首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 15 毫秒
1.
2.
Among plants, pairs of selfing vs. outcrossing sister taxa provide interesting systems in which to test predictions concerning the magnitude and direction of temporal changes in sex allocation. Although resource availability typically declines towards the end of the growing season for annual taxa, temporal changes in mating opportunities depend on mating system and should change less in selfing taxa. Consequently, given that the pollen:ovule (P:O) ratio of flowers reflects the investment in (and potential fitness pay-off due to) male vs. female function, we predicted that the P:O ratio should also be less variable among and within selfers than in closely related outcrossers. To test these predictions, we measured temporal changes in sex allocation in multiple field populations of two pairs of sister taxa in the annual flowering plant genus Clarkia (Onagraceae). In the outcrossing Clarkia unguiculata and the selfing Clarkia exilis, ovule production declined similarly from early to late buds, whereas pollen production remained constant or increased in the outcrosser but remained constant or decreased in the selfer. Consequently, the P:O ratio increased within unguiculata populations but marginally increased or stayed constant in exilis populations. In all populations of the selfing Clarkia xantiana spp. parviflora and the outcrossing C. x. spp. xantiana, both ovule and pollen production per flower declined over time. The effects of these declines on the P:O ratio, however, differed between subspecies. In each xantiana population, the mean P:O ratio did not differ between early and late flowers, although individuals varied greatly in the direction and magnitude of phenotypic change. By contrast, parviflora populations differed in the mean direction of temporal change in the P:O ratio. We found little evidence to support our initial predictions that the P:O ratio of the selfing taxa will consistently vary less than in outcrossing taxa.  相似文献   

3.
Evans JP 《Heredity》2011,106(5):869-875
Ejaculates comprise multiple and potentially interacting traits that determine male fertility and sperm competitiveness. Consequently, selection on these traits is likely to be intense, but the efficacy of selection will depend critically on patterns of genetic variation and covariation underlying their expression. In this study, I provide a prospective quantitative genetic analysis of ejaculate traits in the guppy Poecilia reticulata, a highly promiscuous live-bearing fish. I used a standard paternal half-sibling breeding design to characterize patterns of genetic (co)variation in components of sperm length and in vitro sperm performance. All traits exhibited high levels of phenotypic and additive genetic variation, and in several cases, patterns of genetic variation was consistent with Y-linkage. There were also highly significant negative genetic correlations between the various measures of sperm length and sperm performance. In particular, the length of the sperm's midpiece was strongly, negatively and genetically correlated with sperm's swimming velocity-an important determinant of sperm competitiveness in this and other species. Other components of sperm length, including the flagellum and head, were independently and negatively genetically correlated with the proportion of live sperm in the ejaculate (sperm viability). Whether these relationships represent evolutionary trade-offs depends on the precise relationships between these traits and competitive fertilization rates, which have yet to be fully resolved in this (and indeed most) species. Nevertheless, these prospective analyses point to potential constraints on ejaculate evolution and may explain the high level of phenotypic variability in ejaculate traits in this species.  相似文献   

4.
5.
In hermaphrodite plants, variations in structural gender (defined as the ratio between male and female gametes) may occur at different levels (among flowers, plants, and populations). In this study, we investigated variation in four traits influencing structural gender (number of carpels, ovules per carpel, stamens, and pollen grains per stamen) within and among six distant populations of the hermaphrodite perennial herb Helleborus foetidus (Ranunculaceae) in the Iberian Peninsula. Our results show that the four traits investigated varied significantly at all levels considered. Traits influencing the female sexual component (number of carpels and ovules per carpel) showed greater variation at the lowermost levels (within flower and plant) than traits influencing the male component, which in turn varied more markedly among populations. Number of carpels per flower and number of pollen grains per anther were the most important traits affecting between-plant variation in structural gender. There was no evidence of significant plant-level trade-offs or correlations between the various male and female traits, which covaried differently across populations. The observed between-population variation in structural gender of Helleborus foetidus can be explained as a consequence of differences in self-pollination levels related to a flowers mating environment.  相似文献   

6.
In order to maximize their fitness under Local Mate Competition (LMC), arrhenotokous female wasps have to produce a precise sex ratio when encountering hosts. Recent progress in the theory of hymenopterous parasitoid reproduction suggest that they manage to do it by laying male and female eggs in a particular order and that such reproductive strategies are adaptive. Therefore, the determinism of such sequential patterns would be regulated by genetic control on which natural selection could act. To test this hypothesis, sequences of oviposition were recorded in a set ofTrichogramma brassicae Bezdenko (Hymenoptera; Trichogrammatidae) females and in their daughters by providing themEphestia kuehniella Zeller (Lepidoptera; Pyralidae) eggs. In order to describe accurately sex pattern within these oviposition sequences, I present a joined non-parametric and multivariate statistical method. It is shown thatT. brassicae females do not produce male and female eggs in random sequences. Moreover, the way they organize the sequence of the sexes in their progeny seems to be under a strong genetic control. The evolutionary consequences of such results are discussed.  相似文献   

7.
    
Sex allocation theory has assumed that hermaphroditic species exhibit strong genetically based trade-offs between investment in male and female function. The potential effects of mating system on the evolution of this genetic covariance, however, have not been explored. We have challenged the assumption of a ubiquitous trade-off between male and female investment by arguing that in highly self-fertilizing species, stabilizing natural selection should favor highly efficient ratios of male to female gametes. In flowering plants, the result of such selection would be similar pollen:ovule (P:O) ratios across selfing genotypes, precluding a negative genetic correlation (r(g)) between pollen and ovule production per flower. Moreover, if selfing genotypes with similar P:O ratios differ in total gametic investment per flower, a positive r(g) between pollen and ovule production would be observed. In outcrossers, by contrast, male- and female-biased flowers and genotypes may have equal fitness and coexist at evolutionary equilibrium. In the absence of strong stabilizing selection on the P:O ratio, selection on this trait will be relaxed, resulting in independence or resource-based trade-offs between male and female investment. To test this prediction, we conducted artificial selection on pollen and ovule production per flower in two sister species with contrasting mating systems. The predominantly self-fertilizing species (Clarkia exilis) consistently exhibited a significant positive r(g) between pollen and ovule production while the outcrossing species (C. unguiculata) exhibited either a trade-off or independence between these traits. Clarkia exilis also exhibited much more highly canalized gender expression than C. unguiculata. Selection on pollen and ovule production resulted in little correlated change in the P:O ratio in the selfing exilis, while dramatic changes in the P:O ratio were observed in unguiculata. To test the common prediction that floral attractiveness should be positively genetically correlated with investment in male function, we examined the response of petal area to selection on pollen and ovule production and found that petal area was not consistently genetically correlated with gender expression in either species. Our results suggest that the joint evolutionary trajectory of primary sexual traits in hermaphroditic species will be affected by their mating systems; this should be taken into account in future theoretical and comparative empirical investigations.  相似文献   

8.
Asexual reproduction could offer up to a two‐fold fitness advantage over sexual reproduction, yet higher organisms usually reproduce sexually. Even in facultatively parthenogenetic species, where both sexual and asexual reproduction is sometimes possible, asexual reproduction is rare. Thus, the debate over the evolution of sex has focused on ecological and mutation‐elimination advantages of sex. An alternative explanation for the predominance of sex is that it is difficult for an organism to accomplish asexual reproduction once sexual reproduction has evolved. Difficulty in returning to asexuality could reflect developmental or genetic constraints. Here, we investigate the role of genetic factors in limiting asexual reproduction in Nauphoeta cinerea, an African cockroach with facultative parthenogenesis that nearly always reproduces sexually. We show that when N. cinerea females do reproduce asexually, offspring are genetically identical to their mothers. However, asexual reproduction is limited to a nonrandom subset of the genotypes in the population. Only females that have a high level of heterozygosity are capable of parthenogenetic reproduction and there is a strong familial influence on the ability to reproduce parthenogenetically. Although the mechanism by which genetic variation facilitates asexual reproduction is unknown, we suggest that heterosis may facilitate the switch from producing haploid meiotic eggs to diploid, essentially mitotic, eggs.  相似文献   

9.
10.

Background and Aims

Adaptive explanations for variation in sex allocation centre on variation in resource status and variation in the mating environment. The latter can occur when dichogamy causes siring opportunity to vary across the flowering season. In this study, it is hypothesized that the widespread tendency towards declining fruit-set from first to last flowers on plants can similarly lead to a varying mating environment by causing a temporal shift in the quality (not quantity) of siring opportunities.

Methods

A numerical model was developed to examine the effects of declining fruit-set on the expected male versus female reproductive success (functional gender) of first and last flowers on plants, and of early- and late-flowering plants. Within- and among-plant temporal variation in pollen production, ovule production and fruit-set in 70 Brassica rapa plants was then characterized to determine if trends in male and female investment mirror expected trends in functional gender.

Key Results

Under a wide range of model conditions, functional femaleness decreased sharply in the last flowers on plants, and increased from early- to late-flowering plants in the population. In B. rapa, pollen production decreased more rapidly than ovule production from first to last flowers, leading to a within-plant increase in phenotypic femaleness. Among plants, ovule production decreased from early- to late-flowering plants, causing a temporal decrease in phenotypic femaleness.

Conclusions

The numerical model confirmed that declining fruit-set can drive temporal variation in functional gender, especially among plants. The discrepancy between observed trends in phenotypic gender in B. rapa and expected functional gender predicted by the numerical model does not rule out the possibility that male reproductive success decreases with later flowering onset. If so, plants may experience selection for early flowering through male fitness.  相似文献   

11.
An important issue in evolutionary biology is understanding the pattern of G matrix variation in natural populations. We estimated four G matrices based on the morphological traits of two cricket species, Gryllus firmus and G. pennsylvanicus, each reared in two environments. We used three matrix comparison approaches, including the Flury hierarchy, to improve our ability to perceive all aspects of matrix variation. Our results demonstrate that different methods perceive different aspects of the matrices, which suggests that, until more is known about these methods, future studies should use several different statistical approaches. We also found that the differences in G matrices within a species can be larger than the differences between species. We conclude that the expression of the genetic architecture can vary with the environment and that future studies should compare G matrices across several environments. We also conclude that G matrices can be conserved at the level of closely related species.  相似文献   

12.
BACKGROUND AND AIMS: Eryngium alpinum (Apiaceae) is an endangered perennial, characteristic of the Alpine flora. Because the breeding system influences both demographic (reproductive success) and genetic (inbreeding depression, evolutionary potential) parameters that are crucial for population maintenance, the reproductive ecology of E. alpinum was investigated. Specifically, the aims of the study were (1) to determine the factors (resources and/or pollen) limiting plant fitness; and (2) to assess the potential for gene flow within a plant, within a patch of plants, and across a whole valley where the species is abundant. METHODS: Field experiments were performed at two sites in the Fournel valley, France, over three consecutive years. Studies included a phenological survey, observations of pollinators (visitation rates and flight distances), dispersal of a fluorescent powder used as a pollen analogue, the use of seed traps, determination of the pollen/ovule ratio, and an experiment to test whether seed production is limited by pollen and/or by resources. KEY RESULTS: E. alpinum is pollinated by generalist pollinators, visitation rates are very high and seed set is resource- rather than pollen-limited. The short flights of honeybees indicate a high potential for geitonogamy, and low pollen and seed dispersals suggest strong genetic structure over short distances. These results are interpreted in the light of previous molecular markers studies, which, in contrast, showed complete outcrossing and high genetic homogeneity. CONCLUSION:S. The study highlights the usefulness of adopting several complementary approaches to understanding the dynamic processes at work in natural populations, and the conservation implications for E. alpinum are emphasized. Although the studied populations do not seem threatened in the near future, long-term monitoring appears necessary to assess the impact of habitat fragmentation. Moreover, this study provides useful baseline data for future investigations in smaller and more isolated populations.  相似文献   

13.
Commelina benghalensis L. exhibits variability in both foliar and floral features; every plant bears three types of branches and four types of flowers. The branches are negatively geotropic, positively geotropic and diageotropic. The flowers are uni- or bisexual, chasmogamous and cleistogamous. This variability influences the breeding system as well as resource allocation to male and female functions. The plants allocate c. 15% of their total resources to reproduction, the major part of which (68.9%) is devoted to production of aerial branches. The proportion of reproductive effort (RE) allocated to various branch systems is correlated with the availability of resources at the time of their differentiation. The pollen/ovule (P/O) ratio, female : male biomass ratio and reproductive output vary between different flower and branch types; variation is more pronounced in the latter. These variations notwithstanding, the results are in line with Charnov's sex allocation theory. The cleistogamous flowers of aerial branches are, however, an exception, being male- rather than female-biased. The reason behind the deviation is, in all probability, their recent evolution from chasmogamous flowers.  © 2002 The Linnean Society of London, Botanical Journal of the Linnean Society , 2002, 140 , 403−413.  相似文献   

14.
Background and Aims Evolution of autonomous selfing may be advantageous because it allows for reproductive assurance. In co-flowering plants competing for pollinators, the least common and/or attractive could suffer pollen limitations. Silene niceensis and S. ramosissima are taxonomically related species sharing the same habitat, although S. ramosissima is less abundant and has a more restricted distribution. They also have the same a priori nocturnal pollinator syndrome, and show an overlapping flowering phenology. The aim of this study was to investigate whether a selfing strategy in S. ramosissima allows it to avoid pollinator competition and/or interspecific pollen transfer with S. niceensis, which would thus enable both species to reach high levels of fruit and seed set.Methods The breeding system, petal colour, flower life span and degree of overlap between male and female phases, floral visitor abundance and visitation rates were analysed in two sympatric populations of S. niceensis and S. ramosissima in southern Spain.Key Results Autonomous selfing in S. ramosissima produced very high fruit and seed set, which was also similar to open-pollinated plants. Silene niceensis showed minimum levels of autonomous selfing, and pollen/ovule ratios were within the range expected for the breeding system. In contrast to S. niceensis, flower life span was much shorter in S. ramosissima, and male and female organs completely overlapped in space and time. Upper surface petals of both species showed differing brightness, chroma and hue. Flowers of S. niceensis were actively visited by moths, hawkmoths and syrphids, whereas those of S. ramosissima were almost never visited.Conclusions The findings show that different breeding strategies exist between the sympatric co-flowering S. niceensis and S. ramosissima, the former specializing in crepuscular–nocturnal pollination and the latter mainly based on autonomous selfing. These two strategies allow both species to share the restricted dune habitat in which they exist, with a high female reproductive success due to the absence of pollinator competition and/or interspecific pollen flow.  相似文献   

15.
16.
Brys R  Jacquemyn H 《Annals of botany》2011,107(6):917-925

Background and Aims

Reproductive assurance through autonomous selfing is thought to be one of the main advantages of self-fertilization in plants. Floral mechanisms that ensure autonomous seed set are therefore more likely to occur in species that grow in habitats where pollination is scarce and/or unpredictable.

Methods

Emasculation and pollen supplementation experiments were conducted under laboratory conditions to investigate the capacity for, and timing of autonomous selfing in three closely related Centaurium species (Centaurium erythraea, C. littorale and C. pulchellum). In addition, observations of flower visitors were combined with emasculation and pollen addition experiments in natural populations to investigate the degree of pollinator limitation and pollination failure and to assess the extent to which autonomous selfing conferred reproductive assurance.

Results

All three species were capable of autonomous selfing, although this capacity differed significantly between species (index of autonomous selfing 0·55 ± 0·06, 0·68 ± 0·09 and 0·92 ± 0·03 for C. erythraea, C. littorale and C. pulchellum, respectively). The efficiency and timing of autogamous selfing was primarily associated with differences in the degree of herkogamy and dichogamy. The number of floral visitors showed significant interspecific differences, with 1·6 ± 0·6, 5·4 ± 0·6 and 14·5 ± 2·1 floral visitors within a 2 × 2 m2 plot per 20-min observation period, for C. pulchellum, C. littorale and C. erythraea, respectively. Concomitantly, pollinator failure was highest in C. pulchellum and lowest in C. erythraea. Nonetheless, all three study species showed very low levels of pollen limitation (index of pollen limitation 0·14 ± 0·03, 0·11 ± 0·03 and 0·09 ± 0·02 for C. erythraea, C. littorale and C. pulchellum, respectively), indicating that autonomous selfing may guarantee reproductive assurance.

Conclusions

These findings show that limited availability of pollinators may select for floral traits and plant mating strategies that lead to a system of reproductive assurance via autonomous selfing.  相似文献   

17.
18.
Many social behaviors are conditional, but behavioral comparisonsbetween populations do not normally distinguish genetic andenvironmental causation. As a result, the opportunity to testpredictions about the evolution of strategic conditionality(genotype x environment interaction) is lost. We apply theseconcepts in an examination of how interpopulation differencesin mean and variance of sex ratio have led to genetic differencesin the allocation of male effort to mate guarding versus nonguardingbetween genetically isolated populations of the soapberry bugin Oklahoma and Florida. We observed the mating behavior ofmales from the two populations at a series of experimental sexratios, and modeled their mating decisions as first-order Markovchains of independent mating states. Likelihood ratio testsof these behavioral sequences showed that the populations differedsignificantly in their response to sex ratio, and that onlymales from the variable environment (Oklahoma) altered theirbehavior in response to differences in female availability amongthe treatments. The flexible strategy of this population maybe adaptive and probably has evolved in response to sex ratiovariability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号