首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
[3H]Dihydroalprenolol, a potent beta-adrenergic antagonist, was used to identify the adenylate cyclase-coupled beta-adrenoceptors in isolated membranes of rat skeletal muscle. The receptor sites, as revealed by [3H]dihydroalprenolol binding, were predominantly localized in plasmalemmal fraction. That skeletal muscle fraction may also contain the plasmalemma of other intramuscular cells, especially that of blood vessels. Hence, the [3H]dihydroalprenolol binding observed in that fraction may be due partly to its binding to the plasmalemma of blood vessels. Small but consistent binding was also observed in sarcoplasmic reticulum and mitochondria. The level of [3H]dihydroalprenolol binding in different subcellular fractions closely correlated with the level of adenylate cyclase present in those fractions. The binding of [3H]dihydroalprenolol to plasmalemma exhibited saturation kinetics. The binding was rapid, reaching equilibrium within 5 min, and it was readily dissociable. From the kinetics of binding, association (K1) and dissociation (K2) rate constants of 2.21 . 10(7) M-1 . min-1 and 3.21 . 10(-1) min-1, respectively, were obtained. The dissociation constant (Kd) of 15 mM for [3H]dihydroalprenolol obtained from saturation binding data closely agreed with the Kd derived from the ratio of dissociation and association rate constants (K2/K1). Several beta-adrenergic agents known to be active on intact skeletal muscle also competed for [3H]dihydroalprenolol binding sites in isolated plasmalemma with essentially similar selectivity and stereospecificity. Catecholamines competed for [3H]dihydroalprenolol binding sites with a potency of isoproterenol greater than epinephrine greater than norepinephrine. A similar order of potency was noted for catecholamines in the activation of adenylate cyclase. Effects of catecholamines were stereospecific, (-)-isomers being more potent than (+)-isomers. Phenylephrine, an alpha-adrenergic agonist, showed no effect either on [3H]dihydroalprenolol binding or on adenylate cyclase. Known beta-adrenergic antagonists, propranolol and alprenolol, stereospecifically inhibited the [3H]dihydroalprenolol binding and the isoproterenol-stimulated adenylate cyclase. The Ki values for the antagonists determined from inhibition of [3H]dihydroalprenolol binding agreed closely with the Ki values obtained from the inhibition of adenylate cyclase. The data suggest that the binding of [3H]dihydroalprenolol in skeletal muscle membranes possess the characteristics of a substance binding to the beta-adrenergic receptor.  相似文献   

2.
[3H]Dihydroalprenolol was used to study beta-adrenergic binding sites in plasma membranes isolated from rabbit liver. Specific binding was measured at 25 degrees C as the difference between total binding and binding in the presence of 2 microM dl-propranolol or 10 microM l-isoproterenol. Binding was saturable and stereoselective. The maximum number of binding sites (Bmax) was 434 +/- 41 fmol/mg of protein. The Kd for this binding as determined by Scatchard analysis was 1.39 +/- 0.09 nM. This value agreed well with the Kd value (1.27 +/- 0.12 nM) determined by kinetic analysis. The potency order for the displacement of bound [3H]dihydroalprenolol was isoproterenol greater than epinephrine greater than norepinephrine, indicative of beta 2-receptors. Use of beta 1- and beta 2-subtype-selective inhibitors also supported the interpretation that the binding characteristics are those of beta 2-receptors. Computer-aided analysis of this inhibition indicated that the beta-receptors in this membrane are predominantly, if not exclusively, of the beta 2-subtype. That these receptors are responsible for mediating catecholamine stimulation of hepatic glycogenolysis was deduced from the inhibition of agonist-stimulated glycogenolysis, in isolated hepatocytes, by beta-receptor subtype-selective antagonists. Thus, the hydrochloride of (t-butylamino-3-ol-2-propyl)oximino-9 fluorene, a beta-antagonist which has higher affinity at beta 2-sites than at beta 1-sites, was 3 orders of magnitude more potent in inhibiting isoproterenol-stimulated glycogenolysis than either atenolol or practolol, both of which are beta 1-selective antagonists. These results resemble the inhibition of [3H]dihydroalprenolol binding in plasma membranes. The glycogenolytic effects of catecholamines occurred with the potency order isoproterenol greater than epinephrine greater than norepinephrine. Thus, both by radioligand binding studies and by metabolic studies, the functional adrenergic receptor in the rabbit liver is shown to be of the beta 2-subtype.  相似文献   

3.
In rat adipocyte membranes, both beta-adrenergic agonists and beta-adrenergic antagonists competed with (--)[3H]dihydroalprenolol for high affinity (KD 2-4 nM) and low capacity binding sites. The antagonists but not the agonists competed with (--)[3H]dihydroalprenolol for lower affinity and higher capacity sites. The present studies were performed in order to characterize the adipocyte beta-adrenergic receptor and distinguish it from low affinity, higher capacity sites which were heat-labile and not stereoselective. When isoproterenol was used to define the nonspecific binding, saturation studies showed a single binding site with a capacity of approximately 100 fmol/mg membrane protein (corresponding to approximately 50,000 sites/adipocyte). Binding was saturated by 10 nM (--)[3H]dihydroalprenolol. Approximate KD's of 204 nM were observed. Kinetic analysis of (--)[3H]dihydroalprenolol binding provided an independent measurement of KD between 0.75 and 1.1 nM. This binding site had the characteristics of a beta 1-adrenergic receptor with the potency of isoproterenol greater than norepinephrine greater than or equal to epinephrine as competitors of binding. Furthermore, the KD of inhibition of (--)[3H]dihydroalprenolol binding correlated with the Ki of inhibition by antagonists or Ka of activation by agonists of glycerol release in isolated adipocytes (r = 0.968, P less than 0.001). These results suggest that beta-adrenergic agonists compete with (--)[3H]dihydroalprenolol for the high affinity binding site which represents the physiological site. Furthermore, the use of antagonists (propranolol, alprenolol) to define specific beta-binding includes nonspecific site(s) as well as the beta-adrenergic site. Previous characterization and quantitation of beta receptors in rat fat cell membranes may have been in error by incorporating both types of binding in their measurement.  相似文献   

4.
Incubation of cardiac sarcolemma in the presence of dopamine beta-hydroxylase (DBH), a catecholamine biosynthetic enzyme, increased beta-adrenergic receptor density by 68% as measured by [3H]dihydroalprenolol (DHA) binding. The addition of DBH to plasma membranes isolated from brain, kidney, skeletal muscle, liver and intestine did not alter [3H]DHA binding. Cardiac alpha-receptors were unaffected under similar conditions. Since DBH is coreleased with norepinephrine, these results indicate that a functional coupling of the putative beta-adrenergic receptor with DBH may exist in cardiac muscle.  相似文献   

5.
The beta-adrenergic receptors of isolated human fat cells were identified using a new hydrophilic beta-adrenergic radioligand (+/-)[3H]CGP-12177. The results were compared with those from [3H]dihydroalprenolol binding to fat cells and membranes. [3H]CGP-12177 binding to isolated fat cells showed lower nonspecific binding (less than 15% of total binding) than the lipophilic [3H]dihydroalprenolol (40-60%) at 3 times the KD. At 37 degrees C, [3H]CGP-12177 binding was rapid, reversible, of high affinity (1.2 +/- 0.3 nM) and saturable. The total number of binding sites per cell in subcutaneous adipocytes was 25,000 +/- 6,000 and was equivalent to that found using membrane fractions. Displacement of [3H]CGP-12177 bound to adipocytes by propranolol was stereoselective, consistent with competition at a single site, and had the same characteristics as in membranes. The displacement curves of the beta 1-selective antagonists (atenolol and betaxolol) were biphasic, the high affinity displacement accounting for 70% of the total binding sites. Beta-adrenergic agonists also competed with [3H]CGP-12177 binding in the order of potency: (-) isoproterenol greater than (-) norepinephrine greater than (-) epinephrine, similar to that found in membranes and in in vitro studies on the lipolytic activity of isolated fat cells. This study demonstrates that the sites specifically labeled by [3H]CGP-12177 are the physiological beta-adrenoceptors and also shows that the ligand is better than [3H]dihydroalprenolol for the accurate identification of these receptors in intact human adipocytes. The methodology, which requires biopsies of less than 1 gram of adipose tissue, can be of potential interest for clinical studies investigating the status of fat cell beta-adrenoceptors in various pathophysiological situations.  相似文献   

6.
The beta 1-adrenergic receptors of turkey erythrocyte membranes have been identified by binding of the radioactively labeled antagonist (--)-[3H]dihydroalprenolol, solubilized by treatment of the membranes with the detergent digitonin, and purified by affinity chromatography. Binding of (--)-[3H]dihydroalprenolol to the membranes occurred to a single class of non-cooperative binding sites (0.2--0.3 pmol/mg protein) with a equilibrium dissociation constant (Kd) of 8 (+/- 2) nM. These sites were identified as the functional, adenylate-cyclase-linked beta 1-adrenergic receptors on the basis of: firstly, the fast association and dissociation binding kinetics at 30 degrees C; secondly, the stereospecific displacement of bound (--)-[3H]dihydroalprenolol by beta-adrenergic agonists and antagonists; and thirdly, the order of potencies for agonists to displace bound tracer (isoproterenol congruent to protokylol greater than norepinephrine congruent to epinephrine) similar to the one found for adenylate cyclase activation, and typical for beta 1-adrenergic receptors. Treatment of the membranes with the detergent digitonin solubilized 30% of the receptors in an active form. Digitonin solubilized also adenylate cyclase activity with a yield of 20 to 30%, provided the membranes were first treated with an effector known to produce a persistent active state of the enzyme: e.g. sodium fluoride. Binding sites for guanine nucleotides ([3H]p[NH]ppG) were solubilized as well. Their concentration (24 pmol/mg protein) was in large excess over the concentration of solubilized receptors (0.30--0.45 pmol/mg protein). Solubilized receptors were purified 500--2000-fold by affinity chromatography with a 25 to 35% yield, using an alprenolol-agarose affinity matrix. Affinity purified receptors were devoid of measurable adenylate cyclase activity and guanine nucleotide binding sites, thus showing that receptors and adenylate cyclase are distinct membrane constituents, and that guanine nucleotides apparently do not bind directly to the receptor molecules. Membrane-bound, solubilized and purified receptors were sensitive to inactivation by dithiothreitol, but not by N-ethylmaleimide, suggesting that receptors are at least partly constituted of protein molecules, with essential disulfide bonds.  相似文献   

7.
Identification of putative calcium channels in skeletal muscle microsomes   总被引:8,自引:0,他引:8  
D R Ferry  H Glossmann 《FEBS letters》1982,148(2):331-337
Saturable binding sites for the labelled calcium antagonist (+/-)[3H]nimodipine were found in guinea-pig hind limb skeletal muscle homogenates. Binding sites were enriched in a microsomal pellet by differential centrifugation of the homogenate. [3H]Nimodipine binding (Kd = 1.5 +/- 0.03 nM, Bmax = 2.1 +/- 0.25 pmol/protein, at 37 degrees C) copurified (6-fold) in this fraction with [3H]ouabain binding (6.6-fold) and 125I-alpha-bungarotoxin binding (5-fold). d-cis-Diltiazem (but not 1-cis-diltiazem) stimulated (+/-) [3H]nimodipine binding (ED50 1 microM) by increasing the Bmax. Binding sites discriminated between the optical enantiomers of 1.4-dihydropyridine calcium antagonists and the optically pure enantiomers of D-600. The data confirm, with biochemical techniques, the presence of 1,4-dihydropyridine and (+/-) D-600 inhibitable calcium channels in skeletal muscle, previously found with electrophysiological techniques.  相似文献   

8.
G. Falkay  L. Kovacs 《Life sciences》1983,32(14):1583-1590
The binding characteristics of beta-adrenergic ligand [3H]-dihydroalprenolol (DHA) were determined in particulate membranes of early human placenta (8 – 12 weeks of gestation). [3H]-DHA binding to crude membrane fractions was rapid, reversible, saturable and linearly correlated with the membrane protein concentration. Scatchard analysis of saturation experiments showed a KD of 2.80 ± 0.9 nM and a density of binding sites of 330.30 ± 93.5 fmol/mg protein. Agonist potency isoproterenol epinephrine norepinephrine indicated that early human placenta contains an adrenergic receptor of beta-2 subtype.  相似文献   

9.
Characterization of beta-adrenergic binding sites on rodent Leydig cells   总被引:1,自引:0,他引:1  
A radioligand binding technique was used to study beta-adrenergic binding sites on rodent Leydig cells. Beta-Adrenergic binding sites were found on Leydig cells in both the rat and mouse. Binding of [3H]CGP-12177 [4-(3-t-butylamino-2-hydroxypropoxy)-[5,7-3H]benzimidazole-2-one] to purified rat Leydig cells was found to be saturable, temperature and time dependent, stereospecific, and readily reversible by the beta-adrenergic antagonist propranolol. Scatchard analysis revealed the presence of high-affinity sites with an apparent dissociation constant (Kd) of 0.79 +/- 0.22 nM and maximal binding capacity (Bmax) of 1716 +/- 245 sites per rat Leydig cell. Competition of various beta-adrenergic agonists and antagonists with [3H]CGP indicates an order of potency of L-isoproterenol greater than epinephrine = salbutamol greater than norepinephrine greater than D-isoproterenol and dl-propranolol = ICI 118,551 much greater than atenolol, respectively. These observations suggest that the binding sites are predominantly of the beta 2-receptor subtype. Incubation of freshly isolated rat Leydig cells with luteinizing hormone (100 ng/ml) caused consistent stimulation of androgen production, but only occasional stimulation by the beta-agonist isoproterenol (10 microM) was observed. However, these cells consistently responded to the beta-agonist after 3 h in primary cultures. These findings indicate that rodent Leydig cells possess beta-adrenergic binding sites and point out a possible dissociation between receptor recognition and physiologic response.  相似文献   

10.
Experiments were carried out to clarify the sites of action of beta-adrenergic agonists in skeletal muscle microsomes. Microsomes were fractionated into longitudinal reticulum, terminal cisternae, and isolated transverse tubules. Transverse tubules were selectively labeled and tracked with [3H]ouabain. beta-adrenergic receptor was identified by [3H]dihydroalprenolol binding. Assays of beta-adrenergic receptor, adenylate cyclase, and protein kinase-stimulated phosphorylation showed: 1) beta-adrenergic receptor was detected in transverse tubules with a receptor density of 0.61 pmol/mg of protein. No significant binding was detected in longitudinal reticulum or in terminal cisternae. 2) Isoproterenol-stimulated adenylate cyclase was present in microsomes but was similarly confined to the transverse tubular fraction. The activity of F- stimulated cyclase in transverse tubules was 2.3 nmol/mg of protein/min. 3) No phosphorylation of microsomes by cyclic AMP and protein kinase could be detected. We conclude that the action of epinephrine on skeletal muscle is mediated through receptors and adenylate cyclase in the external membrane.  相似文献   

11.
Binding of [3H]nitrendipine, [3H]nimodipine, and (+)[3H]PN 200-110 to microsomal preparations of guinea pig smooth and cardiac muscle and brain synaptosomes revealed high affinity interaction with KD values in the sequence, (+)PN 200-110 greater than nitrendipine greater than nimodipine. Bmax values for a particular tissue were independent of the 1,4-dihydropyridine employed in radioligand binding at 25 degrees C. The temperature dependence of [3H]nitrendipine binding in cardiac and smooth muscle microsomal preparations and brain synaptosomes was measured from 0 degrees to 37 degrees C and for skeletal muscle preparations from 0 degrees to 30 degrees C. Bmax values increased with temperature for cardiac membranes, but did not vary in other tissues. van't Hoff plots were nonlinear in all tissues, enthalpy and entropy changes becoming increasingly negative with increasing temperature. Competition binding of the activator-antagonist enantiomeric 1,4-dihydropyridine pairs of Bay k 8644 and PN 202-791 for [3H]nitrendipine in smooth muscle did not reveal significant thermodynamic differences between activator and antagonist molecules.  相似文献   

12.
(minus)-Alprenolol, a potent, competitive beta-adrenergic antagonist labeled to high specific activity with tritium (17 Ci per mmol), has been used to identify binding sites in frog erythrocyte membranes having many of the characteristics to be expected of the beta-adrenergic receptors which are linked to adenylate cyclase in these membranes. The chromatographic behavior and biological activity of the labeled and native drug were essentially identical. (minus)-Alprenolol and (minus)-[3-H]alprenolol both competitively antagonize isoproterenol stimulation of frog erythrocyte membrane adenylate cyclase with a KD OF 5 TO 10 NM. (minus)-[3-H]Alprenolol binding to sites in the frog erythrocyte membranes was studied by a centrifugal assay. At 37 degrees, equilibrium binding was established within 5 min and the half-time for dissociation of bound (minus)-[3-H]alprenolol was approximately 30 s. This rapid onset and dissociation of (minus)-[3-H]alprenolol binding was in good agreement with the rapid onset of action of beta-adrenergic agonists and antagonists on the frog erythrocyte adenylate cyclase. (minus)-[3-H]Alprenolol binding was saturable. There were 0.25 to 0.35 pmol of (minus)-[3-H]alprenolol binding sites per mg of protein corresponding to 1300 to 1800 binding sites per intact frog erythrocyte. The binding sites showed half-maximal saturation at 5.0 to 10 nM (minus)-[3-H]alprenolol, which is in good agreement with the KD for alprenolol antagonism of isoproterenol stimulation of adenylate cyclase. The (minus)-[3-H]alprenolol binding sites exhibited strict stereospecificity. (minus)-Stereoisomers of beta-adrenergic antagonists or agonists were approximately 2 orders of magnitude more potent than the (+)-stereoisomers in competing for the binding sites. Comparable stereospecificity was apparent when agonists and antagonists were tested for their ability to interact with the adenylate cyclase-coupled beta-adrenergic receptors in the membranes. Potency series of 11 agonists and 13 antagonists for inhibition of binding and interaction with adenylate cyclase were identical and were characteristic of a beta2-adrenergic receptor. A variety of nonphysiologically active compounds containing a catechol moiety as well as several metabolites and cholinergic agents did not inhibit (minus)-[3-H]alprenolol binding or interact significantly as agonists or antagonists with the adenylate cyclase. The (minus)-[3-H]alprenolol binding sites studied appear to be equivalent to the beta-adrenergic receptor binding sites in the frog erythrocyte membranes.  相似文献   

13.
We examined the binding of the 1,4-dihydropyridine (DHP) [3H]PN200-110 to membranes from a fibroblast cell line transfected with the alpha 1 subunit (DHP receptor) of the L-type Ca2+ channel from rabbit skeletal muscle. Binding site affinity (KD) and density (Bmax) were 1.16 +/- 0.31 nM and 142 +/- 17 fmoles/mg protein, respectively. This affinity corresponded closely with that observed in native skeletal muscle. The Ca2+ channel antagonists diltiazem and MDL 12,330A stimulated [3H]PN200-110 binding in a dose-dependent manner while flunarizine, quinacrine and trifluoperazine inhibited binding. Surprisingly, D600 also stimulated [3H]PN200-110 binding in a dose-dependent and stereoselective manner. It is concluded that the fibroblast cells used in this study provide a unique system for interactions of the Ca2+ channel ligands with the alpha 1 subunit of the skeletal muscle L-type Ca2+ channel.  相似文献   

14.
A direct radioligand binding technique utilizing a beta-adrenergic antagonist [3H]Dihydroalprenolol [( 3H]DHA) was employed in the identification and characterization of fetal palatal beta-adrenergic receptors. [3H]DHA binding was saturable (Bmax 16 fmol/mg protein) with high affinity and an apparent equilibrium dissociation constant (KD) of 1.5 nM. Binding of [3H]DHA was displaced by the competitive beta-adrenergic antagonist propranolol in a concentration-dependent manner. Dissociation kinetic studies demonstrated almost complete reversibility of radioligand binding within 60 min. The functionality of these beta-adrenergic receptors was demonstrated by showing that fetal palatal mesenchymal cells responded to catecholamine agonists with dose-dependent accumulations of intracellular cAMP. This effect could be entirely blocked by the beta-antagonist, propranolol. The relative potency order of catecholamines in eliciting an elevation of cellular cAMP was characteristic of a beta 2-adrenergic receptor-mediated response: (-) isoproterenol greater than (-) epinephrine greater than (-) norepinephrine. In addition, this response was found to be stereospecific with (-) isoproterenol being significantly more potent than (+) isoproterenol. Both the [3H]DHA binding characteristics and the catecholamine sensitivity of fetal palatal tissue support the presence of adenylate cyclase-coupled beta-adrenergic receptors in the developing mammalian secondary palate.  相似文献   

15.
Binding of the beta-adrenergic ligands [3H]dihydroalprenolol and [125I]cyanopindolol to pineal particulate fractions was increased 1- to 3.5-fold by addition of low concentrations of melatonin, alpha-adrenergic agonists, or alpha-adrenergic antagonists. Minimum concentrations of melatonin or alpha-adrenergic compounds which increased beta-adrenergic binding were between 1 pM and 0.1 nM. The increased binding of [3H]dihydroalprenolol caused by melatonin (0.1 muM) was attributed to a major increase in Bmax, which persisted in protein fractions after removal of melatonin. Melatonin enhancement of [3H]dihydroalprenolol binding was apparent after 5 to 7 min (30(0], was was optimal between 20 and 40 min, and decreased at longer times. Alpha-Adrenergic receptors are unchanged during beta-receptor enhancement.  相似文献   

16.
(+/-)-[3H]Epinephrine binds to beta-receptors in calf cerebellar and rat lung membranes in the presence of 1.0 mM pyrocatechol and 1.0 microM phentolamine, with dissociation constants at 4 degrees C of 11 nM and 24 nM, respectively. (+/-)-[3H]Epinephrine associates to equilibrium within 20 min in both tissues, and over 50% of the binding is rapidly dissociable. Inhibition of binding by agonists and antagonists is highly stereoselective, and the structure-activity relationships of adrenergic agents in inhibiting (+/-)-[3H]epinephrine binding suggest an interaction with beta2 type noradrenergic receptors. (-)-Isoproterenol has an apparent Ki of 2 nM, (-)-epinephrine is 1.5 to 3 times weaker, and (-)-norepinephrine is 30 to 60 times weaker. Salbutamol and terbutaline, selective beta2-agonists, are potent inhibitors of binding, as are several nonspecific antagonists. Properties of the sites labeled by (+/-)-[3H]epinephrine in calf cerebellum and rat lung are closely similar. (-)-[3H]Dihydroalprenolol binding in calf cerebellum and rat lung also shows beta2 characteristics. Antagonists have similar potencies in inhibiting (-)-[3H]dihydroalprenolol and (+/-)-[3H]epinephrine binding in both tissues, but agonists are in general more potent inhibitors of (+/-)-[3H]epinephrine. Sodium and lithium selectively lower the affinity of (+/-)-[3H]epinephrine at its binding sites and the affinities of agonists, but not antagonists, at the (-)-[3H]dihydroalprenolol site. Specific (+/-)-[3H]epinephrine binding was not detectable in calf cortex and rat heart, where (-)-[3H]dihydroalprenolol binding suggests a beta1-receptor. A physiological significance of (+/-)-[3H]epinephrine binding is suggested by the strong correlation for agonists and antagonists between affinities in inhibiting binding, and in stimulating or inhibiting a beta-receptor-coupled adenylate cyclase in frog erythrocytes.  相似文献   

17.
A direct radioligand binding technique utilizing the beta-adrenergic antagonist [3H]dihydroalprenolol was employed in the identification and characterization of Trypanosoma cruzi beta-adrenergic receptors. [3H]DHA binding was saturable (Bmax = 1.5 pmol/10(6) cells) with an apparent equilibrium dissociation constant (Kd) of 127 nM. Binding of [3H]DHA was displaced by propranolol in a concentration-dependent manner. The relative potency order of adrenergic ligands in displacing [3H]DHA binding was: propranolol greater than or equal to alprenolol greater than epinephrine. 5-Hydroxytryptamine, phentolamine and catechol had no effect. The experimental results support the suggestion that beta-adrenergic receptors are present in the pathogenic protozoa Trypanosoma cruzi.  相似文献   

18.
Specific binding of the Ca2+ channel blocker [3H] verapamil to a membrane fraction from plants has been characterized. Binding to zucchini membranes was saturable and reversible. The apparent equilibrium dissociation constant is KD = 102 nM and the maximum number of binding sites is Bmax = 60 pmol/mg of protein. The KD determined from the association and dissociation rate constants is 130 nM. [3H]Verapamil binding to zucchini membranes could not be inhibited by the Ca2+ antagonists nifedipine and diltiazem. However, [3H]verapamil could be displaced by diltiazem but not by nifedipine from corn membranes. Sucrose density fractionation of zucchini membrane preparations revealed that [3H]verapamil binding sites are located primarily at the plasma membrane.  相似文献   

19.
(-)-[3H]-Dihydroalprenolol((-)[3H]DHA) binding in the rat hypothalamus appears to possess all the characteristics expected of physiologically relevant beta-adrenergic receptors. Binding of (-)-[3H]DHA to the hypothalamic sites was rapid (k1 = 1.3 X 10(-7) min-1) and also rapidly reversible. Binding was saturable at low concentrations of ligand (approximately 50-100 nM). The dissociation constant (KD) of (-)-[3H]DHA binding determined by equilibrium analysis was 19 nM. Binding displayed beta-adrenergic specificity. beta-Adrenergic agonists inhibited binding in the following order of potency: (-)-isoproterenol congruent to (-)-epinephrine greater than (-)-norepinephrine. Specific beta-adrenergic antagonists (-)-propranol and (-)-alprenolol inhibited binding at low concentrations (KD = 25-50nM) whereas the alpha-antagonist phentolamine inhibited binding at very high concentration (KD = 42 micron). Interactions of both agonists and antagonists with the sites showed stereoselectivity. The (-)-isomers of all beta-adrenergic agents tested were more potent than their respective (+)-isomers. These results suggest that specific receptor sites for beta-adrenergic catecholamines are present in rat hypothalamus.  相似文献   

20.
R S Chang  V J Lotti 《Life sciences》1983,32(22):2603-2609
The beta-adrenergic antagonist, [3H]-dihydroalprenolol ([3H] DHA), binds to membranes prepared from the rat vas deferens in a specific and saturable manner. Scatchard and Hill plot analysis indicates a single class of binding sites with no evidence of cooperative interactions. The specific binding sites have a high affinity (Kd = 0.3 nM) and a maximal occupancy estimated to be 460 fmoles [3H]-DHA bound/g wet tissue weight. Beta-adrenergic agonists and/or antagonists inhibit [3H]-DHA binding to rat vas deferens membranes in a stereospecific manner and with a relative order of potency expected for beta-adrenergic receptors of the beta2 subtype. The receptor affinities of various beta-adrenergic antagonists in the rat vas deferens determined using inhibition of [3H]-DHA binding correlated with their receptor affinities determined physiologically using antagonism of isoproterenol-induced inhibition of neurogenic contractions in-vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号