首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Kaerner A  Rabenstein DL 《Biochemistry》1999,38(17):5459-5470
alpha-Conotoxin GI is a 13 residue snail toxin peptide cross-linked by Cys2-Cys7 and Cys3-Cys13 disulfide bridges. The formation of the two disulfide bonds by thiol/disulfide exchange with oxidized glutathione (GSSG) has been characterized. To characterize formation of the first disulfide bond in each of the two pathways by which the two disulfide bonds can form, two model peptides were synthesized in which Cys3 and Cys13 (Cono-1) or Cys2 and Cys7 (Cono-2) were replaced by alanines. Equilibrium constants were determined for formation of the single disulfide bonds of Cono-1 and Cono-2, and an overall equilibrium constant was measured for formation of the two disulfide bonds of alpha-conotoxin GI in pH 7.00 buffer and in pH 7. 00 buffer plus 8 M urea using concentrations obtained by HPLC analysis of equilibrium thiol/disulfide exchange reaction mixtures. The results indicate a modest amount of cooperativity in the formation of the second disulfide bond in both of the two-step pathways by which alpha-conotoxin GI folds into its native structure at pH 7.00. However, when considered in terms of the reactive thiolate species, the results indicate substantial cooperativity in formation of the second disulfide bond. The solution conformational and structural properties of Cono-1, Cono-2, and alpha-conotoxin GI were studied by 1H NMR to identify structural features which might facilitate formation of the disulfide bonds or are induced by formation of the disulfide bonds. The NMR data indicate that both Cono-1 and Cono-2 have some secondary structure in solution, including some of the same secondary structure as alpha-conotoxin GI, which facilitates formation of the second disulfide bond by thiol/disulfide exchange. However, both Cono-1 and Cono-2 are considerably less structured than alpha-conotoxin GI, which indicates that formation of the second disulfide bond to give the Cys2-Cys7, Cys3-Cys13 pairing induces considerable structure into the backbone of the peptide.  相似文献   

2.
Kersteen EA  Barrows SR  Raines RT 《Biochemistry》2005,44(36):12168-12178
Protein disulfide isomerase (PDI) catalyzes the rearrangement of nonnative disulfide bonds in the endoplasmic reticulum of eukaryotic cells, a process that often limits the rate at which polypeptide chains fold into a native protein conformation. The mechanism of the reaction catalyzed by PDI is unclear. In assays involving protein substrates, the reaction appears to involve the complete reduction of some or all of its nonnative disulfide bonds followed by oxidation of the resulting dithiols. The substrates in these assays are, however, heterogeneous, which complicates mechanistic analyses. Here, we report the first analysis of disulfide bond isomerization in a homogeneous substrate. Our substrate is based on tachyplesin I, a 17-mer peptide that folds into a beta hairpin stabilized by two disulfide bonds. We describe the chemical synthesis of a variant of tachyplesin I in which its two disulfide bonds are in a nonnative state and side chains near its N and C terminus contain a fluorescence donor (tryptophan) and acceptor (N(epsilon)-dansyllysine). Fluorescence resonance energy transfer from 280 to 465 nm increases by 28-fold upon isomerization of the disulfide bonds into their native state (which has a lower E(o') = -0.313 V than does PDI). We use this continuous assay to analyze catalysis by wild-type human PDI and a variant in which the C-terminal cysteine residue within each Cys-Gly-His-Cys active site is replaced with alanine. We find that wild-type PDI catalyzes the isomerization of the substrate with kcat/K(M) = 1.7 x 10(5) M(-1) s(-1), which is the largest value yet reported for catalysis of disulfide bond isomerization. The variant, which is a poor catalyst of disulfide bond reduction and dithiol oxidation, retains virtually all of the activity of wild-type PDI in catalysis of disulfide bond isomerization. Thus, the C-terminal cysteine residues play an insignificant role in the isomerization of the disulfide bonds in nonnative tachyplesin I. We conclude that catalysis of disulfide bond isomerization by PDI does not necessarily involve a cycle of substrate reduction/oxidation.  相似文献   

3.
K H Mok  K H Han 《Biochemistry》1999,38(37):11895-11904
The three-dimensional solution conformation of an 11-residue antitoxic analogue of alpha-conotoxin GI, des-Glu1-[Cys3Ala]-des-Cys13-conotoxin GI (CANPACGRHYS-NH(2), designated "GI-15" henceforth), has been determined using two-dimensional (1)H NMR spectroscopy. The disulfide loop region (1C-6C) and the C-terminal tail (8R-11S) are connected by a flexible hinge formed near 7G, and the pairwise backbone rmsds for the former and the latter are 0.58 and 0.65 A, respectively. Superpositioning GI-15 with the structure of alpha-conotoxin GI shows that the two share an essentially identical fold in the common first disulfide loop region (1C-6C). However, the absence of the second disulfide loop in GI-15 results in segmental motion of the C-terminal half, causing the key receptor subtype selectivity residue 8R (Arg9 in alpha-conotoxin GI) to lose its native spatial orientation. The combined features of structural equivalence in the disulfide loop and a mobile C-terminal tail appear to be responsible for the activity of GI-15 as a competitive antagonist against native toxin. Electrostatic surface potential comparisons of the first disulfide region of GI-15 with other alpha-conotoxins or receptor-bound states of acetylcholine and d-tubocurarine show a common protruding surface that may serve as the minimal binding determinant for the neuromuscular acetylcholine receptor alpha 1-subunit. On the basis of the original "Conus toxin macrosite model" [Olivera, B. M., Rivier, J., Scott, J. K., Hillyard, D. R., and Cruz, L. J. (1991) J. Biol. Chem. 266, 1923-1936], we propose a revised binding model which incorporates these results.  相似文献   

4.
Tritium-labeled alpha-conotoxin G1 with a molar radioactivity of 35 Ci/mmol and full biological activity (according to the binding to nicotinic acetylcholine receptor) was obtained by the high-temperature solid-state catalytic isotope exchange (HSCIE). The tritium distribution in the molecule of alpha-conotoxin G1 was revealed by 3H NMR spectroscopy. Tritium was found in all amino acid residues except for the Asn4-Pro5-Ala6 fragment. The data on the comparative reactivity of C-H bonds, the ab initio quantum-chemical calculation of the hydrogen exchange reaction, and the information on the spatial structures of alpha-conotoxin G1 in solution and in crystal state allowed us to establish that the reactivity of H atoms may be increased by their interaction with the electron donor O and N atoms at the transition state of the HSCIE reaction. A decrease in the rate of the HSCIE reaction could be caused by both a poor spatial accessibility of C-H bonds and a limited mobility of the peptide fragment containing these bonds.  相似文献   

5.
Sulfhydryl oxidase isolated from bovine skim milk membrane vesicles catalyzes de novo formation of disulfide bonds with the substrates cysteine, cysteine-containing peptides, and reduced proteins using molecular oxygen as the electron acceptor. Initial rates for sulfhydryl oxidase-catalyzed oxidation of reduced ribonuclease exhibited typical Michaelis-Menten kinetics at low substrate concentrations. Substrate inhibition of the oxidative activity was observed at ribonuclease concentrations greater than 40 microM, similar to that observed with reduced glutathione or other small thiol substrates. The inhibition was more pronounced when ribonuclease activity was used to monitor the rates, presumably due to concentration-dependent formation of nonnative disulfide bonds. Thus, a maximum in the rate of regain of ribonuclease activity was observed at a 40 microM concentration, while optimum recovery was observed at 30 microM. The Michaelis constant obtained with reduced ribonuclease is 17.4 microM which corresponds to a sulfhydryl concentration of 0.14 mM, a value that compares favorably with the best small thiol substrate, reduced glutathione. Disulfide-containing intermediates in the oxidation pathway, as determined by ion-exchange chromatography of alkylated reaction mixtures, appeared to be similar for air oxidation and enzyme-catalyzed oxidation of the protein. The pH optimum, tissue location, and kinetic characteristics of sulfhydryl oxidase are compatible with a suggested physiological function of direct catalysis of disulfide bond formation in secretory proteins or indirect participation through provision of oxidized glutathione for protein disulfide-isomerase-catalyzed thiol/disulfide interchange.  相似文献   

6.
Methods are reported for the unambiguous syntheses of all three possible disulfide regioisomers with the sequence of alpha-conotoxin SI, a tridecapeptide amide from marine cone snail venom that binds selectively to the muscle subtype of nicotinic acetylcholine receptors. The naturally occurring peptide has two 'interlocking' disulfide bridges connecting Cys2-Cys7 and Cys3-Cys13 (2/7&3/13), while in the two mispaired isomers the disulfide bridges connect Cys2-Cys13 and Cys3-Cys7 (2/13 & 3/7, 'nested') and Cys2-Cys3 and Cys7-Cys13 (2/3 & 7/13, 'discrete'), respectively. Alignment of disulfide bridges was controlled at the level of orthogonal protection schemes for the linear precursors, assembled by Fmoc solid-phase peptide synthesis on acidolyzable tris(alkoxy)benzylamide (PAL) supports. Side-chain protection of cysteine was provided by suitable pairwise combination of the S-9H-xanthen-9-yl (Xan) and S-acetamidomethyl (Acm) protecting groups. The first disulfide bridge was formed from the corresponding bis(thiol) precursor obtained by selective deprotection of S-Xan, and the second disulfide bridge was formed by orthogonal co-oxidation of S-Acm groups on the remaining two Cys residues. It was possible to achieve the desired alignments with either order of loop formation (smaller loop before larger, or vice versa). The highest overall yields were obtained when both disulfides were formed in solution, while experiments where either the first or both bridges were formed while the peptide was on the solid support revealed lower overall yields and poorer selectivities towards the desired isomers.  相似文献   

7.
A high resolution structure of alpha-conotoxin EI has been determined by (1)H NMR spectroscopy and molecular modeling. alpha-Conotoxin EI has the same disulfide framework as alpha 4/7 conotoxins targeting neuronal nicotinic acetylcholine receptors but antagonizes the neuromuscular receptor as do the alpha 3/5 and alpha A conotoxins. The unique binding preference of alpha-conotoxin EI to the alpha(1)/delta subunit interface of Torpedo neuromuscular receptor makes it a valuable structural template for superposition of various alpha-conotoxins possessing distinct receptor subtype specificities. Structural comparison of alpha-conotoxin EI with the gamma-subunit favoring alpha-conotoxin GI suggests that the Torpedo delta-subunit preference of the former originates from its second loop. Superposition of three-dimensional structures of seven alpha-conotoxins reveals that the estimated size of the toxin-binding pocket in nicotinic acetylcholine receptor is approximately 20 A (height) x 20 A (width) x 15 A (thickness).  相似文献   

8.
The hexapeptide dimer (H-Hcy-Glu-His-Phe-D-Lys-Phe-OH)2 was synthesized using solution methods and characterized. Its conversion into H-Met(O2)-Glu-His-Phe-D-Lys-Phe-OH, Org 2766, was studied on a small scale in as short a time as possible; reduction of the disulfide bond using Na/NH3, reaction with CH3I, oxidation with H2O2 and catalyst and purification by HPLC were carried out starting with 2 mg of the dimer in a total preparation time of approximately 22 min, starting with the addition of CH3I. The preparation of the 11C-labelled analogue was carried out by methylation with 11CH3I. Restrictions imposed by working with carbon-11 will be discussed.  相似文献   

9.
A new database search algorithm has been developed to identify disulfide-linked peptides in tandem MS data sets. The algorithm is included in the newly developed tandem MS database search program, MassMatrix. The algorithm exploits the probabilistic scoring model in MassMatrix to achieve identification of disulfide bonds in proteins and peptides. Proteins and peptides with disulfide bonds can be identified with high confidence without chemical reduction or other derivatization. The approach was tested on peptide and protein standards with known disulfide bonds. All disulfide bonds in the standard set were identified by MassMatrix. The algorithm was further tested on bovine pancreatic ribonuclease A (RNaseA). The 4 native disulfide bonds in RNaseA were detected by MassMatrix with multiple validated peptide matches for each disulfide bond with high statistical scores. Fifteen nonnative disulfide bonds were also observed in the protein digest under basic conditions (pH = 8.0) due to disulfide bond interchange. After minimizing the disulfide bond interchange (pH = 6.0) during digestion, only one nonnative disulfide bond was observed. The MassMatrix algorithm offers an additional approach for the discovery of disulfide bond from tandem mass spectrometry data.  相似文献   

10.
The putative receptor-binding region of human transforming growth factor-alpha (TGF alpha) has been shown to be contributed by two fragments: an A-chain (residue 12-18) and a 17-residue carboxyl fragment (residue 34-50) that includes a disulfide-containing C-loop (residue 34-43). An approach to the synthesis of two-chain analogs containing an intermolecular disulfide linked A-chain and the 17-residue carboxyl fragment (C-fragment) possessing receptor-binding activity is described. The synthesis was achieved by the solid-phase method using the Boc-benzyl protecting group strategy. The single Cys of the A-chain was activated as a mixed disulfide with 2-thiopyridine to form the intermolecular disulfide bond with Cys41 or Cys46 of the C-fragment on the resin support. Prior to this reaction, the acetamido (Acm) protecting group of Cys41 or Cys46 was removed by Hg(OAc)2 on the resin support. The peptide and side chain protecting groups including the S-methylbenzyl moiety of the Cys34 and Cys43 were concomitantly cleaved by high HF. The intramolecular disulfide with two unprotected Cys was formed in the presence of an intermolecular disulfide. This intramolecular disulfide bond formation was usually not feasible under the traditionally-held scheme at basic pH since disulfide interchange would occur faster than intramolecular oxidation. To prevent the disulfide interchange, a new method was devised. The intramolecular disulfide bond oxidation was mediated by dimethylsulfoxide at an acidic pH, at which the disulfide interchange reaction was suppressed. The desired product was obtained with a 60-70% yield.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
We report the stabilization of the human IgG1 Fc fragment by engineered intradomain disulfide bonds. One of these bonds, which connects the N-terminus of the CH3 domain with the F-strand, led to an increase of the melting temperature of this domain by 10°C as compared to the CH3 domain in the context of the wild-type Fc region. Another engineered disulfide bond, which connects the BC loop of the CH3 domain with the D-strand, resulted in an increase of T(m) of 5°C. Combined in one molecule, both intradomain disulfide bonds led to an increase of the T(m) of about 15°C. All of these mutations had no impact on the thermal stability of the CH2 domain. Importantly, the binding of neonatal Fc receptor was also not influenced by the mutations. Overall, the stabilized CH3 domains described in this report provide an excellent basic scaffold for the engineering of Fc fragments for antigen-binding or other desired additional or improved properties. Additionally, we have introduced the intradomain disulfide bonds into an IgG Fc fragment engineered in C-terminal loops of the CH3 domain for binding to Her2/neu, and observed an increase of the T(m) of the CH3 domain for 7.5°C for CysP4, 15.5°C for CysP2 and 19°C for the CysP2 and CysP4 disulfide bonds combined in one molecule.  相似文献   

12.
We describe the stabilization of human IgG1 Fc by an engineered interdomain disulfide bond at the C-terminal end of the molecule. Covalently interconnecting the C-termini of the CH(3) domains led to an increase of the melting temperatures by 5.6 and 9.1°C respectively as compared to CH(3) domains in the context of the wild-type Fc. Combined with a recently described additional intradomain disulfide bond, both novel disulfide bonds led to an increase of the Tm by about 18.1°C to 100.7°C. The interdomain disulfide bond had no impact on the thermal stability of the CH(2) domain. Far- and near-UV CD spectroscopy showed very similar overall CD profiles, indicating that secondary and tertiary structure of the Fc was not negatively affected. When introduced into an Fc fragment that had been engineered to bind to Her2/neu via a novel antigen binding site located at the C-terminus of the CH(3) domain, the novel inter- and intra-domain bonds also brought about a significant increase in thermostability. Using them in combination, the Tm of the CH(3) domain was raised by 18°C and thus restored to the Tm of the wild-type CH(3) domain. Importantly, antigen binding of the modified Fc was not affected by the engineered disulfide bonds.  相似文献   

13.
The nuclear magnetic resonance solution structure of alpha-conotoxin SI has been determined at pH 4.2. The 36 lowest energy structures show that alpha-conotoxin SI exists in a single major solution conformation and is stabilized by six hydrogen bonds. Comparisons are made between the SI solution structure and the solution and crystal structures of alpha-conotoxin GI. Surprisingly, a high degree of similarity between the backbone conformations of the GI crystal and the SI solution structures is seen in the region of lowest sequence homology, namely residues Gly-8 to Ser-12. This similarity is more surprising when considering that in SI a proline replaces the Arg-9 found in GI. The correspondence in conformation in this region provides the definitive evidence that it is the loss of the arginine basic charge at residue 9 which determines the differences in toxicity between GI and SI, rather than any changes in conformation induced by the cyclic proline residue.  相似文献   

14.
In the rice (Oryza sativa) endosperm, storage proteins are synthesized on the rough endoplasmic reticulum (ER), in which prolamins are sorted to protein bodies (PBs) called type-I PB (PB-I). Protein disulfide isomerase (PDI) family oxidoreductase PDIL2;3, an ortholog of human P5, contains a conserved structural disulfide in the redox-inactive thioredoxin-like (TRX) domain and was efficiently targeted to the surface of PB-I in a redox active site-dependent manner, whereas PDIL1;1, an ortholog of human PDI, was localized in the ER lumen. Complementation analyses using PDIL1;1 knockout esp2 mutant indicated that the a and a' TRX domains of PDIL1;1 exhibited similar redox activities and that PDIL2;3 was unable to perform the PDIL1;1 functions. PDIL2;3 knockdown inhibited the accumulation of Cys-rich 10-kD prolamin (crP10) in the core of PB-I. Conversely, crP10 knockdown dispersed PDIL2;3 into the ER lumen. Glutathione S-transferase-PDIL2;3 formed a stable tetramer when it was expressed in Escherichia coli, and the recombinant PDIL2;3 tetramer facilitated α-globulin(C79F) mutant protein to form nonnative intermolecular disulfide bonds in vitro. These results indicate that PDIL2;3 and PDIL1;1 are not functionally redundant in sulfhydryl oxidations of structurally diverse storage proteins and play distinct roles in PB development. We discuss PDIL2;3-dependent and PDIL2;3-independent oxidation pathways that sustain disulfide bonds of crP10 in PB-I.  相似文献   

15.
To study the importance of individual sulfhydryl residues during the folding and assembly in vivo of influenza virus hemagglutinin (HA), we have constructed and expressed a series of mutant HA proteins in which cysteines involved in three disulfide bonds have been substituted by serine residues. Investigations of the structure and intracellular transport of the mutant proteins indicate that (a) cysteine residues in the ectodomain are essential both for efficient folding of HA and for stabilization of the folded molecule; (b) cysteine residues in the globular portion of the ectodomain are likely to form native disulfide bonds rapidly and directly, without involvement of intermediate, nonnative linkages; and (c) cysteine residues in the stalk portion of the ectodomain also appear not to form intermediate disulfide bonds, even though they have the opportunity to do so, being separated from their correct partners by hundreds of amino acids including two or more other sulfhydryl residues. We propose a role for the cellular protein BiP in shielding the cysteine residues of the stalk domain during the folding process, thus preventing them from forming intermediate, nonnative disulfide bonds.  相似文献   

16.
Treatment of the phosphoramidite [myo-C(6)H(6)-2-[OC(O)Ph]-1,3,5-(O(3)CH)-4,6-(O(2)P-NH-i-Pr)] with o-chloranil affords the first example of inositol-based pentacoordinate phosphorane [myo-C(6)H(6)-2-[OC(O)Ph]-1,3,5-(O(3)CH)-4,6-(O(2)P-NH-i-Pr)(1,2-O(2)C(6)Cl(4))] (9) (X-ray structure) with a trigonal bipyramidal geometry at phosphorus. The six-membered 1,3,2-dioxaphosphorinane ring with the inositol residue has an unusual boat conformation in 9 which is quite different from that found in unrestrained rings investigated before, but is similar to that of its P(III) chloro precursor [myo-C(6)H(6)-2-[OC(O)Ph]-1,3,5-(O(3)CH)-4,6-(O(2)PCl)] (X-ray structure). Also, a convenient and chromatography-free procedure for the protected myo-inositol derivative [myo-C(6)H(6)-2-[OC(O)Ph]-1,3,5-(O(3)CH)-4,6-(OH)(2)] is reported.  相似文献   

17.
We synthesized and characterized new chimera peptides by inserting an epitope of the mucin 1 glycoprotein (MUC1) as a 'guest' sequence in the 'host' structure of alpha-conotoxin GI, a 13-residue peptide (ECCNPACGRHYSC) isolated from the venom of Conus geographus. The Pro-Asp-Thr-Arg (PDTR) sequence of MUC1 selected for these studies is highly hydrophilic and adopts a beta-turn conformation. The alpha-conotoxin GI also contains a beta-turn in the 8-12 region, which is stabilized by two disulphide bridges in positions 2-7 and 3-13. Thus, the tetramer sequence of alpha-conotoxin, Arg9-His-Tyr-Ser12, has been replaced by PDTR, comprising the minimal epitope for MUC1 specific monoclonal antibodies (MAbs) HMFG1 (PDTR) and HMFG2 (DTR). Synthesis of the chimera peptide was carried out by Fmoc strategy on (4-(2',4'-dimethoxyphenyl-aminomethyl)phenoxy) (Rink) resin and either 5,5'-dithio-bis-(2-nitrobenzoic acid) (DTNB) or air oxidation was applied for the formation of the first Cys3-Cys13 or Cys2-Cys7 disulphide bridge, respectively. For the second disulphide bridge, three different oxidation procedures (iodine in acetic acid, 10% DMSO/1 M HCl or tallium trifluoroacetate (Tl(tfa)3) in TFA) were utilized. The HPLC purified peptides were characterized by electrospray mass spectrometry (ES-MS) and amino acid analysis. The CD spectra of the bicyclic MUC1-alpha-[Tyr1]-conotoxin chimera peptide showed partially ordered conformation with turn character. In antibody binding studies, the RIA data showed that both the linear and the bicyclic forms of MUC1-alpha-[Tyr1]-conotoxin chimera were recognized by MAb HMFG1 specific for PDTR sequence, while no binding was observed between MAb HMFG2 and various forms of the chimera. MAb HMFG1, using synthetic epitope conjugates or native MUC1 as target antigens, recognizes the PDTR motif more efficiently in the linear than in the bicyclic compound, but no reactivity was found with the monocyclic forms of MUC1-alpha-[Tyr1]-conotoxin chimera, underlining the importance of certain conformers stabilized by double cyclization.  相似文献   

18.
The oxidative refolding of ribonuclease A has been investigated in several experimental conditions using a variety of redox systems. All these studies agree that the formation of disulfide bonds during the process occurs through a nonrandom mechanism with a preferential coupling of certain cysteine residues. We have previously demonstrated that in the presence of glutathione the refolding process occurs through the reiteration of two sequential reactions: a mixed disulfide with glutathione is produced first which evolves to form an intramolecular S-S bond. In the same experimental conditions, protein disulfide isomerase (PDI) was shown to catalyze formation and reduction of mixed disulfides with glutathione as well as formation of intramolecular S-S bonds. This paper reports the structural characterization of the one-disulfide intermediate population during the oxidative refolding of Ribonuclease A under the presence of PDI and glutathione with the aim of defining the role of the enzyme at the early stages of the reaction. The one-disulfide intermediate population occurring at the early stages of both the uncatalyzed and the PDI-catalyzed refolding was purified and structurally characterized by proteolytic digestion followed by MALDI-MS and LC/ESIMS analyses. In the uncatalyzed refolding, a total of 12 disulfide bonds out of the 28 theoretical possible cysteine couplings was observed, confirming a nonrandom distribution of native and nonnative disulfide bonds. Under the presence of PDI, only two additional nonnative disulfides were detected. Semiquantitative LC/ESIMS analysis of the distribution of the S-S bridged peptides showed that the most abundant species were equally populated in both the uncatalyzed and the catalyzed process. This paper shows the first structural characterization of the one-disulfide intermediate population formed transiently during the refolding of ribonuclease A in quasi-physiological conditions that mimic those present in the ER lumen. At the early stages of the process, three of the four native disulfides are detected, whereas the Cys26-Cys84 pairing is absent. Most of the nonnative disulfide bonds identified are formed by nearest-neighboring cysteines. The presence of PDI does not significantly alter the distribution of S-S bonds, suggesting that the ensemble of single-disulfide species is formed under thermodynamic control.  相似文献   

19.
The S-acetamidomethyl (Acm) protecting group is widely used in the chemical synthesis of peptides that contain one or more disulfide bonds. Treatment of peptides containing S-Acm protecting group with iodine results in simultaneous removal of the sulfhydryl protecting group and disulfide formation. However, the excess iodine needs to be quenched or adsorbed as quickly as possible after completion of the disulfide bond formation in order to minimize side reactions that are often associated with the iodination step. We report a simple method for simultaneous post-cysteine (Acm) group removal quenching of iodination and isolation. Use of large volumes of diethyl ether for direct precipitation action of the oxidized peptide from the 90 or 95% aqueous acetic acid solution affords nearly quantitative recovery of largely iodine-free peptide ready for direct purification. It was successfully applied to the synthesis of various peptides including human insulin-like peptide 3 analogues. Although recovery yields were comparable to the traditionally used ascorbic acid quenching method, this new approach offers significant advantages such as more simple utility, minimal side reactions, and greater cost effectiveness.  相似文献   

20.
A four-step procedure for homologation of methyl alpha-D-mannofuranoside and alpha-D-mannopyranoside was examined. The reactions consisted in (i) oxidation of the terminal hydroxymethyl group in a protected sugar derivative to an aldehyde; (ii) reaction with allyloxymethylmagnesium chloride (or (phenyldimethyl)silylmethyl-magnesium chloride); (iii) protection of the newly formed secondary alcohol group; (iv) deprotection of the terminal CH(2)OR (or oxidation of the CH(2)SiMe(2)Ph) group. From methyl alpha-D-mannosides, stereoisomeric DalphaD and LalphaD methyl heptosides and from them, methyl octosides of D-threo- and L-erythro-alpha-D-manno configuration were obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号