首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Proteins that are modified by chemical conjugation require at least two separate purification processes. First the bulk protein is purified, and then after chemical conjugation, a second purification process is required to obtain the modified protein. In an effort to develop new enabling technologies to integrate bioprocessing and protein modification, we describe the use of disulfide‐bridging conjugation to conduct PEGylation during protein refolding. Preliminary experiments using a PEG‐mono‐sulfone reagent with partially unfolded leptin and unfolded RNAse T1 indicated that the cysteine thiols underwent disulfide‐bridging conjugation to give the PEGylated proteins. Interferon‐β1b (IFN‐β1b) was then expressed in E.coli as inclusion bodies and found to undergo disulfide bridging‐conjugation during refolding. The PEG‐IFN‐β1b was isolated by ion‐exchange chromatography and displayed in vitro biological activity. In the absence of the PEGylation reagent, IFN‐β1b refolding was less efficient and yielded protein aggregates. No PEGylation was observed if the cysteines on IFN‐β1b were first modified with iodoacetamide prior to refolding. Our results demonstrate that the simultaneous refolding and disulfide bridging PEGylation of proteins could be a useful strategy in the development of affordable modified protein therapeutics.  相似文献   

3.
Approximately 29 species in seven genera (Chiroderma, Mesophylla, Platyrrhinus, Uroderma, Vampyressa, Vampyriscus, and Vampyrodes) compose the Subtribe Vampyressina, a group of New World leaf-nosed bats (Phyllostomidae) specialized in fruit-eating. A recent study of restriction-site variability within the mitochondrial ND3-ND4 gene region contrasts with other molecular data, including sequence data from other mitochondrial genes, by suggesting that the monotypic genus Ectophylla (E. alba) also is member of the group and is related closely to Mesophylla. In this study, we address possible explanations for why the restriction-site data appear to contradict other molecular data by performing phylogenetic analysis of DNA sequence variation (direct survey) in the ND3-ND4 region and cytochrome b gene and by re-assessing ND3-ND4 restriction-site variability in the known sequences (indirect survey). Results from analysis of sequence data reject the Ectophylla-Mesophylla hypothesis (P<0.001) and suggest four primary lineages within Vampyressina: (1) Mesophylla-Vampyressa; (2) Chiroderma-Vampyriscus; (3) Platyrrhinus-Vampyrodes; and (4) Uroderma. We also find no support for the Ectophylla-Mesophylla hypothesis in our re-analysis of ND3-ND4 restriction-site variability, and suggest the differences between molecular studies have a methodological basis.  相似文献   

4.
聚乙二醇(PEG)定点修饰蛋白药物是针对蛋白特定基团特定位点的修饰,相比于非定点随机修饰的特点是PEG修饰位点的单一与确定,避免了修饰异构体的干扰,能较好的保留药物体内外活性;修饰产物组成均一、性质稳定,便于质量控制,降低由修饰异构体引起的潜在的安全性风险,并很大程度上提高得率,降低成本。已有PEG定点修饰蛋白药物上市,还有部分处于临床试验阶段。本文综述了PEG定点修饰蛋白药物的技术研究与临床进展,包括PEG定点修饰剂、定点修饰方法、PEG定点修饰的上市和临床药物及面临的问题,并展望了PEG修饰技术未来的发展前景。  相似文献   

5.
Bromodomain-containing protein 4 (BRD4) has emerged as a promising treatment target for bone-related disorders. (+)-JQ1, a thienotriazolodiazepine compound, has been shown to inhibit pro-osteoclastic activity in a BRD4-dependent approach and impede bone loss caused by ovariectomy (OVX) in vivo. However, clinical trials of (+)-JQ1 are limited because of its poor druggability. In this study, we synthesized a new (+)-JQ1 derivative differing in structure and chirality. One such derivative, (+)-ND, exhibited higher solubility and excellent inhibitory activity against BRD4 compared with its analogue (+)-JQ1. Interestingly, (-)-JQ1 and (-)-ND exhibited low anti-proliferative activity and had no significant inhibitory effect on RANKL-induced osteoclastogenesis as compared with (+)-JQ1 and (+)-ND, suggesting the importance of chirality in the biological activity of compounds. Among these compounds, (+)-ND displayed the most prominent inhibitory effect on RANKL-induced osteoclastogenesis. Moreover, (+)-ND could inhibit osteoclast-specific gene expression, F‐actin ring generation, and bone resorption in vitro and prevent bone loss in OVX mice. Collectively, these findings indicated that (+)-ND represses RANKL‐stimulated osteoclastogenesis and averts OVX-triggered osteoporosis by suppressing MAPK and NF-κB signalling cascades, suggesting that it may be a prospective candidate for osteoporosis treatment.Subject terms: Cell biology, Chemical biology, Osteoporosis  相似文献   

6.
A novel fungal beta-glucosidase gene (bgl4) and its homologue (bgl2) were cloned from the cellulolytic fungi Humicola grisea and Trichoderma reesei, respectively. The deduced amino acid sequences of H. grisea BGL4 and T. reesei BGL2 comprise 476 and 466 amino acids, respectively, and share 73.1% identity. These beta-glucosidases show significant homology to plant beta-glucosidases belonging to the beta-glucosidase A (BGA) family. Both genes were expressed in Aspergillus oryzae, and the recombinant beta-glucosidases were purified. Recombinant H. grisea BGL4 is a thermostable enzyme compared with recombinant T. reesei BGL2. In addition to beta-glucosidase activity, recombinant H. grisea BGL4 showed a significant level of beta-galactosidase activity, while recombinant T. reesei BGL2 showed weak beta-galactosidase activity. Cellulose saccharification by Trichoderma cellulases was improved by the addition of recombinant H. grisea BGL4.  相似文献   

7.
X H He  P C Shaw  S C Tam 《Life sciences》1999,65(4):355-368
PEG modification (PEGylation) has been shown to reduce immunogenicity and prolong circulating half-life of proteins. In the present study, site-directed PEGylation was used to reduce immunogenicity and prolong plasma half-life of trichosanthin (TCS). Four TCS mutants, i.e. S7C, Q219C, K173C and [K173C,Q219C] (KQ), were constructed by site-directed mutagenesis. PEG modifications were done by reacting PEG5k-maleimide or PEG20k-maleimide reagent with the newly introduced cysteine residue of the mutants. The plasma clearance rate of PEGylated TCS mutants decreased up to 100-fold and the decrease was inversely proportional to the effective molecular size. The in vitro activities such as ribosome-inactivating activity and cytotoxicity were also decreased. However, the in vivo abortifacient activity was, slightly decreased, unchanged, or even enhanced in some preparations. PEG5k modification had little effect on immunogenicity. However, PEG20k modification significantly reduced immunogenicity. All PEG20k modified TCS mutants induced lower level IgG and IgE antibodies. In particular, PEG20k-KQ and PEG20k-K173C induced weaker systemic anaphylaxis reaction in guinea pigs. In conclusion, the present results suggest that PEG20k is better than PEG5k for reducing immunogenicity and prolonging plasma half-life. The conjugate can become a better therapeutic agent.  相似文献   

8.
Polyethylene glycol modification (PEGylation) can enhance the pharmacokinetic properties of therapeutic proteins by the attachment of polyethylene glycol (PEG) to the surface of a protein to shield the protein surface from proteolytic degradation and limit aggregation. However, current PEGylation strategies often reduce biological activity, potentially as a result of steric hindrance of PEG. Overall, there are no structure‐based guidelines for selection of conjugate sites that retain optimal biological activity with improved pharmacokinetic properties. In this study, site‐specific PEGylation based on the FGF2‐FGFR1‐heparin complex structure is performed. The effects of the conjugate sites on protein function are investigated by measuring the receptor/heparin binding affinities of the modified proteins and performing assays to measure cell‐based bio‐activity and in vivo stability. Comprehensive analysis of these data demonstrates that PEGylation of FGF2 that avoids the binding sites for fibroblast growth factor receptor 1 (FGFR1) and heparin provides optimal pharmacokinetic enhancement with minimal losses to biological activity. Animal experiments demonstrate that PEGylated FGF2 exhibits greater efficacy in protecting against traumatic brain injury‐induced brain damage and neurological functions than the non‐modified FGF2. This rational structure‐based PEGylation strategy for protein modification is expected to have a major impact in the area of protein‐based therapeutics.  相似文献   

9.
为了建立聚乙二醇 (PEG) 巯基定点修饰溶葡球菌酶的方法,并检验假定连接区的突变与修饰对酶活的影响,对溶葡球菌酶的假定连接区进行了巯基聚乙二醇定点修饰研究。通过分析溶葡球菌酶的结构特征,选择两个结构域之间的氨基酸 (133-154aa) 进行定点突变引入半胱氨酸残基。使用单甲氧基聚乙二醇马来酰亚胺 (mPEG-MAL) 进行定点修饰,对修饰后的酶进行纯化并测定酶活性。结果表明定点突变的半胱氨酸残基PEG修饰效率高、产物单一,运用简便的Ni2+-NTA柱亲和层析法实现了一步分离,获得了高纯度的目标蛋白,但在连接区进行定点突变及PEG定点修饰后的酶活有不同程度的降低,表明假定连接区部分位点的PEG修饰会对溶葡球菌酶的催化活性产生一定影响。  相似文献   

10.
Coexpression of pairs of nonhaemolytic H1yA mutants in the recombination-deficient (recA) strain Escherichia coli HB101 resulted in a partial reconstitution of haemolytic activity, indicating that the mutation in one H1yA molecule can be complemented by the corresponding wild-type sequence in the other mutant HlyA molecule and vice versa. This suggests that two or more HlyA molecules aggregate prior to pore formation. Partial reconstitution of the haemolytic activity was obtained by the combined expression of a nonhaemolytic HlyA derivative containing a deletion of five repeat units in the repeat domain and several nonhaemolytic HlyA mutants affected in the pore-forming hydrophobic region. The simultaneous expression of two inactive mutant HlyA proteins affected in the region at which HlyA is covalently modified by HlyC and the repeat domain, respectively, resulted in a haemolytic phenotype on blood agar plates comparable to that of wild-type haemolysin. However, complementation was not possible between pairs of HlyA molecules containing site-directed mutations in the hydrophobic region and the modification region, respectively. In addition, no complementation was observed between HlyA mutants with specific mutations at different sites of the same functional domain, i.e. within the hydrophobic region, the modification region or the repeat domain. The aggregation of the HlyA molecules appears to take place after secretion, since no extracellular haemolytic activity was detected when a truncated but active HlyA lacking the C-terminal secretion sequence was expressed together with a non-haemolytic but transport-competent HlyA mutant containing a deletion in the repeat domain.  相似文献   

11.
Hu T  Li D  Manjula BN  Acharya SA 《Biochemistry》2008,47(41):10981-10990
The PEGylated hemoglobin (Hb) has been evaluated as a potential blood substitute. In an attempt to understand the autoxidation of the PEGylated Hb, we have studied the autoxidation of the PEGylated Hb site-specifically modified at Cys-93(beta) or at Val-1(beta). PEGylation of Hb at Cys-93(beta) perturbed the heme environment and increased the autoxidation rate of Hb, which is at a higher level than that caused by PEGylation at Val-1(beta). The perturbation of the heme environment of Hb is attributed to the maleimide modification at Cys-93(beta) and not due to conjugation of the PEG chains. However, the PEG chains enhance the autoxidation and the H 2O 2 mediated oxidation of Hb. Accordingly, the PEG chains are assumed to increase the water molecules in the hydration layer of Hb and enhance the autoxidation by promoting the nucleophilic attack of heme. The autoxidation rate of the PEGylated Hb does not show an inverse correlation with the oxygen affinity. The H 2O 2 mediated structural loss and the heme loss of Hb are increased by maleimide modification at Cys-93(beta) and further decreased by conjugation of the PEG chains. The autoxidation of the PEGylated Hbs is attenuated significantly in the plasma, possibly due to the presence of the antioxidant species in the plasma. This result is consistent with the recent suggestion that there is no direct correlation between the in vitro and in vivo autoxidation of the PEGylated Hb. Therefore, the pattern of PEGylation can be manipulated for the design of the PEGylated Hb with minimal autoxidation.  相似文献   

12.
Four kinds of symmetrically branched oligoglyceryl trimeric (BGL003)-paclitaxel conjugates and a corresponding heptameric (BGL007) conjugate were synthesized. Molecular weights of all the compounds were less than two times that of paclitaxel. The anti-tumor activity of the most water-soluble BGL003 conjugate was examined and found to be preserved in spite of the chemical modification that is displacement of the N3'-debenzoyl residue with the BGL003 succinyl residue.  相似文献   

13.
天花粉蛋白的定点聚乙二醇修饰   总被引:3,自引:0,他引:3  
用一种定点修饰天花粉蛋白(trichosanthin,TCS)的方法,将聚乙二醇(PEG)偶联到预先选定的位点.利用nTCS无半胱氨酸(Cys)残基这一特点,通过定点突变将一个Cys残基引入TCS以取代第7位的丝氨酸(Ser)残基.然后,与巯基反应的PEG-m aleim ide 即可偶联到新引入的Cys 残基上.经纯化得到均一的PEG-TCS复合物,在SDS-PAGE上显示一条区带,表观分子量为38 kD.复合物的体外致核糖体失活活性降低了6倍,但其体内引产活性与nTCS相同.定点PEG修饰方法为改造TCS提供了新途径.  相似文献   

14.
An adenine analog 8-[m-(m-fluorosulfonylbenzamido)benzylthio]adenine (FSB-adenine) reacts covalently with sheep heart phosphofructokinase. Under conditions optimal for allosteric kinetics the modified enzyme is less sensitive to inhibition by ATP and insensitive to activation by AMP, cyclic AMP, and ADP. The concentration of fructose-6-P necessary for half-maximal activity is markedly decreased, while the cooperativity to the same substrate is not changed under the same conditions. The modified enzyme is more stable at pH 6.5 when compared with the native enzyme. Changes in the allosteric kinetics of the enzyme are proportional to the extent of modification reaching maximal effect when 3.2 mol of the reagent were bound/mol of tetrameric enzyme. Affinity labeling of the enzyme by the adenine derivative does not affect significantly the catalytic site. This is evidenced by the demonstration that under assay conditions optimal for Michaelian kinetics neither the Km for ATP nor for fructose-6-P is significantly changed following chemical modification. Maximal activity of the modified enzyme was 60% of the native enzyme. ADP gives the best protection, while AMP gives less protection against modification by the reagent. ATP slows the rate of the reaction and causes a slight decrease in maximum binding of the reagent to the enzyme. Modification of the enzyme caused a marked reduction of AMP and ADP binding. The evidence indicates that the modified site is a nucleotide mono- and diphosphate activation site.  相似文献   

15.
The efficacy of protein-based medicines can be compromised by their rapid clearance from the blood circulatory system. Achieving optimal pharmacokinetics is a key requirement for the successful development of safe protein-based medicines. Protein PEGylation is a clinically proven strategy to increase the circulation half-life of protein-based medicines. One limitation of PEGylation is that there are few strategies that achieve site-specific conjugation of PEG to the protein. Here, we describe the covalent conjugation of PEG site-specifically to a polyhistidine tag (His-tag) on a protein. His-tag site-specific PEGylation was achieved with a domain antibody (dAb) that had a 6-histidine His-tag on the C-terminus (dAb-His(6)) and interferon α-2a (IFN) that had an 8-histidine His-tag on the N-terminus (His(8)-IFN). The site of PEGylation at the His-tag for both dAb-His(6)-PEG and PEG-His(8)-IFN was confirmed by digestion, chromatographic, and mass-spectral studies. A methionine was also inserted directly after the N-terminal His-tag in IFN to give His(8)Met-IFN. Cyanogen bromide digestion studies of PEG-His(8)Met-IFN were also consistent with PEGylation at the His-tag. By using increased stoichiometries of the PEGylation reagent, it was possible to conjugate two separate PEG molecules to the His-tag of both the dAb and IFN proteins. Stability studies followed by in vitro evaluation confirmed that these PEGylated proteins retained their biological activity. In vivo PK studies showed that all of the His-tag PEGylated samples displayed extended circulation half-lives. Together, our results indicate that site-specific, covalent PEG conjugation at a His-tag can be achieved and biological activity maintained with therapeutically relevant proteins.  相似文献   

16.
Chemical modification of proteins with substances such as poly(ethylene glycol) can add useful properties to proteins. Currently PEGylation is done in a random manner utilizing amino residues dispersed throughout a protein. For proteins such as immunotoxins, which have several different functional domains, random modification leads to inactivation. To determine if we could produce an immunotoxin with a diminished number of lysine residues so that chemical modification could be restricted to certain regions of the protein, we chose the recombinant immunotoxin anti-Tac(dsFv)-PE38 that has 13 lysine residues in the Fv portion and 3 in the toxin. We prepared a series of mutants with 0-12 lysines in the Fv and 0 or 3 in the toxin. Almost all of these molecules retain full biological activity. Our data indicate that replacement of lysine residues can be achieve without loss of biological potency. These molecules are a useful starting point to carry out site-specific PEGylation experiments.  相似文献   

17.
Nonactivated phosphorylase kinase from rabbit skeletal muscle is inactivated by treatment with phenylglyoxal. Under mild reaction conditions, a derivative that retains 10-15% of the pH 8.2 catalytic activity is obtained. The kinetics of inactivation profile, differential effects of modification on pH 6.8 and 8.2 catalytic activities, and the insensitiveness of the modified enzyme to activation by ADP reveal that the 10-15% of catalytic activity remaining is very likely due to intrinsic catalytic activity of the derivative rather than to the presence of unmodified enzyme molecules. The kinetic results also suggest that the inactivation is correlatable with the reaction of one molecule of the reagent with the enzyme without any prior binding of phenylglyoxal. The phenylglyoxal modification reduces the autophosphorylation rate of the kinase. Autophosphorylated phosphorylase kinase is inactivated by phenylglyoxal at a much slower rate than the inactivation of nonactivated kinase. Thus, phenylglyoxal modification influences the phosphorylation and vice versa. The modified enzyme can be reactivated by treatment with trypsin or by dissociation using chatropic salts. The activity of the phenylglyoxal-modified enzyme after trypsin digestion or dissociation with LiBr reaches the same level as that of the native enzyme digested with trypsin or treated with LiBr under identical conditions. The results suggest that the effect of modification is overcome by dissociation of the subunits of phosphorylase kinase and that the catalytic site is not modified under conditions when 85% of the pH 8.2 catalytic activity is lost. Among various nucleotides and metal ions tested, only ADP, with or without Mg2+, afforded effective protection against inactivation with phenylglyoxal. At pH 6.8, 1 mM ADP afforded complete protection against inactivation. Experiments with 14C-labeled phenylglyoxal revealed that ADP seemingly protects one residue from modification. This result is in agreement with the kinetic result that the inactivation seemingly is due to reaction of one molecule of the reagent with the enzyme. The results confirm the existence of a high-affinity ADP binding site on nonactivated phosphorylase kinase and suggest the involvement of a functional arginyl residue at or near the ADP binding site in the regulation of of pH 8.2 catalytic activity of the enzyme.  相似文献   

18.
Reaction of insulin with 2-chloro- or 2-iodo-N-methylpyridinium iodide affords, amongst others, an insulin analogue modified at tha A14-tyrosine residue. Degradative procedures which pinpoint the exact position of modification are described. Highest yields of the derivative are obtained using the 2-iodo-N-methylpyridinium iodide as reagent. In the mouse convulsion assay this derivative retains 72% of its activity.  相似文献   

19.
The lipopolysaccharide (LPS) of the Pseudomonas aeruginosa serotype 06 rough-type mutant A28 was isolated by a modified phenol-chloroform-petroleum ether extraction method. Deoxycholate-polyacrylamide gel electrophoresis indicated a single band with mobility similar to that of the complete core region of the wild-type parent serotype 06 (International Antigenic Typing Scheme) strain. Compositional analysis of the LPS indicated that the core oligosaccharide was composed of D-glucose (three units), L-rhamnose (one unit), 2-amino-2-deoxy-D-galactose (one unit), L-glycero-D-manno-heptose (two units), 3-deoxy-D-manno-octulosonic acid (two units), L-alanine (one unit), and phosphate (two units). Under the mild conditions of hydrolysis with methanolic hydrogen chloride, a 7-O-carbamoyl substituent was observed on the second heptose residue. The glycan structure of the LPS was determined by employing one- and two-dimensional nuclear magnetic resonance spectroscopy and mass spectrometry-based methods with a backbone oligosaccharide that was obtained from the LPS by deacylation, dephosphorylation, and reduction of the terminal glucosamine. On the basis of the results of the present study and our earlier work with the P. aeruginosa 06-derived core-defective mutant R5 (H. Masoud, E. Altman, J. C. Richards, and J. S. Lam, Biochemistry, 33:10568-10578, 1994), a structural model for the complete core oligosaccharide is proposed.  相似文献   

20.
The interaction of rat liver acetyl-CoA carboxylase with a 2',3'-dialdehyde derivative of ATP (oATP) has been studied. The degree of the enzyme inactivation has been found to depend on the oATP concentration and the incubation time. ATP was proved to be the only substrate which protected the inactivation. Acetyl-CoA did not effect inactivation, while HCO3- accelerated the process. Ki values for oATP in the absence and presence of HCO3- were 0.35 +/- 0.04 and 0.5 +/- 0.06 mM, and those of the modification constant (kmod) were 0.11 and 0.26 min-1 respectively. oATP completely inhibited the [14C]ADP in equilibrium ATP exchange and did not effect the [14C]acetyl-CoA in equilibrium malonyl-CoA exchange. Incorporation of approximately 1 equivalent of [3H]oATP per acetyl-CoA carboxylase subunit has been shown. No recovery of the modified enzyme activity has been observed in Tris or beta-mercaptoethanol containing buffers, and treatment with NaB3H4 has not led to 3H incorporation. The modification elimination of the ATP triphosphate chain. The results indicated the affinity modification of acetyl-CoA carboxylase by oATP. It was shown that the reagent apparently interacted selectively with the epsilon-amino group of lysine in the ATP-binding site to form a morpholine-like structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号