首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two strains of Cydia pomonella (L.) (Lepidoptera: Tortricidae) were selected in the lab by exposure to increasing concentrations of diflubenzuron (Rdfb strain) or azinphos-methyl (Raz strain). Insecticide bioassays showed that the adults of the Rdfb strain exhibited a 2.6-fold and a 7.7-fold resistance ratio to azinphos-methyl and carbaryl, respectively compared to a susceptible strain (S) whereas the adults of the Raz strain exhibited a 6.7-fold resistance ratio to azinphos-methyl and a 130-fold resistance ratio to carbaryl. In the Raz strain, a target site resistance mechanism was suggested by the inhibition of acetylcholinesterase (AChE) activity. In fact the ki values did not discriminate the S and Rdfb strains, while the Raz strain exhibited a 1.7-fold and a 14-fold increase in ki value compared to the S strain for azinphos-methyl oxon and carbaryl, respectively. To verify this hypothesis, two cloned AChE cDNAs sequences (named cydpom-ace2 e cydpom-ace1) were compared between the susceptible and the resistant strains. No difference in the deduced amino acid sequence was found in cydpom-ace2 (orthologous to the Drosophila melanogaster AChE). In the putative cydpom-ace1 (paralogous to the Drosophila AChE), a single amino acid substitution F399V was exclusively present in the Raz strain. The F399 lined the active site of the enzyme and the F399V substitution likely could influence the accessibility of different types of inhibitors to the catalytic site of the insensitive cydpom-ace1.  相似文献   

2.
Insensitive acetylcholinesterase (AChE) is involved in the resistance of organophosphorous and carbamate insecticides. We cloned a novel full-length AChE cDNA encoding ace1 gene from adult heads of the diamondback moth (DBM, Plutella xylostella). The ace1 gene encoding 679 amino acids has conserved motifs including catalytic triad, choline-binding site and acyl pocket. Northern blot analysis revealed that the ace1 gene was expressed much higher than the ace2 in all examined body parts. The biochemical properties of expressed AChEs showed substrate specificity for acetylthiocholine iodide and inhibitor specificity for BW284C51 and eserine. Three mutations of AChE1 (D229G, A298S, and G324A) were identified in the prothiofos-resistant strain, two of which (A298S and G324A) were expected to be involved in the prothiofos-resistance through three-dimensional modeling. In vitro functional expression of AChEs in Sf9 cells revealed that only resistant AChE1 is less inhibited with paraoxon, suggesting that resistant AChE1 is responsible for prothiofos-resistance.  相似文献   

3.
We recently reported on a non-neuronal secreted acetylcholinesterase (AChE B) from the nematode parasite Nippostrongylus brasiliensis. Here we describe the primary structure and enzymatic properties of a second secreted variant, termed AChE C after the designation of native AChE isoforms from this parasite. As for the former enzyme, AChE C is truncated at the carboxyl terminus in comparison with the Torpedo AChE, and three of the 14 aromatic residues that line the active site gorge are substituted by nonaromatic residues, corresponding to Tyr70 (Ser), Trp279 (Asn) and Phe288 (Met). A recombinant form of AChE C was highly expressed by Pichia pastoris. The enzyme was monomeric and hydrophilic, and displayed a marked preference for acetylthiocholine as substrate. A double mutation (W302F/W345F, corresponding to positions 290 and 331 in Torpedo) rendered the enzyme 10-fold less sensitive to excess substrate inhibition and two times less susceptible to the bis quaternary inhibitor BW284C51, but did not radically affect substrate specificity or sensitivity to the 'peripheral site' inhibitor propidium iodide. In contrast, a triple mutant (M300G/W302F/W345F) efficiently hydrolysed propionylthiocholine and butyrylthiocholine in addition to acetylthiocholine, while remaining insensitive to the butyrylcholinesterase-specific inhibitor iso-OMPA and displaying a similar profile of excess substrate inhibition as the double mutant. These data highlight a conserved pattern of active site architecture for nematode secreted AChEs characterized to date, and provide an explanation for the substrate specificity that might otherwise appear inconsistent with the primary structure in comparison to other invertebrate AChEs.  相似文献   

4.
Abstract Acetylcholinesterase (AChE) in the susceptible (S) and the resistant (R) strains of housefly (Musca domestica) was investigated using kinetic analysis. The Vmax values of AChE for hydrolyzing acetylthiocholine (ATCh) and butyrylthiocholine (BTCh) were 4578.50 and 1716.08nmol/min/mg* protein in the R strain, and were 1884.75 and 864.72 nmol/min/mg. protein in the Sstrain, respectively. The Vmax ratios of R to S enzyme were 2.43 for ATCh and 1.98 for BTCh. The Km values of AChE for ATCh and BTCh were 0.069 and 0.034 mmol/L in the S strain, and 0.156, 0.059 mmol/L in the R strain, respectively. The Km ratios of R to S enzyme were 2.26 for ATCh and 1.74 for BTCh. The ki ratios of S to R enzyme for three insecticides propoxur, methomyl and paraoxon were 46.04, 4.17 and 2. 86, respectively. In addition, kcat and kcat/Km for measuring turnover and catalytic efficiency of AChE were determined using eserine as titrant. The kcat values of AChE from the R strain for both ATCh and BTCh were higher than those values from the S strain. But the values of kcat/Km were in contrary to the kcat values with R enzyme compared to S enzyme. The AChE catalytic properties and sensitivity to the inhibition by three insecticides in the R and S strains of housefly were discussed based on contribution of Vmax, Km, ki, kcat and kcat/Km. All these data implied that AChE from the R strain might be qualitatively altered. We also observed an intriguing phenomenon that inhibitors could enhance the activity of AChE from the resistant strain. This “flight reaction” of the powerful enzyme might be correlated with the developing resistance of housefly to organophosphate or carbamate insecticides.  相似文献   

5.
The impacts of three codling moth management strategies (i, mating disruption alone; ii, mating disruption plus azinphos-methyl; iii, mating disruption plus fenoxycarb) on some secondary pests and their natural enemies in an apple orchard were compared over two growing seasons: 1993/1994 and 1994/1995. In the absence of azinphos-methyl (strategies i and iii), two-spotted mite ( Tetranychus urticae ) was controlled by Typhlodromus occidentalis and populations of generalist predators (e.g. ladybirds, lacewings and earwigs) increased. The populations of a parasitoid of woolly aphid ( Eriosoma lanigerum ), Aphelinus mali, also increased but not enough to provide adequate control of the aphid. Combined damage caused by lightbrown apple moth ( Epiphyas postvittana ), budworms ( Helicoverpa spp.) and San José scale ( Quadraspidiotus perniciosus ) was significantly higher in the absence of azinphos-methyl in 1994/1995. Beneficial insect populations were not suppressed by fenoxycarb. In 1994/1995, mating disruption plus fenoxycarb produced better control of E. postvittana than mating disruption alone. During transition to an apple integrated pest management program based on codling moth mating disruption, fenoxycarb was shown to be less disruptive to any natural control of secondary pests than azinphos-methyl.  相似文献   

6.
The effects of deposits of commercial formulations of azinphos-methyl, an organophosphorous insecticide and acaricide, and pyrifenox, a systemic fungicide, on artificial surfaces on the survival and reproductive performance of codling moth adults, Cydia pomonella L., were examined in the laboratory. In contrast to pyrifenox, which did not influence the codling moth significantly, azinphos-methyl affected the insect in a number of ways: (1) it exhibited a strong direct insecticidal activity on adults, eggs and larvae; (2) at low concentrations, it decreased copulation significantly, as reflected by a reduction in the number of spermatophores contained per female; and it inhibited oviposition strongly; (3) at low concentrations moths copulated more often initially and produced more eggs than the controls. However, if the moths were kept in contact with the azinphos-methyl residues, they and their progeny died the following day so that the total number of eggs laid was reduced. Possible implications of the stimulatory effects, as well as repellency, of combined use of azinphos-methyl in the phermone mating disruption technique are discussed.  相似文献   

7.
Acetylcholinesterases (AChEs) have been estimated in the infective juveniles (IJs) of eight different strains of heterorhabditid nematodes. The enzyme content ranged from 45.6 to 421.3 units/10(5) IJs with specific activity 34.0 to 82.6 units/mg protein. The isoenzyme patterns revealed the existence of two-slow-moving isoforms. Heterorhabditis bacteriophora AChE1A has been purified from the IJs of the heterorhabditid nematode strain of the highest enzymatic activity to homogeneity by ammonium sulfate precipitation, gel filtration on Sephacryl S-200 and DEAE-Sepharose. The specific activity of the purified enzyme was 1378.1 units/mg protein with purification fold 17.5 over crude extract. The enzyme has a pH optimum at 7.5. The optimum temperature for enzyme activity and stability was 35 degrees C. The activation energy was calculated to be 9.0 kcal/mol. The enzyme hydrolyzes acetylthiocholine (AcSCh), propionylthiocholine (PrSCh), S-butyrylthiocholine (BuSCh) and benzoylthiocholine (BzSCh) iodides with relative rate 100, 74.6, 41.7 and 22.2%, respectively. It displayed an apparent Michaelis-Menten behavior in the concentration range from 0.1 to 2 mM for the three former substrates with Km values 0.27, 0.42 and 0.59 mM, respectively. H. bacteriophora ChE1A is an AChE since it hydrolyzed AcSChI at higher rate than the other substrates and displayed excess substrate inhibition with AcSChI at concentrations over 2 mM. It was inhibited by eserine and BW284C51, but not by iso-OMPA. Its biochemical properties were compared with those reported for different species of insects as target hosts for heterorhabditid nematodes and animal parasitic nematodes.  相似文献   

8.
小菜蛾对杀螟丹抗性遗传的研究   总被引:17,自引:3,他引:14  
利用室内选育的抗杀螟丹小菜蛾Plutella xylostella (L.)品系和敏感品系研究了该品系的抗性遗传形式,结果表明,小菜蛾对杀螟丹的抗性形式为常染色体多基因遗传,并呈不完全显性。该品系对6种常用杀虫剂的抗性谱测定结果表明,对杀虫双有较严重的正交互抗性;对敌敌畏、杀扑磷有低度交互抗性;对溴氰菊酯、灭多威和叶蝉散等药剂无交互抗性。还发现该品系对杀螟丹的抗性与乙酰胆碱酯酶和羧酸酯酶活性无关。  相似文献   

9.
Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) are thought to be the result of a gene duplication event early in vertebrate evolution. To learn more about the evolution of these enzymes, we expressed in vitro, characterized, and modeled a recombinant cholinesterase (ChE) from a teleost, the medaka Oryzias latipes. In addition to AChE, O. latipes has a ChE that is different from either vertebrate AChE or BChE, which we are classifying as an atypical BChE, and which may resemble a transitional form between the two. Of the fourteen aromatic amino acids in the catalytic gorge of vertebrate AChE, ten are conserved in the atypical BChE of O. latipes; by contrast, only eight are conserved in vertebrate BChE. Notably, the atypical BChE has one phenylalanine in its acyl pocket, while AChE has two and BChE none. These substitutions could account for the intermediate nature of this atypical BChE. Molecular modeling supports this proposal. The atypical BChE hydrolyzes acetylthiocholine (ATCh) and propionylthiocholine (PTCh) preferentially but butyrylthiocholine (BTCh) to a considerable extent, which is different from the substrate specificity of AChE or BChE. The enzyme shows substrate inhibition with the two smaller substrates but not with the larger substrate BTCh. In comparison, AChE exhibits substrate inhibition, while BChE does not, but may instead show substrate activation. The atypical BChE from O. latipes also shows a mixed pattern of inhibition. It is effectively inhibited by physostigmine, typical of all ChEs. However, although the atypical BChE is efficiently inhibited by the BChE-specific inhibitor ethopropazine, it is not by another BChE inhibitor, iso-OMPA, nor by the AChE-specific inhibitor BW284c51. The atypical BChE is found as a glycophosphatidylinositol-anchored (GPI-anchored) amphiphilic dimer (G(2) (a)), which is unusual for any BChE. We classify the enzyme as an atypical BChE and discuss its implications for the evolution of AChE and BChE and for ecotoxicology.  相似文献   

10.
Fasciculin 2 (FAS), an acetylcholinesterase (AChE) peripheral site ligand that inhibits mammalian AChE in the picomolar range and chicken AChE only at micromolar concentrations, was used in chick retinal cell cultures to evaluate the influence of AChE on neuronal development. The effects of other AChE inhibitors that bind the active and/or the peripheral site of the enzyme [paraoxon, eserine, or 1,5-bis(4-allyldimethylammoniumphenyl) pentan-3-one dibromide (BW284c51)] were also studied. Morphological changes of cultured neurons were observed with the drugs used and in the different cell culture systems studied. Cell aggregates size decreased by more than 35% in diameter after 9 days of FAS treatment, mainly due to reduction in the presumptive plexiform area of the aggregates. Eserine showed no effect on the morphology of the aggregates, although it fully inhibited the activity of AChE. In dense stationary cell culture, cluster formation increased after 3 days and 6 days of FAS treatment. However, FAS, at concentrations in which changes of morphological parameters were observed, did not inhibit the AChE activity as measured histochemically. In contrast, paraoxon treatment produced a slight morphological alteration of the cultures, while a strong inhibition of enzyme activity caused by this agent was observed. BW284c51 showed a harmful, probably toxic effect, also causing a slight AChE inhibition. It is suggested that the effect of an anticholinesterase agent on the morphological modifications of cultured neurons is not necessarily associated with the intensity of the AChE inhibition, especially in the case of FAS. Moreover, most of the effects of AChE on culture morphology appear to be independent of the cholinolytic activity of the enzyme. The results obtained demonstrate that FAS is not toxic for the cells and suggest that regions of the AChE molecule related to the enzyme peripheral site are likely to be involved with the nonclassical role of AChE.  相似文献   

11.
The occurrence of codling moth populations in European apple orchards that were not controlled by Cydia pomonella granulovirus (CpGV) is the first reported case of field resistance against a baculovirus control agent. A monogenic dominant sex-linked mode of inheritance was previously demonstrated in single-pair crosses between a homogeneous resistant (CpRR1) and a susceptible (CpS) laboratory strain of codling moth. However, resistant field populations (CpR) are more heterogeneous in their levels of resistance, and the possibility that they could harbor different resistance genes to CpRR1 had not been directly addressed. Here we report single pair crossing experiments using a resistant codling moth strain collected from an apple orchard in the southwest of Germany. Single-pair crosses within the field strain revealed a genetic basis to the heterogeneity of CpR concerning CpGV resistance. Hybrid crosses to a susceptible laboratory strain and backcrosses of the F1 generation to the resistant CpR strain confirmed that the homogeneous CpRR1 and the heterogeneous field strain CpR share the same mode of inheritance. Thus the variable levels of CpGV resistance in field populations is likely due to frequency differences of the same resistance-conferring gene, rather than different genes, which will facilitate future efforts to monitor and manage resistance.  相似文献   

12.
Regular applications of insecticides have been the main management practice against codling moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae) in Chile. Organophosphates are the most widely used insecticides, and azinphos-methyl is an important element in spray programs. In particular, we evaluated diagnostic doses of azinphos-methyl on neonate and postdiapausing larvae from seven apple (Malus spp.) orchards. We also evaluated the activity of detoxifying enzymes, such as glutathione S-transferases (GSTs), cytochrome P450 polysubstrate monooxygenases (PSMOs), and esterases, which are likely to be involved in resistance to insecticides. Such responses were compared with an insecticide-susceptible strain that has been maintained in the laboratory for several years. Neonate larval mortality of field populations to azinphos-methyl was not significantly different from of the susceptible strain. In contrast, postdiapause larval mortality was significantly lower in the six analyzed populations than in the susceptible strain. The C. pomonella populations with reduced postdiapause mortality to azinphos-methyl also showed statistically higher GST activity. Finally, no significant differences were found in total esterase or PSMO activity between C. pomonella populations. Therefore, the observed reduction in postdiapause larval mortality to azinphos-methyl seems to be associated with an increase in GST activity.  相似文献   

13.
Acetylcholinesterase (AChE) in the echinoid Lytechinus variegatus has been characterized. Kinetic parameters V(max), K(m), K(ss), and b were 2594+/-1048 nmol ATCh hydrolyzed/min/mg tissue wet weight, 185+/-11 microM, 308+/-100 mM, and 0.2, respectively for the substrate ATCh and 17.8+/-6.87 nmol BTCh hydrolyzed/min/mg tissue wet weight, 654+/-424 microM, 36+/-31 mM, and 0.6, respectively for BTCh. Pharmacologic analyses were performed with four inhibitors of cholinesterases, physostigmine, BW284c51, ethopropazine, and iso-OMPA, and yielded IC(50) values of 106+/-4 nM, 718+/-118 nM, 2.57+/-0.6 mM, and >0.0300 M, respectively. Both kinetic and pharmacologic results confirmed the existence of AChE in larval L. variegatus. Dimeric and tetrameric globular forms (determined by velocity sedimentation on sucrose gradients) were present in L. variegatus larvae. Activity of AChE increased significantly as larvae progressed in development from embryos to eight-arm larvae. Acetylcholinesterase activity of F1 larvae derived from sea urchins collected from wild populations and of F1 larvae derived from sea urchins cultured in the laboratory and fed two different diets suggest that the nutritional and/or environmental history of the adult sea urchin affect the developmental progression of AChE activity in the F1 offspring.  相似文献   

14.
Acetylcholinesterases (AChEs) and their genes from susceptible and resistant insects have been extensively studied to understand the molecular basis of target site insensitivity. Due to the existence of other resistance mechanisms, however, it can be problematic to correlate directly a mutation with the resistant phenotype. An alternative approach involves recombinant expression and characterization of highly purified wild-type and mutant AChEs, which serves as a reliable platform for studying structure–function relationships. We expressed the catalytic domain of Anopheles gambiae AChE1 (r-AgAChE1) using the baculovirus system and purified it 2,500-fold from the conditioned medium to near homogeneity. While KM's of r-AgAChE1 were comparable for ATC, AβMTC, PTC, and BTC, Vmax's were substantially different. The IC50's for eserine, carbaryl, paraoxon, BW284C51, malaoxon, and ethopropazine were 8.3, 72.5, 83.6, 199, 328, and 6.59 × 104 nM, respectively. We determined kinetic constants for inhibition of r-AgAChE1 by four of these compounds. The enzyme bound eserine or paraoxon stronger than carbaryl or malaoxon. Because the covalent modification of r-AgAChE1 by eserine occurred faster than that by the other compounds, eserine is more potent than paraoxon, carbaryl, and malaoxon. Furthermore, we found that choline inhibited r-AgAChE1, a phenomenon related to the enzyme activity decrease at high concentrations of acetylcholine.  相似文献   

15.
Cholinesterases present homologies with some cell adhesion molecules; however, it is unclear whether and how they perform adhesive functions. Here, we provide the first direct evidence showing that neurite growth in vitro from various neuronal tissues of the chick embryo can be modified by some, but not all, anticholinesterase agents. By quantifying the neuritic G4 antigen in tectal cell cultures, the effect of anticholinesterases on neurite growth is directly compared with their cholinesterase inhibitory action. BW 284C51 and ethopropazine, inhibiting acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), respectively, strongly decrease neurite growth in a dose-dependent manner. However, echothiophate which inhibits both cholinesterases, does not change neuritic growth. These quantitative data are supplemented by morphological observations in retinal explant cultures grown on striped laminin carpets, viz., defasciculation of neurite bundles by BW 284C51 and Bambuterol occurs, indicating that these drugs disturb adhesive mechanisms. These data strongly suggest that a) cholinesterases can participate in regulating axonal growth, b) both AChE and BChE can perform such a nonsynaptic function, and c) this function is not the result of the enzyme activity per se, since at least one drug was found that inhibits all cholinesterase activities but not neurite growth. Thus, a secondary site on cholinesterase molecules must be responsible for adhesive functions.  相似文献   

16.
An acetylcholinesterase (AChE, EC 3.1.1.7) was purified from the greenbug, Schizaphis graminum (Rondani). The maximum velocities (Vmax) for hydrolyzing acetylthiocholine (ATC), acetyl-(beta-methyl) thiocholine (AbetaMTC), propionylthiocholine, and S-butyrylthiocholine were 78.0, 67.0, 37.4, and 2.3 micromol/min/mg, and the Michaelis constants (Km) were 57.6, 60.6, 31.3, and 33.4 microM, respectively. More than 98% of AChE activity was inhibited by 10 microM eserine or BW284C51, but only 7% of the activity was inhibited by ethopropazine at the same concentration. Based on the substrate and inhibitor specificities, the purified enzyme appeared to be a true AChE. Nondenaturing polyacrylamide gel electrophoresis (PAGE) and isoelectric focusing of the purified AChE revealed three molecular forms. The isoelectric points were 7.3 for the major form and 6.3 and 7.1 for two minor forms. The major form of purified AChE showed molecular masses of 129 kDa for its native protein and 72 kDa for its subunits on SDS-PAGE. However, the purified AChE exhibited some distinctive characteristics including: (1) lack of affinity to the affinity ligand 3-(carboxyphenyl) ethyldimethyl ammonium, which has been used widely in purification of AChE from various insect species; and (2) 20-200-fold higher substrate-inhibition thresholds for ATC and AbetaMTC than AChE from other insect species. These biochemical properties may reflect structural differences of AChE purified from the greenbug compared with that from other insect species.  相似文献   

17.
Summary The phylo- and ontogenetically related enzymes butyrylcholinesterase (BChE) and acetylcholinesterase (AChE) are expressed consecutively at the onset of avian neuronal differentiation. In order to investigate their possible co-regulation, we have studied the effect of highly selective inhibitors on each of the cholinesterases with respect to their expression in rotary cultures of the retina (retinospheroids) and stationary cultures of the embryonic chick tectum. Adding the irreversible BChE inhibitor iso-OMPA to reaggregating retinal cells has only slight morphological effects and fully inhibits BChE expression. Unexpectedly, iso-OMPA also suppresses the expression of AChE to 35%–60% of its control activity. Histochemically, this inhibition is most pronounced in fibrous regions. The release of AChE into the media of both types of cultures is inhibited by iso-OMPA by more than 85%. Control experiments show that AChE suppression by the BChE inhibitor is only partially explainable by direct cross-inhibition of iso-OMPA on AChE. In contrast, the treatment of retinospheroids with the reversible AChE inhibitor BW284C51 first accelerates the expression of AChE and then leads to a rapid decay of the spheroids. After injection of BW284C51 into living embryos, we find that AChE is expressed prematurely in cells that normally express BChE. We conclude that the cellular expression of AChE is regulated by the amount of both active BChE and active AChE within neuronal tissues. Thus, direct interaction with classical cholinergic systems is indicated for the seemingly redundant BChE.  相似文献   

18.
Mating disruption alone and mating disruption supplemented with limited applications of either azinphos-methyl or fenoxycarb was evaluated in 0.11–0.30 ha plots for the control of codling moth Cydia pomonella (L.) (Tortricidae: Olethreutinae) populations.Where populations were low, mating disruption alone was sufficient to keep codling moth damage levels below 1% at harvest. Low was defined as no more than 0.2% damage at harvest and fewer than 1.3 larvae/metre of trap band from January–March inclusive in the previous season. Neither mating disruption alone nor when supplemented with azinphos-methyl or fenoxycarb during the first spring generation gave commercially acceptable levels of control in other than low density populations. Small plot size may have contributed to the failures.At the high density site unintentional supplementary control provided by drift of azinphos-methyl from border areas to which it was applied throughout the season gave excellent control in the first year and suggested an interaction between low dosages of insecticide and pheromone treatments that enhanced the disruptive effect of the latter.  相似文献   

19.
Organophosphate insecticides are very widely used in commercial apple production to control fruit-attacking pests but their broad-spectrum activity constrains biological control of other pests. Compounds with narrow-spectrum activity are therefore desirable. The insect growth regulator (IGR) tebufenozide was compared with another IGR, fenoxycarb, and the organophosphate, azinphos-methyl, in a replicated field trial in the 1994/1995 apple-production season. Vacuum sampling of the tree foliage on five occasions during the growing season showed significantly lower populations of various natural enemies (spiders, lacewings and the specialist mite predator Stethorus spp. adults and larvae) in the azinphos-methyl treatment than in either of the two IGR treatments. The two-spotted mite ( Tetranychus urticae Koch) was most numerous in the azinphos-methyl treatment. In 1995/1996, the entire trial area was placed under a tebufenozide treatment program to determine the extent to which natural enemy populations would recover when broad-spectrum insecticide (azinphos-methyl) use was halted. Populations of polyphagous natural enemies assumed levels broadly equivalent to those observed under IGR treatments the previous year. Numbers of Stethorus spp. were lower than in the 1994/1995 season, possibly because T. urticae (prey) populations were much reduced from the previous season's densities. All three insecticide treatments were equally effective in controlling the lepidopteran pests, codling moth ( Cydia pomonella (L.)), lightbrown apple moth ( Epiphyas postvittana (Walker)) and early season caterpillars (predominantly Helicoverpa punctigera (Wallengren)). Results indicate that tebufenozide provides good control of lepidopteran pests, while allowing the rapid build-up of natural enemies which contribute to control of other pests.  相似文献   

20.
Abstract The substrate specificity and developmental changes of acetylcholinesterase (AChE) of cotton bollworm, Helicoverpa armigera Hübner, were investigated during 1991 to 1994. The insects were collected from Handan suburbs of Hebei Province and Guan County of Shandong Province. The results show that the specific activity and Michaelis constants (km) of AChE toward acetylthiocholine (ATCH) and acetyl-β-methyl-thiocholine (MeTCh) regularly varied with the developmental stage of cotton bollworm. The two peaks of the specific activity were observed respectively in the third instar and sixth instar of larvae. The specific activity of AChE in pupae was the lowest and that in heads of four-days moth was the highest in various developmental stages of cotton bollworms. The tendency of Km and maximum velocity (Vmax) was identical with the change of specific activity in the AChEs of cotton bollworm. The activation energy (Ea) of AChE toward MeTCh in pupae and adults was 3. 9–4. 3 times as much as that of, larvae in cotton bollworms from Handan of Hebei Province. It suggests that the spending energies of AChE for hydrolysing substrate are different in larva, pupa and adult. The optimum conditions of AChE reaction with ATCh in larvae were 50–100 mg of tissue weights for the amount of enzyme, 10–20 minutes for the reaction time, 35°C for the reaction temperature and 8. 0 for the reaction pH value.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号