首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Primary ciliary dyskinesia (PCD) is an autosomal recessive disease characterized by chronic sinusitis and bronchiectasis, and usually associated with hypofertility. Half of the patients present a situs inversus, defining the Kartagener's syndrome. This phenotype results from axonemal abnormalities of respiratory cilia and sperm flagella, i.e., mainly an absence of dynein arms. Recently, a candidate-gene approach, based on documented abnormalities of immotile strains of Chlamydomonas reinhardtii, allowed us to identify the first gene involved in PCD. Following the same strategy, we have characterized DNAI2, a human gene related to Chlamzydomonas IC69, and evaluated its possible involvement in a PCD population characterized by an absence of outer dynein arms. DNAI2, which is composed of 14 exons located at 17q25, is highly expressed in trachea and testis. No mutation was found in the DNAI2 coding sequence of the twelve patients investigated. However, ten intragenic polymorphic sites and an EcoRI RFLP have been identified, allowing the exclusion of DNAI2 in three consanguineous families.  相似文献   

2.
...The limbs on the right side are stronger. [The] cause may be ... [that] ... motion, and abilities of moving, are somewhat holpen from the liver, which lieth on the right side. (Sir Francis Bacon, Sylva sylvarum (1627).)Fifty per cent of people with primary ciliary dyskinesia (PCD) (also known as immotile cilia syndrome or Siewert-Kartagener syndrome) have situs inversus, which is thought to result from absent nodal ciliary rotation and failure of normal symmetry breaking. In a study of 88 people with PCD, only 15.2% of 46 individuals with situs inversus, and 14.3% of 42 individuals with situs solitus, were left handed. Because cerebral lateralization is therefore still present, the nodal cilia cannot be the primary mechanism responsible for symmetry breaking in the vertebrate body. Intriguingly, one behavioural lateralization, wearing a wrist-watch on the right wrist, did correlate with situs inversus.  相似文献   

3.
Primary ciliary dyskinesia (PCD) is a group of heterogeneous disorders of unknown origin, usually inherited as an autosomal recessive trait. Its phenotype is characterized by axonemal abnormalities of respiratory cilia and sperm tails leading to bronchiectasis and sinusitis, which are sometimes associated with situs inversus (Kartagener syndrome) and male sterility. The main ciliary defect in PCD is an absence of dynein arms. We have isolated the first gene involved in PCD, using a candidate-gene approach developed on the basis of documented abnormalities of immotile strains of Chlamydomonas reinhardtii, which carry axonemal ultrastructural defects reminiscent of PCD. Taking advantage of the evolutionary conservation of genes encoding axonemal proteins, we have isolated a human sequence (DNAI1) related to IC78, a C. reinhardtii gene encoding a dynein intermediate chain in which mutations are associated with the absence of outer dynein arms. DNAI1 is highly expressed in trachea and testis and is composed of 20 exons located at 9p13-p21. Two loss-of-function mutations of DNAI1 have been identified in a patient with PCD characterized by immotile respiratory cilia lacking outer dynein arms. In addition, we excluded linkage between this gene and similar PCD phenotypes in five other affected families, providing a clear demonstration of locus heterogeneity. These data reveal the critical role of DNAI1 in the development of human axonemal structures and open up new means for identification of additional genes involved in related developmental defects.  相似文献   

4.
Primary ciliary dyskinesia (PCD) results from ciliary dysfunction and is commonly characterized by sinusitis, male infertility, hydrocephalus, and situs inversus. Mice homozygous for the nm1054 mutation develop phenotypes associated with PCD. On certain genetic backgrounds, homozygous mutants die perinatally from severe hydrocephalus, while mice on other backgrounds have an accumulation of mucus in the sinus cavity and male infertility. Mutant sperm lack mature flagella, while respiratory epithelial cilia are present but beat at a slower frequency than wild-type cilia. Transgenic rescue demonstrates that the PCD in nm1054 mutants results from the loss of a single gene encoding the novel primary ciliary dyskinesia protein 1 (Pcdp1). The Pcdp1 gene is expressed in spermatogenic cells and motile ciliated epithelial cells. Immunohistochemistry shows that Pcdp1 protein localizes to sperm flagella and the cilia of respiratory epithelial cells and brain ependymal cells in both mice and humans. This study demonstrates that Pcdp1 plays an important role in ciliary and flagellar biogenesis and motility, making the nm1054 mutant a useful model for studying the molecular genetics and pathogenesis of PCD.  相似文献   

5.
6.
7.
Primary ciliary dyskinesia (PCD) is a genetically heterogeneous, autosomal-recessive disorder, characterized by oto-sino-pulmonary disease and situs abnormalities. PCD-causing mutations have been identified in 14 genes, but they collectively account for only 60% of all PCD. To identify mutations that cause PCD, we performed exome sequencing on six unrelated probands with ciliary outer dynein arm (ODA) defects. Mutations in CCDC114, an ortholog of the Chlamydomonas reinhardtii motility gene DCC2, were identified in a family with two affected siblings. Sanger sequencing of 67 additional individuals with PCD with ODA defects from 58 families revealed CCDC114 mutations in 4 individuals in 3 families. All 6 individuals with CCDC114 mutations had characteristic oto-sino-pulmonary disease, but none had situs abnormalities. In the remaining 5 individuals with PCD who underwent exome sequencing, we identified mutations in two genes (DNAI2, DNAH5) known to cause PCD, including an Ashkenazi Jewish founder mutation in DNAI2. These results revealed that mutations in CCDC114 are a cause of ciliary dysmotility and PCD and further demonstrate the utility of exome sequencing to identify genetic causes in heterogeneous recessive disorders.  相似文献   

8.

Background

Mutations in the DNAI1 gene, encoding a component of outer dynein arms of the ciliary apparatus, are the second most important genetic cause of primary ciliary dyskinesia (PCD), the genetically heterogeneous recessive disorder with the prevalence of ~1/20,000. The estimates of the DNAI1 involvement in PCD pathogenesis differ among the reported studies, ranging from 4% to 10%.

Methods

The coding sequence of DNAI1 was screened (SSCP analysis and direct sequencing) in a group of PCD patients (157 families, 185 affected individuals), the first ever studied large cohort of PCD patients of Slavic origin (mostly Polish); multiplex ligation-dependent probe amplification (MLPA) analysis was performed in a subset of ~80 families.

Results

Three previously reported mutations (IVS1+2-3insT, L513P and A538T) and two novel missense substitutions (C388Y and G515S) were identified in 12 families (i.e. ~8% of non-related Polish PCD patients). The structure of background SNP haplotypes indicated common origin of each of the two most frequent mutations, IVS1+2-3insT and A538T. MLPA analysis did not reveal any significant differences between patients and control samples. The Polish cohort was compared with all the previously studied PCD groups (a total of 487 families): IVS1+2-3insT remained the most prevalent pathogenetic change in DNAI1 (54% of the mutations identified worldwide), and the increased global prevalence of A538T (14%) was due to the contribution of the Polish cohort.

Conclusions

The worldwide involvement of DNAI1 mutations in PCD pathogenesis in families not preselected for ODA defects ranges from 7 to 10%; this global estimate as well as the mutation profile differs in specific populations. Analysis of the background SNP haplotypes suggests that the increased frequency of chromosomes carrying A538T mutations in Polish patients may reflects local (Polish or Slavic) founder effect. Results of the MLPA analysis indicate that no large exonic deletions are involved in PCD pathogenesis.  相似文献   

9.
H. -D. Rott 《Human genetics》1979,46(3):249-261
Summary Kartagener's syndrome (KS) is a hereditary disease with typical symptoms of situs inversus, bronchiectasis, and chronic infections of the nasal mucosa. Autosomal recessive inheritance cannot be doubted on account of repeated observations of affected sibs and parental cansanguinity. The bronchopulmonary symptoms in sibs, however, cannot be explained by this mode of inheritance.Recent clinical findings and electron microscope investigations suggest that KS is a special form of manifestation within the immotile cilia syndrome. This disease combines the typical bronchial and nasal symptoms of KS with sterility in the male due to immotile sperm tails and, as a facultative symptom, situs inversus. Thus, sibs with bronchiectasis but without situs inversus are also classified under this syndrome. The symptoms mentioned are caused by an abnormal morphology of bronchial cilia and sperm tails, which can be demonstrated by electron microscopy. The dynein arms normally attached to the nine microtubular doublets and providing a normal ciliary movement are lacking.It is assumed that during early embryonic life ciliary beats in the growing embryo determine the type of laterality. When ciliary movements are absent laterality may develop fortuitously, thus effecting a situs inversus in about half the affected cases. The numerical evaluation of pedigrees from the literature supports this assumption.  相似文献   

10.
Primary ciliary dyskinesia (PCD) is a rare autosomal-recessive disease manifested with recurrent infections of respiratory tract and infertility. DNAAF3 is identified as a novel gene associated with PCD and different mutations in DNAAF3 results in different clinical features of PCD patients, such as situs inversus, sinusitis and bronchiectasis. However, the sperm phenotypic characteristics of PCD males are generally poorly investigated. Our reproductive medicine centre received a case of PCD patient with infertility, who presented with sinusitis, recurrent infections of the lower airway and severe asthenozoospermia; However, no situs inversus was found in the patient. A novel homozygous mutation in DNAAF3(c.551T>A; p.V184E) was identified in the PCD patient by whole-exome sequencing. Subsequent Sanger sequencing further confirmed that the DNAAF3 had a homozygous missense variant in the fifth exon. Transmission electron microscopy and immunostaining analysis of the sperms from the patient showed a complete absence of outer dynein arms and partial absence of inner dynein arms, which resulted in the reduction in sperm motility. However, this infertility was overcome by intracytoplasmic sperm injections, as his wife achieved successful pregnancy. These findings showed that the PCD-associated pathogenic mutation within DNAAF3 also causes severe asthenozoospermia and male infertility ultimately due to sperm flagella axoneme defect in humans. Our study not only contributes to understand the sperm phenotypic characteristics of patients with DNAAF3 mutations but also expands the spectrum of DNAAF3 mutations and may contribute to the genetic diagnosis and therapy for infertile patient with PCD.  相似文献   

11.
Primary ciliary dyskinesia: genes, candidate genes and chromosomal regions   总被引:9,自引:0,他引:9  
Primary ciliary dyskinesia (PCD) is a multisystem disease characterized by recurrent respiratory tract infections, sinusitis, bronchiectasis and male subfertility, associated in about 50% patients with situs inversus totalis (the Kartagener syndrome). The disease phenotype is caused by ultrastructural defects of respiratory cilia and sperm tails. PCD is a heterogenetic disorder, usually inherited as an autosomal recessive trait. So far, mutations in two human genes have been proved to cause the disease. However, the pathogenetics of most PCD cases remains unsolved. In this review, the disease pathomechanism is discussed along with the genes that are or may be involved in the pathogenesis of primary ciliary dyskinesia and the Kartagener syndrome.  相似文献   

12.
A recessive mutation in the mouse, situs inversus viscerum (iv), results in randomization of organ position along the left-right body axis: approximately 50% of the progeny of homozygous matings exhibit situs solitus and 50% exhibit situs inversus. Recent studies have established genetic linkage between iv and the immunoglobulin heavy chain gene complex (Igh-C), located on distal mouse chromosome 12. In the present study, we have refined the genetic map location of iv relative to the breakpoint of a reciprocal translocation, T(5;12)31H, involving the telomeric region of chromosome 12 distal to Igh-C and the proximal region of chromosome 5. The translocation results in a large 12(5) derivative chromosome and a small 5(12) derivative chromosome. Because mice with either monosomy or tertiary trisomy for the 5(12) chromosomal region are viable, duplication/deficiency mapping is possible. Deficiency mapping was performed by mating iv/iv homozygotes and T31H heterozygotes. Two animals monosomic for distal mouse chromosome 12 were produced. One of the animals with cytogenetically confirmed monosomy for distal chromosome 12 exhibited situs inversus, indicating that the iv mutation is located at or distal to the T31H breakpoint. For duplication analysis, matings were initially carried out between iv/iv homozygotes and unbalanced T31H animals trisomic for distal chromosome 12. Cytogenetically verified tertiary trisomic progeny were identified and backcrossed with iv/iv homozygotes. The resulting trisomic progeny, 50% of which are expected to carry the iv mutation on both cytogenetically normal copies of chromosome 12, were scored for phenotype.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Primary ciliary dyskinesia (PCD) is a heterogeneous autosomal recessive disease that is caused by impaired ciliary and flagellar functions. About 50% of PCD patients show situs inversus, denoted as Kartagener syndrome. In most cases, axonemal defects in cilia and sperm tails can be demonstrated by electron microscopy, i.e. PCD patients often lack inner and/or outer dynein arms in their sperm tails and cilia, supporting the hypothesis that mutations in dynein genes may cause PCD. In order to identify novel PCD genes we have isolated the human ortholog of the murine TCTE3 gene. The human TCTE3 gene encodes a dynein light chain and shares high similarity to dynein light chains of other species. The TCTE3 gene is expressed in tissues containing cilia or flagella, it is composed of four exons and located on chromosome 6q25-->q27. To elucidate the role of TCTE3 as a candidate gene for PCD a mutational analysis of thirty-six PCD patients was performed. We detected five polymorphisms in the coding sequence and in the 5' UTR of the TCTE3 gene. In one patient a heterozygous nucleotide exchange was identified resulting in an arginine to isoleucine substitution at the amino acid level. However, this exchange was also detected in one control DNA. Our results indicate that mutations in the TCTE3 gene are not a main cause of primary ciliary dyskinesia.  相似文献   

14.
Heterotaxy, a birth defect involving left-right patterning defects, and primary ciliary dyskinesia (PCD), a sinopulmonary disease with dyskinetic/immotile cilia in the airway are seemingly disparate diseases. However, they have an overlapping genetic etiology involving mutations in cilia genes, a reflection of the common requirement for motile cilia in left-right patterning and airway clearance. While PCD is a monogenic recessive disorder, heterotaxy has a more complex, largely non-monogenic etiology. In this study, we show mutations in the novel dynein gene DNAH6 can cause heterotaxy and ciliary dysfunction similar to PCD. We provide the first evidence that trans-heterozygous interactions between DNAH6 and other PCD genes potentially can cause heterotaxy. DNAH6 was initially identified as a candidate heterotaxy/PCD gene by filtering exome-sequencing data from 25 heterotaxy patients stratified by whether they have airway motile cilia defects. dnah6 morpholino knockdown in zebrafish disrupted motile cilia in Kupffer’s vesicle required for left-right patterning and caused heterotaxy with abnormal cardiac/gut looping. Similarly DNAH6 shRNA knockdown disrupted motile cilia in human and mouse respiratory epithelia. Notably a heterotaxy patient harboring heterozygous DNAH6 mutation was identified to also carry a rare heterozygous PCD-causing DNAI1 mutation, suggesting a DNAH6/DNAI1 trans-heterozygous interaction. Furthermore, sequencing of 149 additional heterotaxy patients showed 5 of 6 patients with heterozygous DNAH6 mutations also had heterozygous mutations in DNAH5 or other PCD genes. We functionally assayed for DNAH6/DNAH5 and DNAH6/DNAI1 trans-heterozygous interactions using subthreshold double-morpholino knockdown in zebrafish and showed this caused heterotaxy. Similarly, subthreshold siRNA knockdown of Dnah6 in heterozygous Dnah5 or Dnai1 mutant mouse respiratory epithelia disrupted motile cilia function. Together, these findings support an oligogenic disease model with broad relevance for further interrogating the genetic etiology of human ciliopathies.  相似文献   

15.
Complex congenital heart disease (CHD) is often seen in conjunction with heterotaxy, the randomization of left-right visceral organ situs. However, the link between cardiovascular morphogenesis and left-right patterning is not well understood. To elucidate the role of left-right patterning in cardiovascular development, we examined situs anomalies and CHD in mice with a loss of function allele of Dnaic1, a dynein protein required for motile cilia function and left-right patterning. Dnaic1 mutants were found to have nodal cilia required for left-right patterning, but they were immotile. Half the mutants had concordant organ situs comprising situs solitus or mirror symmetric situs inversus. The remaining half had randomized organ situs or heterotaxy. Looping of the heart tube, the first anatomical lateralization, showed abnormal L-loop bias rather than the expected D-loop orientation in heterotaxy and nonheterotaxy mutants. Situs solitus/inversus mutants were viable with mild or no defects consisting of azygos continuation and/or ventricular septal defects, whereas all heterotaxy mutants had complex CHD. In heterotaxy mutants, but not situs solitus/inversus mutants, the morphological left ventricle was thin and often associated with a hypoplastic transverse aortic arch. Thus, in conclusion, Dnaic1 mutants can achieve situs solitus or inversus even with immotile nodal cilia. However, the finding of abnormal L-loop bias in heterotaxy and nonheterotaxy mutants would suggest motile cilia are required for normal heart looping. Based on these findings, we propose motile nodal cilia patterns heart looping but heart and visceral organ lateralization is driven by signaling not requiring nodal cilia motility.  相似文献   

16.
We are studying the development of handedness, in particular the relationships between handed structures with bilateral symmetry, for example the limbs, and those with lateral asymmetry, such as the heart, lungs and gut. Asymmetric (unilateral) developmental limb abnormalities can be induced by chemical treatment of mouse embryos, either in utero by acetazolamide, or in culture by misonidazole. We have examined these effects in mice homozygous for the iv gene. The development of bilateral symmetry in iv/iv mice is normal, but the control of asymmetry appears to be random, that is 50% develop normally (situs solitus), 50% with laterally inverted viscera (situs inversus). We find that the handedness of induced asymmetric limb defects is highly correlated with embryonic visceral situs. Right limb defects are induced in situs solitus embryos, left-sided defects in situs inversus. This suggests that the mechanism of induction of asymmetric defects is not related to any intrinsic difference between the development of left and right limbs, but is connected to visceral asymmetry. In addition, the high correlation of limb defects with situs was observed in culture as well as in utero suggesting that the maternal environment plays no role in the development of asymmetry.  相似文献   

17.
Three patients with situs inversus totalis (mirror-image dextrocardia) and concomitant coronary artery disease were admitted to our institution for evaluation. In all cases, aortocoronary bypass grafting was successful. Patients with situs inversus and mirror-image dextrocardia are believed to have normal longevity, and, as these studies suggest, they have the same long-term prognosis after coronary bypass grafting as patients with situs solitus.  相似文献   

18.
19.
Primary ciliary dyskinesia (PCD) is a clinically and genetically heterogenous group of disorders, predominantly inherited as an autosomal recessive trait. The disease phenotype is characterised by defective mucociliary clearance of the airways caused by inborn defects of motile respiratory cilia. Randomization of left/right-body symmetry is found in most PCD variants and results from dysfunction of nodal cilia during early embryonic development. Thus ~50% of PCD patients exhibit situs inversus or heterotaxia. To date nine genes encoding either axonemal motor protein components or dynein assembly factors have been identified. In addition, two X-linked syndromic PCD variants associated either with retinitis pigmentosa or mental retardation have been reported. High-speed videomicroscopy (HVM) for ciliary beat evaluation is the most sensitive diagnostic test, since electron microscopy (EM) and immunofluorescence (IF) analyses are not able to detect all PCD variants. Genetic analyses should be targeted once the PCD variant has been characterized in detail by HVM and EM/IF.  相似文献   

20.
Primary ciliary dyskinesia (PCD) is a rare (1/20,000), multisystem disease with a complex phenotype caused by the impaired motility of cilia/flagella, usually related to ultrastructural defects of these organelles. Mutations in genes encoding radial spoke head (RSPH) proteins, elements of the ciliary ultrastructure, have been recently described. However, the relative involvement of RSPH genes in PCD pathogenesis remained unknown, due to a small number of PCD families examined for mutations in these genes. The purpose of this study was to estimate the involvement of RSPH4A and RSPH9 in PCD pathogenesis among East Europeans (West Slavs), and to shed more light on ultrastructural ciliary defects caused by mutations in these genes. The coding sequences of RSPH4A and RSPH9 were screened in PCD patients from 184 families, using single strand conformational polymorphism analysis and sequencing. Two previously described (Q109X; R490X) and two new RSPH4A mutations (W356X; IVS3_2-5del), in/around exons 1 and 3, were identified; no mutations were found in RSPH9. We estimate that mutations in RSPH4A, but not in RSPH9, are responsible for 2-3% of cases in the East European PCD population (4% in PCD families without situs inversus; 11% in families preselected for microtubular defects). Analysis of the SNP-haplotype background provided insight into the ancestry of repetitively found mutations (Q109X; R490X; IVS3_2-5del), but further studies involving other PCD cohorts are required to elucidate whether these mutations are specific for Slavic people or spread among other European populations. Ultrastructural defects associated with the mutations were analyzed in the transmission electron microscope images; almost half of the ciliary cross-sections examined in patients with RSPH4A mutations had the microtubule transposition phenotype (9+0 and 8+1 pattern). While microtubule transposition was a prevalent ultrastructural defect in cilia from patients with RSPH4A mutations, similar defects were also observed in PCD patients with mutations in other genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号