosis to anabiosis and vice versa following slow dehydration, but loses this ability following a rapid water loss. Fresh leaves were detached from plants grown in well-watered conditions and subjected to either rapid or slow dehydration and rehydration. Upon rehydration only slowly dried leaves revived. Analysis of thylakoid membranes revealed a rather small amount of total lipids (1,4–2 μmol g?1 dry weight) in comparison with other flowering plants. The main glycolipid was digalactosyldiacylglycerol (DGDG) rather than monogalactosyldiacylglycerol (MGDG) as is common in higher plants. Linoleic acid was the main fatty acid (30–40 mol% of total fatty acids), while linolenic acid was present from 14 to 26 mol%. In both the fresh and rehydrated leaves nearly all lipid components were present in similar amounts. Following dehydration the DGDG/MGDG molar ratio, which was 1.1 in control and rehydrated leaves, doubled by the end of the rapid drying period and was three times as high in slowly dried leaves. The total polar lipid/free sterol molar ratio as well as the free fatty acid level assumed the highest values in the rapidly dehydrated leaves. A shift towards the more unsaturated fatty acids was observed in all lipid classes upon dehydration irrespective of whether it was slow or rapid. Our data show only small differences between rapidly and slowly dehydrated leaves which can be correlated to the capacity of slowly dehydrated leaves to revive.  相似文献   

17.
Giving rats 2.5% saline to drink for 3-5 days simply and reliably generates anorexia. Despite having the neurochemical and hormonal markers of negative energy balance, dehydrated anorexic rats show a marked suppression of spontaneous food intake, as well as the feeding that is usually stimulated by overnight starvation or a 2-deoxy-d-glucose (2DG) challenge. These observations are consistent with a dehydration-dependent inhibition of the core circuitry that controls feeding. We hypothesize that this inhibition is directed at those neurons in the paraventricular nucleus and lateral hypothalamic area that constitute the hypothalamic "behavior controller" for feeding rather than their afferent inputs from the arcuate nucleus or hindbrain that convey critical feeding-related sensory information. To test this hypothesis, we mapped and quantified the Fos-immunoreactive response to 2DG in control and dehydrated rats drinking 2.5% saline. Our rationale was that regions showing an attenuated Fos response to 2DG in dehydrated animals would be strong candidates as the targets of dehydration-induced suppression of 2DG feeding. We found that the Fos response to combined dehydration and 2DG was attenuated only in the lateral hypothalamic area, with dehydration alone increasing Fos in the lateral part of the paraventricular nucleus. In the arcuate nucleus and those regions of the hindbrain that provide afferent inputs critical for the feeding response to 2DG, the Fos response to 2DG was unaffected by dehydration. Therefore, dehydration appears to target the lateral hypothalamic area and possibly the lateral part of the paraventricular nucleus to suppress the feeding response to 2DG.  相似文献   

18.
Evidence in rats suggests that central oxytocin (OT) signaling pathways contribute to suppression of food intake during dehydration (i.e., dehydration anorexia). The present study examined water deprivation-induced dehydration anorexia in wild-type and OT -/- mice. Mice were deprived of food alone (fasted, euhydrated) or were deprived of both food and water (fasted, dehydrated) for 18 h overnight. Fasted wild-type mice consumed significantly less chow during a 60-min refeeding period when dehydrated compared with their intake when euhydrated. Conversely, fasting-induced food intake was slightly but not significantly suppressed by dehydration in OT -/- mice, evidence for attenuated dehydration anorexia. In a separate experiment, mice were deprived of water (but not food) overnight for 18 h; then they were anesthetized and perfused with fixative for immunocytochemical analysis of central Fos expression. Fos was elevated similarly in osmo- and volume-sensitive regions of the basal forebrain and hypothalamus in wild-type and OT -/- mice after water deprivation. OT-positive neurons expressed Fos in dehydrated wild-type mice, and vasopressin-positive neurons were activated to a similar extent in wild-type and OT -/- mice. Conversely, significantly fewer neurons within the hindbrain dorsal vagal complex were activated in OT -/- mice after water deprivation compared with activation in wild-type mice. These findings support the view that OT-containing projections from the hypothalamus to the hindbrain are necessary for the full expression of compensatory behavioral and physiological responses to dehydration.  相似文献   

19.
The manufacture of Shell, Epon-812 (E-812) resin has recently been discontinued. E-812 and two newly introduced E-812 substitutes, the Ladd-112 (LX-112) and the Polysciences, Poly/bed-812 (PB-812) resins, were studied biochemically and morphologically for their effectiveness as polar dehydrants. Their technical properties as general E-812 replacements were also explored. In the biochemical studies, acetone was more effective in retaining lung phospholipid components than ethanol, and resin dehydration was more effective than either acetone or ethanol. There was no appreciable difference in lipid solubility among the three resins. Acetone and uranyl magnesium acetate each had a loosening effect on previously fixed phospholipids. The PB-812 and E-812 resin dehydrated blocks of dense animal tissues, demonstrated serious technical difficulties during sectioning. The L-112 resin substitute, due to its low viscosity and improved infiltration, was found to be technically as effective a dehydrant as ethanol or acetone. None of the three resins was successful as dehydrating agents for the plant tissue. With organic solvent dehydration, both epoxy resin substitutes demonstrated excellent embedment properties with both animal and plant tissues.  相似文献   

20.
R Comtois  S Bertrand  H Beauregard  P Vinay 《CMAJ》1988,139(10):965-969
Dehydrated patients usually present with an elevated serum urea level, owing in part to increased renal reabsorption of urea mediated by antidiuretic hormone (ADH). We carried out a study to examine whether, during dehydration, the variations in the serum urea level could discriminate patients with central diabetes insipidus (CDI) from those with dehydration not due to CDI. We studied retrospectively 27 episodes of dehydration in 23 patients with CDI and 14 episodes in 14 patients without CDI. The mean serum urea level was 2.9 mmol/L in the CDI group and 15.4 mmol/L in the patients without CDI (p less than 0.001); the mean serum sodium level was 155 mmol/L in both groups. All the patients with CDI had a sodium/urea ratio greater than 24.2, whereas the ratio was less than 21.7 in all the patients without CDI. In the patients with CDI a positive correlation was found between the magnitude of diuresis and the percentage decrease in the serum urea level compared with the level before dehydration (p less than 0.001). In the patients with CDI the serum urea level returned to the level before dehydration after the administration of vasopressin; a striking increase in the clearance of urea, which exceeded the creatinine clearance, was observed during dehydration in the three patients in whom clearance studies were done. The results suggest that serum urea values can be used to distinguish patients dehydrated because of CDI from those with hypertonic dehydration but without ADH deficiency and that during dehydration the net reabsorption of urea is dependent on the renal action of ADH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号