首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Inhibitors of hepatitis C virus NS3 serine protease often incorporate a large P2 moiety to interact with the surface of the enzyme while shielding part of the catalytic triad. This feature is important in many inhibitors in order to have the necessary potency needed for efficacy. In this Letter we explore some new P2 motifs to further exploit this region of the enzyme. In a continuing effort to replace the often found 4-hydroxyproline P2 core found in the majority of inhibitors for this target, various directly attached aryl derivatives were evaluated. Of these, the 2,4-disubstituted thiazole core proved to be the most interesting. SAR around this motif has lead to compounds with Ki’s in the high picomolar range and provided cellular potencies in the single digit nM range.  相似文献   

2.
We have discovered that introduction of appropriate amino acid derivatives at P'2 position improved the binding potency of P3-capped alpha-ketoamide inhibitors of HCV NS3 serine protease. X-ray crystal structure of one of the inhibitors (43) bound to the protease revealed the importance of the P'2 moiety.  相似文献   

3.
Structural homology between thrombin inhibitors and the early tetrapeptide HCV protease inhibitor led to the bioisosteric replacement of the P2 proline by a 2,4-disubstituted azetidine within the macrocyclic β-strand mimic. Molecular modeling guided the design of the series. This approach was validated by the excellent activity and selectivity in biochemical and cell based assays of this novel series and confirmed by the co-crystal structure of the inhibitor with the NS3/4A protein (PDB code: 4TYD).  相似文献   

4.
Synthesis and HCV NS3 serine protease inhibitory activity of 4-hydroxyproline derived macrocyclic inhibitors and SAR around this macrocyclic core is described in this communication. X-ray structure of inhibitor 38 bound to the protease is discussed.  相似文献   

5.
The goal of treatment of chronic hepatitis C is to achieve a sustained virological response, which is defined as exhibiting undetectable hepatitis C virus (HCV) RNA levels in serum following therapy for at least six months. However, the current treatment is only effective in 50% of patients infected with HCV genotype 1, the most prevalent genotype in Brazil. Inhibitors of the serine protease non-structural protein 3 (NS3) have therefore been developed to improve the responses of HCV-infected patients. However, the emergence of drug-resistant variants has been the major obstacle to therapeutic success. The goal of this study was to evaluate the presence of resistance mutations and genetic polymorphisms in the NS3 genomic region of HCV from 37 patients infected with HCV genotype 1 had not been treated with protease inhibitors. Plasma viral RNA was used to amplify and sequence the HCV NS3 gene. The results indicate that the catalytic triad is conserved. A large number of substitutions were observed in codons 153, 40 and 91; the resistant variants T54A, T54S, V55A, R155K and A156T were also detected. This study shows that resistance mutations and genetic polymorphisms are present in the NS3 region of HCV in patients who have not been treated with protease inhibitors, data that are important in determining the efficiency of this new class of drugs in Brazil.  相似文献   

6.
A sulfonamide replacement of the P2–P3 amide bond in the context of macrocyclic HCV NS3 protease inhibitors was investigated. These analogs displayed good inhibitory potency in the absence of any P3 capping group. The synthesis and preliminary SAR are described.  相似文献   

7.
Herein, we report the synthesis and structure–activity relationship studies of new analogs of boceprevir 1 and telaprevir 2. Introduction of azetidine and spiroazetidines as a P2 substituent that replaced the pyrrolidine moiety of 1 and 2 led to the discovery of a potent hepatitis C protease inhibitor 37c (EC50 = 0.8 μM).  相似文献   

8.
We have synthesized and evaluated a new series of acyclic P4-benzoxaborole-based HCV NS3 protease inhibitors. Structure-activity relationships were investigated, leading to the identification of compounds 5g and 17 with low nanomolar potency in the enzymatic and cell-based replicon assay. The linker-truncated compound 5j was found to exhibit improved absorption and oral bioavailability in rats, suggesting that further reduction of molecular weight and polar surface area could result in improved drug-like properties of this novel series.  相似文献   

9.
Modification of the P(2) and P(1) side chains of earlier P(3)-capped alpha-ketoamide inhibitor of HCV NS3 serine protease 1 resulted in the discovery of compound 24 with about 10-fold improvement in potency.  相似文献   

10.
SAR on the phenethylamide 1 (Ki 1.2 microM) in the P2- and the P'-position led to potent inhibitors, one of which showed good exposure and low clearance when administered intramuscularly to rat.  相似文献   

11.
In an attempt to identify potential HCV NS3 protease inhibitors lead compounds, a series of novel indoles (10a-g) was designed. Molecular modeling study, including fitting to a 3D-pharmacophore model of the designed molecules (10a-g), with HCV NS3 protease hypothesis using catalyst program was fulfilled. Also, the molecular docking into the NS3 active site was examined using Discovery Studio 2.5 software. Several compounds showed significant high simulation docking score and fit values. The designed compounds with high docking score and fit values were synthesized and biologically evaluated in vitro using an NS3 protease binding assay. It appears that most of the tested compounds reveal promising inhibitory activity against NS3 protease. Of these, compounds 10a and 10b demonstrated potent HCV NS3 protease inhibitors with IC50 values of 9 and 12 ??g/mL, respectively. The experimental serine protease inhibitor activities of compounds 10a-g were consistent with their molecular modeling results. Inhibitors from this class have promising characteristics for further development as anti-HCV agents.  相似文献   

12.
Inhibition of the hepatitis C virus (HCV) NS3 protease has emerged as an attractive approach to defeat the global hepatitis C epidemic. In this work, we present the synthesis and biochemical evaluation of HCV NS3 protease inhibitors comprising a non-natural aromatic P(1) moiety. A series of inhibitors with aminobenzoyl sulfonamides displaying submicromolar potencies in the full-length NS3 protease assay was prepared through a microwave-irradiated, palladium-catalyzed, amidocarbonylation protocol.  相似文献   

13.
N-terminal truncation of the hexapeptide ketoacid 1 gave rise to potent tripeptide inhibitors of the hepatitis C virus NS3 protease/NS4A cofactor complex. Optimization of these tripeptides led to ketoacid 30 with an IC50 of 0.38 microM. The SAR of these tripeptides is discussed in the light of the recently published crystal structures of a ternary tripetide/NS3/NS4A complexes.  相似文献   

14.
Novel NS3/4A protease inhibitors comprising quinazoline derivatives as P2 substituent were synthesized. High potency inhibitors displaying advantageous PK properties have been obtained through the optimization of quinazoline P2 substituents in three series exhibiting macrocyclic P2 cyclopentane dicarboxylic acid and P2 proline urea motifs. For the quinazoline moiety it was found that 8-methyl substitution in the P2 cyclopentane dicarboxylic acid series improved on the metabolic stability in human liver microsomes. By comparison, the proline urea series displayed advantageous Caco-2 permeability over the cyclopentane series. Pharmacokinetic properties in vivo were assessed in rat on selected compounds, where excellent exposure and liver-to-plasma ratios were demonstrated for a member of the 14-membered quinazoline substituted P2 proline urea series.  相似文献   

15.
A potent and novel class of product-like inhibitors of the HCV NS3 protease was discovered by employing a phosphinic acid as a carboxylate isostere. The replicon activity and pharmacokinetic profile of this series of compounds was optimized by exploring the substitution of the phosphinic acid, as well as conformationally constraining these compounds through macrocyclization. The syntheses and preliminary biological evaluation of these phosphinic acids is described.  相似文献   

16.
4,4-Dialkyl-1-hydroxy-3-oxo-3.4-dihydronaphthalene-3-yl benzothiadiazine derivatives were synthesized and evaluated as inhibitors of genotypes 1a and 1b HCV NS5B polymerase. A number of these compounds exhibited potent activity against genotypes 1a and 1b HCV polymerase in both enzymatic and cell culture activities. A representative compound also showed favorable pharmacokinetics in the rat.  相似文献   

17.
Naphthalene-linked P2-P4 macrocycles within a tri-peptide-based acyl sulfonamide chemotype have been synthesized and found to inhibit HCV NS3 proteases representing genotypes 1a and 1b with single digit nanomolar potency. The pharmacokinetic profile of compounds in this series was optimized through structural modifications along the macrocycle tether as well as the P1 subsite. Ultimately a compound with oral bioavailability of 100% in rat, and a long half-life in plasma was obtained. However, compounds in this macrocyclic series exhibited cardiac effects in an isolated rabbit heart model and for this reason further optimization efforts were discontinued.  相似文献   

18.
We describe a versatile system for monitoring the activity of the NS3-4A serine protease of the hepatitis C virus (HCV) in mammalian cells. The system relies on coexpression of the protease and of an artificial substrate containing a reporter domain and an intracellular targeting sequence separated by a NS3-4A-specific cleavage site. We constructed two different substrates suitable for different applications. The first substrate secretory alkaline phosphatase-1 (SEAP-1) harbors the NS3-4A cleavage site inserted between the SEAP and a membrane anchor featuring an endoplasmic reticulum retention sequence. The arrangement of this substrate is such that SEAP is secreted in the extracellular medium depending on the NS3 protease activity. We show that SEAP-1 can be used to evaluate the activity of NS3-4A inhibitors in living cells. In the second substrate (CD8-1), SEAP is replaced by the extracellular domain of the lymphocyte surface antigen CD8 alpha. The arrangement of this substrate is such that the CD8 alpha domain is transported to the cell surface upon NS3-4Ap cleavage and remains associated with the plasma membrane as an integral membrane protein. We show that CD8-1 can be used for selecting cells capable of supporting HCV replication.  相似文献   

19.
Starting from a pentapeptide Hepatitis C virus NS3 protease inhibitor, a number of alpha-ketoamide inhibitors based on novel dichlorocyclopropylproline P2 core were synthesized and investigated for their HCV NS3 serine protease activity. The key intermediate 3,4-dichlorocyclopropylproline was obtained through a dichloro carbene insertion to 3,4-dehydroproline. The size of the molecules was reduced significantly through a series of truncations of the initial pentapeptide. By varying P1 side chain in length and size, potency and selectivity were improved. A variety of aliphatic carbamate and urea capping groups were examined. In general, compounds with urea cappings were more potent and selective than their carbamate counterparts. The most potent compound was a tert-butyl urea analog. Variations at P3 position were also investigated. Among the three residues incorporated, tert-leucine was clearly superior, leading to compounds that had excellent enzyme potency and selectivity. The most potent compound achieved cell-based replicon assay EC50 of 40 nM. The most promising compound of all had excellent potency in both enzyme (Ki* = 9 nM) and replicon assays (EC50 = 100 nM). Its bioavailabilities were above 10% in all three animal species (rats, monkeys, and dogs). It has provided a lead for future investigations.  相似文献   

20.
The mechanism and kinetics of the interactions between ligands and immobilized full‐length hepatitis C virus (HCV) genotype 1a NS3 have been characterized by SPR biosensor technology. The NS3 interactions for a series of NS3 protease inhibitors as well as for the NS4A cofactor, represented by a peptide corresponding to the sequence interacting with the enzyme, were found to be heterogeneous. It may represent interactions with two stable conformations of the protein. The NS3–NS4A interaction consisted of a high‐affinity (KD = 50 nM) and a low‐affinity (KD = 2 µM) interaction, contributing equally to the overall binding. By immobilizing NS3 alone or together with NS4A it was shown that all inhibitors had a higher affinity for NS3 in the presence of NS4A. NS4A thus has a direct effect on the binding of inhibitors to NS3 and not only on catalysis. As predicted, the mechanism‐based inhibitor VX 950 exhibited a time‐dependent interaction with a slow formation of a stable complex. BILN 2061 or ITMN‐191 showed no signs of time‐dependent interactions, but ITMN‐191 had the highest affinity of the tested compounds, with both the slowest dissociation (koff) and fastest association rate, closely followed by BILN 2061. The koff for the inhibitors correlated strongly with their NS3 protease inhibitory effect as well as with their effect on replication of viral proteins in replicon cell cultures, confirming the relevance of the kinetic data. This approach for obtaining kinetic and mechanistic data for NS3 protease inhibitor and cofactor interactions is expected to be of importance for understanding the characteristics of HCV NS3 functionality as well as for anti‐HCV lead discovery and optimization. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号