首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Parasites of the Apicomplexa phylum, such as Plasmodium spp. and Toxoplasma gondii, undergo complex life cycles involving multiple stages with distinct biology and morphologies. Post‐translational modifications (PTMs), such as phosphorylation, acetylation and glycosylation, regulate numerous cellular processes, playing a role in every aspect of cell biology. PTMs can occur on proteins at any time in their lifespan and through alterations of target protein activity, localization, protein–protein interactions, among other functions, dramatically increase proteome diversity and complexity. In addition, PTMs can be induced or removed on changes in cellular environment and state. Thus, PTMs are likely to be key regulators of developmental transitions, biology and pathogenesis of apicomplexan parasites. In this review we examine the roles of PTMs in both parasite‐specific and conserved eukaryotic processes, and the potential crosstalk between PTMs, that together regulate the intricate lives of these protozoa.  相似文献   

2.
Colorectal cancer (CRC) is one of the costliest health problems and ranks second in cancer-related mortality in developed countries. With the aid of proteomics, many protein biomarkers for the diagnosis, prognosis, and precise management of CRC have been identified. Furthermore, some protein biomarkers exhibit structural diversity after modifications. Post-translational modifications (PTMs), most of which are catalyzed by a variety of enzymes, extensively increase protein diversity and are involved in many complex and dynamic cellular processes through the regulation of protein function. Accumulating evidence suggests that abnormal PTM events are associated with a variety of human diseases, such as CRC, thus highlighting the need for studying PTMs to discover both the molecular mechanisms and therapeutic targets of CRC. In this review, we begin with a brief overview of the importance of protein PTMs, discuss the general strategies for proteomic profiling of several key PTMs (including phosphorylation, acetylation, glycosylation, ubiquitination, methylation, and citrullination), shift the emphasis to describing the specific methods used for delineating the global landscapes of each of these PTMs, and summarize the recent applications of these methods to explore the potential roles of the PTMs in CRC. Finally, we discuss the current status of PTM research on CRC and provide future perspectives on how PTM regulation can play an essential role in translational medicine for early diagnosis, prognosis stratification, and therapeutic intervention in CRC.  相似文献   

3.
Colorectal cancer (CRC) is one of the leading causes of cancer-related death. Despite advances in treatment, drug resistance remains a critical impediment. Post-translational modifications (PTMs) regulate protein stability, localization, and activity, impacting vital cellular processes. Recent research has highlighted the essential role of PTMs in the development of CRC resistance. This review summarizes recent advancements in understanding PTMs' roles in CRC resistance, focusing on the latest discoveries. We discuss the functional impact of PTMs on signaling pathways and molecules involved in CRC resistance, progress in drug development, and potential therapeutic targets. We also summarize the primary enrichment methods for PTMs. Finally, we discuss current challenges and future directions, including the need for more comprehensive PTM analysis methods and PTM-targeted therapies. This review identifies potential therapeutic interventions for addressing medication resistance in CRC, proposes prospective therapeutic options, and gives an overview of the function of PTMs in CRC resistance.  相似文献   

4.
5.
Proteomics has been proposed as one of the key technologies in the postgenomic era. So far, however, the comprehensive analysis of cellular proteomes has been a challenge because of the dynamic nature and complexity of the multitude of proteins in cells and tissues. Various approaches have been established for the analyses of proteins in a cell at a given state, and mass spectrometry (MS) has proven to be an efficient and versatile tool. MS-based proteomics approaches have significantly improved beyond the initial identification of proteins to comprehensive characterization and quantification of proteomes and their posttranslational modifications (PTMs). Despite these advances, there is still ongoing development of new technologies to profile and analyze cellular proteomes more completely and efficiently. In this review, we focus on MS-based techniques, describe basic approaches for MS-based profiling of cellular proteomes and analysis methods to identify proteins in complex mixtures, and discuss the different approaches for quantitative proteome analysis. Finally, we briefly discuss novel developments for the analysis of PTMs. Altered levels of PTM, sometimes in the absence of protein expression changes, are often linked to cellular responses and disease states, and the comprehensive analysis of cellular proteome would not be complete without the identification and quantification of the extent of PTMs of proteins.  相似文献   

6.
Regulation of the flow of mass and energy through cellular metabolic networks is fundamental to the operation of all living organisms. Such metabolic fluxes are determined by the concentration of limiting substrates and by the amount and kinetic properties of the enzymes. Regulation of the amount of enzyme can be exerted, on a long-term scale, at the level of gene and protein expression. Enzyme regulation by post-translational modifications (PTMs) and noncovalent binding of allosteric effectors are shorter-term mechanisms that modulate enzyme activity. PTMs, in particular protein phosphorylation, are increasingly being recognized as key regulators in many cellular processes, including metabolism. For example, about half of the enzymes in the Saccharomyces cerevisiae metabolic network have been detected as phosphoproteins, although functional relevance has been demonstrated only in a few cases. Direct regulation of enzymes by PTMs provides one of the fastest ways for cells to adjust to environmental cues and internal stimulus. This review charts the so far identified metabolic enzymes undergoing reversible PTMs in the model eukaryote S. cerevisiae and reviews their underlying mechanistic principles - both at the individual enzyme level and in the context of the entire metabolic network operation.  相似文献   

7.
Huntington's disease (HD) is a debilitating neurodegenerative condition with significant burdens on both patient and healthcare costs. Despite extensive research, treatment options for patients with this condition remain limited. Aberrant post-translational modification (PTM) of proteins is emerging as an important element in the pathogenesis of HD. These PTMs include acetylation, phosphorylation, methylation, sumoylation and ubiquitination. Several families of proteins are involved with the regulation of these PTMs. In this review, I discuss the current evidence linking aberrant PTMs and/or aberrant regulation of the cellular machinery regulating these PTMs to HD pathogenesis. Finally, I discuss the evidence suggesting that pharmacologically targeting one of these protein families the histone deacetylases may be of potential therapeutic benefit in the treatment of HD.  相似文献   

8.
翻译后修饰在调控蛋白质构象变化、活性以及功能方面具有重要作用,并参与了几乎所有细胞通路和过程。蛋白质翻译后修饰的鉴定是阐明细胞内分子机理的基础。相对于劳动密集的、耗费时间的实验工作,利用各种生物信息学方法开展翻译后修饰预测,能够提供准确、简便和快速的研究方案,并产生有价值的信息为进一步实验研究提供参考。文章主要综述了中国生物信息学者在翻译后修饰生物信息学领域所取得的研究进展,包括修饰底物与位点预测的计算方法学设计与完善、在线或本地化工具的设计与维护、修饰相关数据库及数据资源的构建及基于修饰蛋白质组学数据的生物信息学分析。通过比较国内外的同类研究,发现优势和不足,并对未来的研究作出前瞻。  相似文献   

9.
Yi Yang  Liang Qiao 《Proteomics》2023,23(7-8):2200046
Protein post-translational modifications (PTMs) increase the functional diversity of the cellular proteome. Accurate and high throughput identification and quantification of protein PTMs is a key task in proteomics research. Recent advancements in data-independent acquisition (DIA) mass spectrometry (MS) technology have achieved deep coverage and accurate quantification of proteins and PTMs. This review provides an overview of DIA data processing methods that cover three aspects of PTMs analysis, that is, detection of PTMs, site localization, and characterization of complex modification moieties, such as glycosylation. In addition, a survey of deep learning methods that boost DIA-based PTMs analysis is presented, including in silico spectral library generation, as well as feature scoring and error rate control. The limitations and future directions of DIA methods for PTMs analysis are also discussed. Novel data analysis methods will take advantage of advanced MS instrumentation techniques to empower DIA MS for in-depth and accurate PTMs measurements.  相似文献   

10.
11.
Desmin, the muscle-specific intermediate filament, is involved in myofibrillar myopathies, dilated cardiomyopathy and muscle wasting. Desmin is the target of posttranslational modifications (PTMs) such as phosphorylation, ADP-ribosylation and ubiquitylation as well as nonenzymatic modifications such as glycation, oxidation and nitration. Several PTM target residues and their corresponding modifying enzymes have been discovered in human and nonhuman desmin. The major effect of phosphorylation and ADP-ribosylation is the disassembly of desmin filaments, while ubiquitylation of desmin leads to its degradation. The regulation of the desmin filament network by phosphorylation and ADP-ribosylation was found to be implicated in several major biological processes such as myogenesis, myoblast fusion, muscle contraction, muscle atrophy, cell division and possibly desmin interactions with its binding partners. Phosphorylation of desmin is also implicated in many forms of desmin-related myopathies (desminopathies). In this review, we summarize the findings on desmin PTMs and their implication in biological processes and pathologies, and discuss the current knowledge on the regulation of the desmin network by PTMs. We conclude that the desmin filament network can be seen as an intricate scaffold for muscle cell structure and biological processes and that its dynamics can be affected by PTMs. There are now precise tools to investigate PTMs and visualize cellular structures that have been underexploited in the study of desminopathies. Future studies should focus on these aspects.  相似文献   

12.
Signal transduction pathways control cell fate, survival and function. They are organized as intricate biochemical networks which enable biochemical protein activities, crosstalk and subcellular localization to be integrated and tuned to produce highly specific biological responses in a robust and reproducible manner. Post translational Modifications (PTMs) play major roles in regulating these processes through a wide variety of mechanisms that include changes in protein activities, interactions, and subcellular localizations. Determining and analyzing PTMs poses enormous challenges. Recent progress in mass spectrometry (MS) based proteomics have enhanced our capability to map and identify many PTMs. Here we review the current state of proteomic PTM analysis relevant for signal transduction research, focusing on two areas: phosphorylation, which is well established as a widespread key regulator of signal transduction; and oxidative modifications, which from being primarily viewed as protein damage now start to emerge as important regulatory mechanisms.  相似文献   

13.
14.
Connexin (Cx) and pannexin (Panx) proteins form large conductance channels, which function as regulators of communication between neighbouring cells via gap junctions and/or hemichannels. Intercellular communication is essential to coordinate cellular responses in tissues and organs, thereby fulfilling an essential role in the spreading of signalling, survival and death processes. The functional properties of gap junctions and hemichannels are modulated by different physiological and pathophysiological stimuli. At the molecular level, Cxs and Panxs function as multi‐protein channel complexes, regulating their channel localisation and activity. In addition to this, gap junctional channels and hemichannels are modulated by different post‐translational modifications (PTMs), including phosphorylation, glycosylation, proteolysis, N‐acetylation, S‐nitrosylation, ubiquitination, lipidation, hydroxylation, methylation and deamidation. These PTMs influence almost all aspects of communicating junctional channels in normal cell biology and pathophysiology. In this review, we will provide a systematic overview of PTMs of communicating junction proteins and discuss their effects on Cx and Panx‐channel activity and localisation.  相似文献   

15.
Brunner AM  Tweedie-Cullen RY  Mansuy IM 《Proteomics》2012,12(15-16):2404-2420
In the central nervous system, epigenetic processes are involved in a multitude of brain functions ranging from the development and differentiation of the nervous system through to higher-order cognitive processes such as learning and memory. This review summarises the current state of the art for the proteomic analysis of the epigenetic regulation of gene expression, in particular the PTM of histones, in the brain and cellular model systems. It describes the MS technologies that have helped the identification and analysis of histones, histone variants and PTMs in the brain. Strategies for the isolation of histones that allow the qualitative analysis of PTMs and their combinatorial patterns are introduced, methods for the relative and absolute quantification of histone PTMs are described, and future challenges are discussed.  相似文献   

16.
The roles of post-translational modifications (PTMs) in the onset and progression of disease have been extensively studied for decades. More specifically, various PTMs have been the focus of research in Alzheimer's disease (AD). The two most discussed hallmarks of the disease, senile plaques and tau tangles, are the result of PTMs of the amyloidβ protein precursor (AβPP) and the microtubule stabilizing protein: tau. While these modifications have been characterized indirectly by biochemical-based methods, the primary shortcoming to this research can be linked to a lack of a thorough molecular-based means of qualitative and quantitative analysis of many of these modifications within transgenic animal, and human samples. In this review, we discuss the important proteins and their associated PTMs linked to AD and the ways in which mass spectrometry has and will be utilized to analyze them. We also comment on novel ways in which molecular-based mass spectrometry methods should be employed going forward to resolve the interconnections of the PTMs involvement in various stages of AD pathology (preclinical, mild cognitive impairment, advanced-stage AD).  相似文献   

17.
Parkinson's disease (PD) is the second most common neurodegenerative disease after Alzheimer's disease (AD), and the most prevalent movement disorder. PD is characterized by dopaminergic neurodegeneration in the substantia nigra, but its etiology has yet to be established. Among several genetic variants contributing to PD pathogenesis, α-synuclein and leucine-rich repeat kinase (LRRK2) are widely associated with neuropathological phenotypes in familial and sporadic PD. α-Synuclein and LRRK2 found in Lewy bodies, a pathogenic hallmark of PD, are often posttranslationally modified. As posttranslational modifications (PTMs) are key processes in regulating the stability, localization, and function of proteins, PTMs have emerged as important modulators of α-synuclein and LRRK2 pathology. Aberrant PTMs altering phosphorylation, ubiquitination, nitration and truncation of these proteins promote PD pathogenesis, while other PTMs such as sumoylation may be protective. Although the causes of many aberrant PTMs are unknown, environmental risk factors may contribute to their aberrancy. Environmental toxicants such as rotenone and paraquat have been shown to interact with these proteins and promote their abnormal PTMs. Notably, manganese (Mn) exposure leads to a PD-like neurological disorder referred to as manganism—and induces pathogenic PTMs of α-synuclein and LRRK2. In this review, we highlight the role of PTMs of α-synuclein and LRRK2 in PD pathogenesis and discuss the impact of environmental risk factors on their aberrancy.  相似文献   

18.
With the completion of the major genome projects, one focus in biomedical research has shifted from the analysis of the rather static genome to the highly dynamic proteome. The sequencing of whole genomes did not lead to much anticipated insights into disease mechanisms; however, it paved the way for proteomics by providing the databases for protein identification by peptide mass fingerprints. The relative protein distribution within a cell or tissue is subject to change upon external and internal stimuli. Signal transduction events extend beyond a simple change in protein levels; rather they are governed by posttranslational modifications (PTMs), which provide a quick and efficient way to modulate cellular signals. Because most PTMs change the mass of a protein, they are amenable to analysis by mass spectrometry. Their investigation adds a level of functionality to proteomics, which can be expected to greatly aid in the understanding of the complex cellular machinery involved in signal transduction, metabolism, differentiation or in disease. This review provides an overview on posttranslational modifications exemplified on the model system cAMP-dependent protein kinase. Strategies for detection of selected PTMs are described and discussed in the context of protein kinase function.  相似文献   

19.
20.
Zhou F  Xue Y  Yao X  Xu Y 《Nature protocols》2006,1(3):1318-1321
Post-translational modifications (PTMs) of proteins play essential roles in governing the functions and dynamics of proteins and are implicated in many cellular processes. Several types of PTMs have been investigated through computational approaches, including phosphorylation, sumoylation, palmitoylation, and lysine and arginine methylation, among others. Because the large diversity in the user interfaces (UIs) of different prediction servers for PTMs could possibly hinder experimental biologists in using these servers, we propose to develop a protocol for a unified UI for PTM prediction servers, based on our own work and that of other groups on PTM site prediction. By following this protocol, tool developers can provide a uniform UI regardless of the PTM types and the underlying computational algorithms. With such uniformity in the UI, experimental biologists would be able to use any PTM prediction server compliant with this protocol once they had learned to use one of them. It takes a typical PTM prediction server compliant with this unified UI several minutes to calculate the prediction results for a protein 1,000 amino acids in length.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号