首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aims Species aggregation is commonly seen in plant communities and may increase diversity by causing intraspecific competition to exceed interspecific competition. One potential source of this spatial aggregation is seed dispersal but it is unclear to what extent aggregated seed distributions affect plant diversity in real communities. Using a field experiment, I tested whether uniform or aggregated seed arrival alters community structure and whether these effects vary with sowing density.Methods The experiment consisted of two spatial seeding treatments (uniform and aggregated) that were fully crossed with three seed density treatments. Sixty, 3 × 4-m plots were arrayed in a low-diversity grassland located in Kansas, USA. Each plot was divided into forty-eight, 0.5 × 0.5-m patches. For aggregated seeding treatments, each of the 15 species was sown into three randomly selected patches within the plot (3×15 = 45). To create a uniform species arrival but control for the seed addition method, all 15 species were sown into 45 individual patches (with three patches remaining unsown) within each plot. Seed mass for each species was held constant at the plot scale between uniform or aggregated treatments within a given level of the sowing density treatment. After two growing seasons, plant density was quantified for all sown species in 15 randomly selected patches from each plot.Important findings I found evidence for shifts in community structure in response to the different spatial seeding patterns. The evenness of added species was higher under aggregated than uniform sowing patterns. There was no detectable effect of aggregated seed sowing on species richness at 3.75 m 2 scale. However, when species richness was extrapolated to larger scales (11.25 m 2), aggregated sowing was predicted to have greater richness than uniform sowing. Effects of seed aggregation on community structure were apparent only at moderate to high sowing rates, yet the latter are within the range of measured seed dispersal in similar grasslands. Additionally, as sowing density increased, seed mass became an increasingly effective predictor of relative abundances for added species, but only under uniform sowing patterns supporting the idea that aggregated dispersal may buffer weaker (smaller seeded) species from competition during colonization. This is the first experiment to show that aggregated seed dispersal patterns can increase at least some components of plant diversity in undisturbed grasslands and suggests that previous seed dispersal experiments, which utilize uniform seed sowing, may underestimate the potential effect of dispersal on plant community structure.  相似文献   

2.
Phylogenetic and functional diversity are relevant for restoration planning, as they influence important ecosystem functions and services. However, it is unknown whether initial phylogenetic and functional diversity of restorations as planned and planted are maintained over time, that is, the extent to which diversity of the restoration planting is reflected in the diversity of the resulting plant community. Furthermore, in the tallgrass prairie, many restorations are planted from seed. Among-species variation in emergence and establishment affects the transition from seed mixes to realized plant communities in these restorations. We evaluated emergence and early establishment of experimental communities in a biodiversity plot experiment designed to test how phylogenetic and functional diversity influence restoration outcomes. We planted the same experimental communities starting from both seeds and plugs to assess differences in establishment. Our results suggest that phylogenetically and functionally diverse species mixes tend to produce phylogenetically and functionally diverse restored plant communities. After 3 years, experimental communities generally maintained their phylogenetic and functional diversity from seed and plug mixes to established vegetation, despite declines in species richness. While plots planted from seeds had on average 1.3 fewer species than plots planted from plugs, phylogenetic and functional diversity did not significantly differ between the two. Furthermore, most species exhibited no significant differences in percent cover when planted from seeds or plugs. Seeds are generally more cost-effective for restoration than plugs, and our results indicate these two establishment methods achieved similar biodiversity outcomes.  相似文献   

3.
Seed Rain and Seed Limitation in a Planted Gallery Forest in Brazil   总被引:1,自引:0,他引:1  
With seeds collected monthly during one year from 53 1‐m2 seed traps, we investigated the seed rain and seed limitation in a gallery forest planted in 1994 in SE Brazil. Contrasting animal‐ (zoochorous) and wind‐dispersed (anemochorous) plants we investigated (1) which aspects of the composition and structure of the vegetation influence the abundance and species richness of the seed rain; (2) if such influences differ between zoochorous and anemochorous seeds; (3) if the abundance and richness of the seed rain sampled under zoochorous and nonzoochorous plant species differ; and (4) if seed limitation (given by the proportion of sites to which seeds were not dispersed) differs between zoochorous and anemochorous plant species, and also between species that have been planted and those that further colonized the area (colonists). Seed rain was intense and dominated by anemochorous species. The overall seed rain was not influenced by the vegetation parameters we analyzed (canopy height and cover, plant size, abundance, and richness) or by the plant species above the seed trap. The abundance and richness of zoochorous seeds in a given spot was influenced by the abundance and richness of zoochorous plants in its immediate vicinity. Seed limitation was higher for anemochorous than zoochorous species and higher for planted than for colonist species. We concluded with recommendations for the initial establishment of a planted forest, including the homogeneous distribution of zoochorous plants to permit a spatially homogeneous zoochorous seedfall, which will likely enhance the chances of survival and successful establishment of seeds.  相似文献   

4.
Theoretical models predict that effects of dispersal on local biodiversity are influenced by the size and composition of the species pool, as well as ecological filters that limit local species membership. We tested these predictions by conducting a meta-analysis of 28 studies encompassing 62 experiments examining effects of propagule supply (seed arrival) on plant species richness under contrasting intensities of ecological filters (owing to disturbance and resource availability). Seed arrival increased local species richness in a wide range of communities (forest, grassland, montane, savanna, wetland), resulting in a positive mean effect size across experiments. Mean effect size was 70% higher in disturbed relative to undisturbed communities, suggesting that disturbance increases recruitment opportunities for immigrating species. In contrast, effect size was not significantly influenced by nutrient or water availability. Among seed-addition experiments, effect size was positively correlated with species and functional diversity within the pool of added seeds (species evenness and seed-size diversity), primarily in disturbed communities. Our analysis provides experimental support for the general hypothesis that species pools and local environmental heterogeneity interactively structure plant communities. We highlight empirical gaps that can be addressed by future experiments and discuss implications for community assembly, species coexistence, and the maintenance of biodiversity.  相似文献   

5.
Many efforts to restore disturbed landscapes seek to meet ecological goals over timescales from decades to centuries. It is thus crucial to know how different actions available to restoration practitioners may affect ecosystems in the long term, yet few such data exist. Here, we test the effects of seed and compost applications on plant community composition 9 years after their application, by taking advantage of a well‐controlled restoration experiment on a mountainside severely degraded by over 80 years of zinc smelting emissions. We asked whether plots have converged on similar plant communities regardless of initial seed and compost treatments, or if these initial treatments have given rise to lasting differences in whole plant communities or in the richness and abundance of native, exotic, and planted species. We found that compost types significantly affected plant communities 9 years later, but seed mix species composition did not. Observed differences in species richness and vegetative cover were negatively correlated, and both were related to the differences in plant communities associated with different compost types. These observed differences are due primarily to the number and abundance of species not in original seed mixes, of which notably many are native. Our results underscore the importance of soils in shaping the aboveground composition of ecosystems. Differences in soil characteristics can affect plant diversity and cover, which are both common restoration targets. Even in highly polluted and devegetated sites, compost and seed application can reinstate high vegetative cover and allow continued colonization of native species.  相似文献   

6.
So far, seed limitation as a local process, and dispersal limitation as a regional process have been largely neglected in biodiversity–ecosystem functioning research. However, these processes can influence both local plant species diversity and ecosystem processes, such as biomass production. We added seeds of 60 species from the regional species pool to grassland communities at 20 montane grassland sites in Germany. In these sites, plant species diversity ranged from 10 to 34 species m−2 and, before manipulation, diversity was not related to aboveground biomass, which ranged from 108 to 687 g m−2. One year after seed addition, local plant species richness had increased on average by six species m−2 (29%) compared with control plots, and this increase was highest in grasslands with intermediate productivity. The increased diversity after adding seeds was associated with an average increase of aboveground biomass of 36 g m−2 (14.8%) compared with control plots. Thus, our results demonstrate that a positive relationship between changes in species richness and productivity, as previously reported from experimental plant communities, also holds for natural grassland ecosystems. Our results show that local plant communities are dispersal limited and a hump‐shaped model appears to be the limiting outline of the natural diversity–productivity relationship. Hence, the effects of dispersal on local diversity can substantially affect the functioning of natural ecosystems.  相似文献   

7.
We examined the relationship between plant species diversity, productivity and the development of the soil community during early secondary succession on former arable land across Europe. We tested the hypothesis that increasing the initial plant species diversity enhances the biomass production and consequently stimulates soil microbial biomass and abundance of soil invertebrates. We performed five identical field experiments on abandoned arable land in five European countries (CZ, NL, SE, SP and UK) which allowed us to test our hypothesis in a range of climate, soil and other environmental factors that varied between the experimental sites. The initial plant diversity was altered by sowing seed mixtures of mid-successional grassland species with two or five grass species, one or five legumes and one or five forbs. The results of low and high sown diversity treatments were compared with plots that were naturally colonized by species present in the seed bank. In three out of the five field sites, there was no correlation between plant species number and plant biomass production, one site had a positive and the other a negative relation. Treatments with a high diversity seed mixture had a higher biomass than the naturally colonized plots. However, there was no significant difference between high and low sown diversity plots at four out of five sites. The three-year study did not give any evidence of a general bottom-up effect from increased plant biomass on biomass of bacteria, saprophytic fungi or abundance of microarthropods. The biomass of arbuscular mycorrhizal was negatively related to plant biomass. The abundance of nematodes increased after abandonment and was related to plant biomass at four sites. Our results support the hypothesis that plant species diversity may have idiosyncratic effects on soil communities, even though studies on a longer term could reveal time lags in the response to changes in composition and biomass production of plant communities.  相似文献   

8.
Most plant communities support a diverse assemblage of arbuscular mycorrhizal fungi (AMF). AMF communities have the potential to affect plant community structure and vice versa. We examined AMF sporulation in a 4.5‐ha reconstructed prairie in Eau Claire County, Wisconsin. In fall 2003, the site was planted with varied numbers and combinations of native prairie species from four functional guilds: C3 grasses/sedges, C4 grasses, legume, and nonleguminous forbs. We hypothesized that more diverse plant seeding mixtures would promote AMF diversity. To examine the interaction between plant and fungal communities, plots were divided and subplots treated with the fungicide chlorothalonil to suppress AMF, enriched with ammonium nitrate fertilizer, treated with both fungicide and nitrogen, or remained untreated (control). Soil samples were collected during the summers of 2004, 2006, and 2007 from each subplot. Spores of AMF were extracted, identified to species, and enumerated. Initial plant seeding diversity did not significantly influence spore abundance, fungal diversity, plant productivity, or plant richness 4 years after establishment. Fungal species richness was positively, but weakly, correlated with plant productivity (r2 = 0.11) and plant richness (r2 = 0.09). Fungal community composition changed significantly over time; nitrogen addition, fungicide application, and site characteristics also shaped community composition. After 4 years of treatment, nitrogen and fungicide reduced AMF richness, changed sporulation patterns among AMF taxa, and reduced diversity and productivity in plant communities. Divergence in AMF community is being mirrored by changes in the plant community independent of initial seeding treatments, though causation could not be determined.  相似文献   

9.
Biodiversity experiments show that increases in plant diversity can lead to greater biomass production, and some researchers suggest that high diversity plantings should be used for bioenergy production. However, many methods used in past biodiversity experiments are impractical for bioenergy plantings. For example, biodiversity experiments often use intensive management such as hand weeding to maintain low diversity plantings and exclude unplanted species, but this would not be done for bioenergy plantings. Also, biodiversity experiments generally use high seeding densities that would be too expensive for bioenergy plantings. Here we report the effects of biodiversity on biomass production from two studies of more realistic bioenergy crop plantings in southern Michigan, USA. One study involved comparing production between switchgrass (Panicum virgatum) monocultures and species-rich prairie plantings on private farm fields that were managed similarly to bioenergy plantings. The other study was an experiment where switchgrass was planted in monoculture and in combination with increasingly species-rich native prairie mixtures. Overall, we found that bioenergy plantings with higher species richness did not produce more biomass than switchgrass monocultures. The lack of a positive relationship between planted species richness and production in our studies may be due to several factors. Non-planted species (weeds) were not removed from our studies and these non-planted species may have competed with planted species and also prevented realized species richness from equaling planted species richness. Also, we found that low seeding density of individual species limited the biomass production of these individual species. Production in future bioenergy plantings with high species richness may be increased by using a high density of inexpensive seed from switchgrass and other highly productive species, and future efforts to translate the results of biodiversity experiments to bioenergy plantings should consider the role of seeding density.  相似文献   

10.
1 This study examines the abundance and distribution of grassland plant species in particular relation to features affecting colonization. Seed production (inversely related to seed size) and recruitment success (positively related) affect colonization ability, suggesting that seed size can be used as a key trait.
2 Data on seed size, dispersal mode, life form, geographical range size and abundance were gathered for 81 grassland plant species in a field study area in Sweden. Seed production and plant size were estimated for 69 of these species. Analyses were performed both across species, with species treated as independent data points, and for 43 'phylogenetically independent contrasts'.
3 The cross-species analyses suggested that local abundance was related to life forms but not dispersal or plant size. Perennials were generally most abundant, as were clonal species. If abundance reflects colonization we predicted that species with intermediately sized seeds (or intermediate seed production) would be most abundant, and this was supported by the phylogenetic contrast but not by cross-species analyses. In the former analysis, a high abundance of species was significantly associated with a small seed size deviation (and seed number deviation) from the median values of these traits in the community.
4 Local abundance, seed production and seed size deviation from the community median value were positively related to geographical range size in the cross-species analysis, but no relationships were seen in the phylogenetic contrast analysis.
5 We conclude that colonization processes do have a significant influence on abundance patterns in grasslands. Seed size is a key trait for colonizing ability, and the effects of the trade-off of seed size vs. seed number must be considered. No single mechanism can be identified that influences both abundance and geographical distribution range.  相似文献   

11.
Plant performance is determined by the balance of intra‐ and interspecific neighbors within an individual's zone of influence. If individuals interact over smaller scales than the scales at which communities are measured, then altering neighborhood interactions may fundamentally affect community responses. These interactions can be altered by changing the number (species richness), abundances (species evenness), and positions (species pattern) of the resident plant species, and we aimed to test whether aggregating species at planting would alter effects of species richness and evenness on biomass production at a common scale of observation in grasslands. We varied plant species richness (2, 4, or 8 species and monocultures), evenness (0.64, 0.8, or 1.0), and pattern (planted randomly or aggregated in groups of four individuals) within 1 × 1 m plots established with transplants from a pool of 16 tallgrass prairie species and assessed plot‐scale biomass production and diversity over the first three growing seasons. As expected, more species‐rich plots produced more biomass by the end of the third growing season, an effect associated with a shift from selection to complementarity effects over time. Aggregating conspecifics at a 0.25‐m scale marginally reduced biomass production across all treatments and increased diversity in the most even plots, but did not alter biodiversity effects or richness–productivity relationships. Results support the hypothesis that fine‐scale species aggregation affects diversity by promoting species coexistence in this system. However, results indicate that inherent changes in species neighborhood relationships along grassland diversity gradients may only minimally affect community (meter) – scale responses among similarly designed biodiversity–ecosystem function studies. Given that species varied in their responses to local aggregation, it may be possible to use such species‐specific results to spatially design larger‐scale grassland communities to achieve desired diversity and productivity responses.  相似文献   

12.
生境片段化伴随的面积效应和边缘效应, 可改变分散贮食动物的竞争强度、觅食行为以及隐蔽条件, 影响种子捕食和扩散模式。阐明生境片段化对多物种种子捕食和扩散的影响, 对理解片段化生境中的植物更新和生物多样性维持十分重要。该研究在浙江省千岛湖地区的岛屿和大陆上开展了针对6种壳斗科植物的种子捕食和扩散实验, 分析了物种、分散贮食动物相对多度、种子产量、岛屿大小和边缘效应如何共同影响种子命运和种子扩散距离。主要结果: (1)种子命运和扩散距离在物种间存在显著差异; (2)大陆比岛屿有更长的种子留存时间, 小岛种子留存时间最短, 岛屿内部比岛屿边缘有更长的种子留存时间; (3)物种和岛屿大小对种子原地取食率存在交互作用, 白栎(Quercus fabri)种子在大岛上有更高的原地取食率; (4)种子在小岛上有最高的扩散率, 分散贮食动物相对多度对种子扩散后贮藏率有负效应。表明在千岛湖地区, 生境片段化改变了种子捕食和扩散模式, 且面积效应对不同物种的种子捕食和扩散模式产生了不同作用, 从而影响森林群落更新和生物多样性维持。  相似文献   

13.
Aims Post-dispersal seed predation is an important ecosystem process because it can influence the seed's fate after the initial dispersal from the mother plant and subsequently transform communities. Even at small scales, post-dispersal seed predation can vary greatly depending on seed identity, granivorous taxa or microhabitat structure. However, little is known about the role of plant species richness and functional group richness in post-dispersal seed predation. The overall aim of this study was to test whether increasing plant species richness or plant functional group richness affects the rate and variability of post-dispersal seed predation. We additionally investigated the influence of vegetation structure and seed species identity on the rate and variability of post-dispersal seed predation and whether the influence of different granivorous taxa changed with increasing plant species richness.Methods We conducted seed removal experiments along a long-term experimental plant diversity gradient, comprising plots with monocultures to 60 species mixtures of common grassland species in Jena, Germany, in August 2011. We studied seeds of Onobrychis viciifolia, Pastinaca sativa and Trifolium pratense in exclusion experiments (seed cafeterias), an experimental setup that allowed access either for arthropods or slugs or for all granivorous taxa. Traditionally, seeds removed from seed cafeterias were classified as consumed but we used traceable fluorescent-coloured seeds to obtain more accurate predation rates by subtracting recovered seeds from overall removed seeds. The effect of multiple vegetation variables on mean and variability of seed predation rates was analysed using generalized mixed-effect models and linear regressions, respectively.Important findings Rates of recovered seeds were low but contributed to significant differences between seed predation rates and removal rates of seeds in some treatments. Seed predation rates were not directly correlated with increasing plant species richness or plant functional group richness but were influenced byseed species identity and granivorous taxa. Vegetation variables such as vegetation height and cover were significantly associated with seed predation rates. Depending on the seed species and/or the granivorous taxa, different vegetation variables correlated with seed predation rates. Our results indicate that effects of plant functional group richness and multiple vegetation variables on the magnitude of post-dispersal seed predation varied with seed identity and seed predator taxa. A direct effect of plant species and plant functional group richness could be shown on the variability of post-dispersal seed predation for some seed species and their respective predators. Thus, the changes in magnitude of post-dispersal seed predation with increasing plant species richness could potentially impact the fitness of some plant species and thereby influence plant community structure.  相似文献   

14.
Aims Spatial distribution of adult trees in a forest community is determined by patterns of both seed dispersal and seedling recruitment. The objectives of our study were to understand the processes of seed dispersal and seedling recruitment of dominant tree species in a temperate forest of northeastern China and to identify the factors constraining seed dispersal and seedling establishment at different stages of forest succession.Methods During three summer and autumn sessions between 2006 and 2008, altogether 113080 seeds from 22 different tree species were collected in three large field plots representing different forest types in the Changbai Mountain region of northeastern China. The spatial distribution of seed abundance was analyzed using a Syrjala test. Regeneration success of nine major tree species was assessed using variables defining 'limitations' in 'seeds' and 'seedling establishment'.Important findings We found that seed production fluctuated between years and varied greatly with forest types. Four tree species, Acer spp., Fraxinus mandshurica, Tilia amurensis and Betula spp., had the greatest seed production and the widest range of seed dispersal, whereas Quercus mongolica showed the most sustained seed production pattern. The spatial patterns of seed abundance differed significantly among forest types and years. The tree species investigated in this study differed in the degree of seed limitation, as well as in limitation of seedling establishment. There were both negative and positive correlations between seed density and seedling density, depending on site and parental tree density. Seeds of 16 tree species were found in the Populus davidiana–Betula platyphylla forest (PBF) plot, 11 in the conifer and broad-leaved mixed forest (CBF) plot but only 8 in the broad-leaved-Korean pine mixed forest (BKF) plot. The number of seed-contributing species was not only greater in the secondary forests (CBF and PBF plots) than in the primary forest (BKF plot) but was also more variable during the 3 years of assessment. Results from the correlations between seed density and seedling occurrence and that between parental tree density or seed weight and dispersal limitation confirm our intuitive expectations, i.e. heavy seeds had greater dispersal limitation but higher establishment success than light seeds.  相似文献   

15.
Ecological restorations are predicted to increase in species diversity over time until they reach reference levels. However, chronosequence studies in grasslands often show that diversity peaks after the first few years and then declines over time as grasses become more dominant. We addressed whether bison grazing and seed additions could prevent this decline in diversity. Exclosures that prevented bison grazing were compared with grazed plots over 4 years, and seed additions were conducted inside and outside exclosures to test for seed and microsite limitations. A previous study conducted 4‐months post seeding found that local species richness was primarily seed limited, but that grazing could sometimes increase seedling emergence. Here, we tested whether increased seedling emergence led to longer‐term increases in the species diversity of the plant community. We found that the seed addition effect grew smaller and the grazing effect grew stronger over time, and that seed additions affected the abundance of added species only when plots were grazed. Grazed plots had higher species diversity and lower biomass and litter buildup compared to non‐grazed plots. Our results suggest that moderate grazing by bison or management that mimics grazing can maintain diversity in grass‐dominated situations. Our results also emphasize the need to follow seed additions over several years to assess correctly whether seed limitation exists.  相似文献   

16.
《植物生态学报》2017,41(5):539
Aims Seed size is one of the most important characteristics of plant seeds, and has significant implications in plant ecological functions. Exploring the altitudinal pattern of seed size would help to detect environmental constraints on species distribution and understand the linkage between plant ecological function traits Methods The present study measured the quantitative features of seed size, including weight of 1 000 grain seeds, lengths of longer and shorter axes, and analyzed the relationships between seed size and altitude, as well as the influence of growth form. Seed samples were all collected from 201 locally common woody plants (belonging to 59 families and 87 genera) in the Dalaoling Natural Reserve in Yichang City, Hubei Province.Important findings Measured values of the seed mass, the longer axis, and the shorter axis of the 201 woody plant species all follow the lognormal distribution. Measurements of seed mass vary across five orders of magnitude. Significant correlation was found between seed mass, seed length of the longer and shorter axes (R2 = 0.755; 0.819; 0.630, p < 0.01). Moreover, seed mass of trees and small trees are significantly heavier than those of shrubs and woody vines. Seed mass values of evergreen broad leaved species are significantly heavier than those of deciduous broad leaved species and needle leaved species. Seed mass of all 201 species shows a slightly but statistically significant decreasing trend with the increase of altitude. In addition, altitudinal patterns of seed mass varied between species with different growth form. Our results indicated the variation of altitudinal trends of seed mass for different structural components of plant communities, implying the local community structure as a critical aspect of variation in macro-ecological patterns.  相似文献   

17.
The diversity of traits associated with plant regeneration is often shaped by functional trade‐offs where plants typically do not excel at every function because resources allocated to one function cannot be allocated to another. By analyzing correlations among seed traits, empirical studies have shown that there is a trade‐off between seedling development and the occupation of new habitats, although only a small range of taxa have been tested; whether such trade‐off exists in a biodiverse and complex landscape remains unclear. Here, we amassed seed trait data of 1,119 species from a biodiversity hotspot of the Mountains of Southwest China and analyzed the relationship between seed mass and the number of seeds and between seed mass and time to germination. Our results showed that seed mass was negatively correlated with seed number but positively correlated with time to germination. The same trend was found regardless of variation in life‐form and phylogenetic conservatism. Furthermore, the relation between seed mass and other seed traits was randomly dispersed across the phylogeny at both the order and family levels. Collectively, results suggest that there is a functional trade‐off between seedling development and new habitat occupation for seed plants in this region. Larger seeds tend to produce fewer seedlings but with greater fitness compared to those produced by smaller seeds, whereas smaller seeds tend to have a larger number of seeds that germinate faster compared to large‐seeded species. Apart from genetic constraints, species that produce large seeds will succeed in sites where resource availability is low, whereas species with high colonization ability (those that produce a high number of seeds per fruit) will succeed in new niches. This study provides a mechanistic explanation for the relatively high levels of plant diversity currently found in a heterogeneous region of the Mountains of Southwest China.  相似文献   

18.
Summary Efforts to re‐establish indigenous forests in pastoral New Zealand have increased as the value of native biodiversity has been realized. Direct seeding of woody species is preferable to transplanting, as labour and material costs are less. However, the success rate of direct seeding in pasture has been variable due to intense competition from adventive species. We initiated an experiment in pasture plots adjacent to a forest fragment where seed bed treatments (increasing in degree of disturbance from herbicide application to turf removal and topsoil removal) in combination with mulch treatments (wood chip shavings with and without forest floor organic material) were seeded with a mixture of New Zealand lowland forest species. The objective of the study was to determine if early successional plant communities, and ultimately seedling establishment, differed as a result of seed bed preparation after 1 year. Coprosma robusta (Karamu) and Kunzea ericoides (Kanuka) seedlings established on plots in significant numbers: both species were most abundant on topsoil‐removed plots where bare substrate was greatest and plant cover least. Both seed bed treatments and mulching treatments led to measurable differences in overall composition of early successional plant communities. However, absence of plant cover and low soil fertility (both associated with the topsoil‐removed treatment) were the most important factors in seedling success.  相似文献   

19.
Biodiversity Promotes Tree Growth during Succession in Subtropical Forest   总被引:1,自引:0,他引:1  
Losses of plant species diversity can affect ecosystem functioning, with decreased primary productivity being the most frequently reported effect in experimental plant assemblages, including tree plantations. Less is known about the role of biodiversity in natural ecosystems, including forests, despite their importance for global biogeochemical cycling and climate. In general, experimental manipulations of tree diversity will take decades to yield final results. To date, biodiversity effects in natural forests therefore have only been reported from sample surveys or meta-analyses with plots not initially selected for diversity. We studied biomass and growth of subtropical forests stands in southeastern China. Taking advantage of variation in species recruitment during secondary succession, we adopted a comparative study design selecting forest plots to span a gradient in species richness. We repeatedly censored the stem diameter of two tree size cohorts, comprising 93 species belonging to 57 genera and 33 families. Tree size and growth were analyzed in dependence of species richness, the functional diversity of growth-related traits, and phylogenetic diversity, using both general linear and structural equation modeling. Successional age covaried with diversity, but differently so in the two size cohorts. Plot-level stem basal area and growth were positively related with species richness, while growth was negatively related to successional age. The productivity increase in species-rich, functionally and phylogenetically diverse plots was driven by both larger mean sizes and larger numbers of trees. The biodiversity effects we report exceed those from experimental studies, sample surveys and meta-analyses, suggesting that subtropical tree diversity is an important driver of forest productivity and re-growth after disturbance that supports the provision of ecological services by these ecosystems.  相似文献   

20.
A better understanding of seed movement in plant community dynamics is needed, especially in light of disturbance‐driven changes and investments into restoring degraded plant communities. A primary agent of change within the sagebrush‐steppe is wildfire and invasion by non‐native forbs and grasses, primarily cheatgrass (Bromus tectorum). Our objectives were to quantify seed removal and evaluate ecological factors influencing seed removal within degraded sagebrush‐steppe by granivorous Owyhee harvester ants (Pogonomyrmex salinus Olsen). In 2014, we sampled 76 harvester ant nests across 11 plots spanning a gradient of cheatgrass invasion (40%–91% cover) in southwestern Idaho, United States. We presented seeds from four plant species commonly used in postfire restoration at 1.5 and 3.0 m from each nest to quantify seed removal. We evaluated seed selection for presented species, monthly removal, and whether biotic and abiotic factors (e.g., distance to nearest nest, temperature) influenced seed removal. Our top model indicated seed removal was positively correlated with nest height, an indicator of colony size. Distance to seeds and cheatgrass canopy cover reduced seed removal, likely due to increased search and handling time. Harvester ants were selective, removing Indian ricegrass (Achnatherum hymenoides) more than any other species presented. We suspect this was due to ease of seed handling and low weight variability. Nest density influenced monthly seed removal, as we estimated monthly removal of 1,890 seeds for 0.25 ha plots with 1 nest and 29,850 seeds for plots with 15 nests. Applying monthly seed removal to historical restoration treatments across the western United States showed harvester ants can greatly reduce seed availability at degraded sagebrush sites; for instance, fourwing saltbush (Atriplex canescens) seeds could be removed in <2 months. Collectively, these results shed light on seed removal by harvester ants and emphasize their potential influence on postfire restoration within invaded sagebrush communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号