首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
NDR protein kinases are involved in the regulation of cell cycle progression and morphology. NDR1/NDR2 protein kinase is activated by phosphorylation on the activation loop phosphorylation site Ser281/Ser282 and the hydrophobic motif phosphorylation site Thr444/Thr442. Autophosphorylation of NDR is responsible for phosphorylation on Ser281/Ser282, whereas Thr444/Thr442 is targeted by an upstream kinase. Here we show that MST3, a mammalian Ste20-like protein kinase, is able to phosphorylate NDR protein kinase at Thr444/Thr442. In vitro, MST3 selectively phosphorylated Thr442 of NDR2, resulting in a 10-fold stimulation of NDR activity. MOB1A (Mps one binder 1A) protein further increased the activity, leading to a fully active kinase. In vivo, Thr442 phosphorylation after okadaic acid stimulation was potently inhibited by MST3KR, a kinase-dead mutant of MST3. Knockdown of MST3 using short hairpin constructs abolished Thr442 hydrophobic motif phosphorylation of NDR in HEK293F cells. We conclude that activation of NDR is a multistep process involving phosphorylation of the hydrophobic motif site Thr444/2 by MST3, autophosphorylation of Ser281/2, and binding of MOB1A.  相似文献   

2.
Persistent activation of protein kinase D (PKD) via protein kinase C (PKC)-mediated signal transduction is accompanied by phosphorylation at Ser(744) and Ser(748) located in the catalytic domain activation loop, but whether PKC isoforms directly phosphorylate these residues, induce PKD autophosphorylation, or recruit intermediate upstream kinase(s) is unclear. Here, we explore the mechanism whereby PKC activates PKD in response to cellular stimuli. We first assessed in vitro PKC-PKD transphosphorylation and PKD activation. A PKD738-753 activation loop peptide was well phosphorylated by immunoprecipitated PKC isoforms, consistent with similarities between the loop and their known substrate specificities. A similar peptide with glutamic acid replacing Ser(748) was preferentially phosphorylated by PKCepsilon, suggesting that PKD containing phosphate at Ser(748) is rapidly targeted by this isoform at Ser(744). When incubated in the presence of phosphatidylserine, phorbol 12,13-dibutyrate and ATP, intact PKD slowly autophosphorylated in the activation loop but only at Ser(748). In contrast, addition of purified PKCepsilon to the incubation mixture induced rapid Ser(744) and Ser(748) phosphorylation, concomitant with persistent 2-3-fold increases in PKD activity, measured using reimmunoprecipitated PKD to phosphorylate an exogenous peptide, syntide-2. We also further examined pleckstrin homology domain-mediated PKD regulation to determine its relationship with activation loop phosphorylation. The high constitutive activity of the pleckstrin homology (PH) domain deletion mutant PKD-deltaPH was not abrogated by mutation of Ser(744) and Ser(748) to alanines, suggesting that one function of activation loop phosphorylation in the PKD activation mechanism is to relieve autoinhibition by the PH domain. These studies provide evidence of a direct PKCepsilon-PKD phosphorylation cascade and provide additional insight into the activation mechanism.  相似文献   

3.
General strategies to obtain inactive kinases have utilized mutation of key conserved residues in the kinase core, and the equivalent Lys72 in cAMP-dependent kinase has often been used to generate a "dead" kinase. Here, we have analyzed the consequences of this mutation on kinase structure and function. Mutation of Lys72 to histidine (K72H) generated an inactive enzyme, which was unphosphorylated. Treatment with an exogenous kinase (PDK-1) resulted in a mutant that was phosphorylated only at Thr197 and remained inactive but nevertheless capable of binding ATP. Ser338 in K72H cannot be autophosphorylated, nor can it be phosphorylated in an intermolecular process by active wild type C-subunit. The Lys72 mutant, once phosphorylated on Thr197, can bind with high affinity to the RIalpha subunits. Thus a dead kinase can still act as a scaffold for binding substrates and inhibitors; it is only phosphoryl transfer that is defective. Using a potent inhibitor of C-subunit activity, H-89, Escherichia coli-expressed C-subunit was also obtained in its unphosphorylated state. This protein is able to mature into its active form in the presence of PDK-1 and is able to undergo secondary autophosphorylation on Ser338. Unlike the H-89-treated wild type protein, the mutant protein (K72H) cannot undergo the subsequent cis autophosphorylation following phosphorylation at Thr197. Using these two substrates and mammalian-expressed PDK-1, we can elucidate a possible two-step process for the activation of the C-subunit: initial phosphorylation on the activation loop at Thr197 by PDK-1, or a PDK-1-like enzyme, followed by second cis autophosphorylation step at Ser338.  相似文献   

4.
Many Ser/Thr protein kinases are activated by autophosphorylation, but the mechanism of this process has not been defined. We determined the crystal structure of a mutant of the Ser/Thr kinase domain (KD) of the mycobacterial sensor kinase PknB in complex with an ATP competitive inhibitor and discovered features consistent with an activation complex. The complex formed an asymmetric dimer, with the G helix and the ordered activation loop of one KD in contact with the G helix of the other. The activation loop of this putative ‘substrate’ KD was disordered, with the ends positioned at the entrance to the partner KD active site. Single amino‐acid substitutions in the G‐helix interface reduced activation‐loop phosphorylation, and multiple replacements abolished KD phosphorylation and kinase activation. Phosphorylation of an inactive mutant KD was reduced by G‐helix substitutions in both active and inactive KDs, as predicted by the idea that the asymmetric dimer mimics a trans‐autophosphorylation complex. These results support a model in which a structurally and functionally asymmetric, ‘front‐to‐front’ association mediates autophosphorylation of PknB and homologous kinases.  相似文献   

5.
We have studied a series of insulin receptor molecules in which the 3 tyrosine residues which undergo autophosphorylation in the kinase domain of the beta-subunit (Tyr1158, Tyr1162, and Tyr1163) were replaced individually, in pairs, or all together with phenylalanine or serine by in vitro mutagenesis. A single-Phe replacement at each of these three positions reduced insulin-stimulated autophosphorylation of solubilized receptor by 45-60% of that observed with wild-type receptor. The double-Phe replacements showed a 60-70% reduction, and substitution of all 3 tyrosine residues with Phe or Ser reduced insulin-stimulated tyrosine autophosphorylation by greater than 80%. Phosphopeptide mapping each mutant revealed that all remaining tyrosine autophosphorylation sites were phosphorylated normally following insulin stimulation, and no new sites appeared. The single-Phe mutants showed insulin-stimulated kinase activity toward a synthetic peptide substrate of 50-75% when compared with wild-type receptor kinase activity. Insulin-stimulated kinase activity was further reduced in the double-Phe mutants and barely detectable in the triple-Phe mutants. In contrast to the wild-type receptor, all of the mutant receptor kinases showed a significant reduction in activation following in vitro insulin-stimulated autophosphorylation. When studied in intact Chinese hamster ovary cells, insulin-stimulated receptor autophosphorylation and tyrosine phosphorylation of the cellular substrate pp185 in the single-Phe and double-Phe mutants was progressively lower with increased tyrosine replacement and did not exceed the basal levels in the triple-Phe mutants. However, all the mutant receptors, including the triple-Phe mutant, retained the ability to undergo insulin-stimulated Ser and Thr phosphorylation. Thus, full activation of the insulin receptor tyrosine kinase is dependent on insulin-stimulated Tris phosphorylation of the kinase domain, and the level of autophosphorylation in the kinase domain provides a mechanism for modulating insulin receptor kinase activity following insulin stimulation. By contrast, insulin stimulation of receptor phosphorylation on Ser and Thr residues by cellular serine/threonine kinases can occur despite markedly reduced tyrosine autophosphorylation.  相似文献   

6.
Adaptive immune signaling can be coupled to stress-activated protein kinase (SAPK)/c-Jun N-terminal kinase (JNK) and NF-kappaB activation by the hematopoietic progenitor kinase 1 (HPK1), a mammalian hematopoiesis-specific Ste20 kinase. To gain insight into the regulation of leukocyte signal transduction, we investigated the molecular details of HPK1 activation. Here we demonstrate the capacity of the Src family kinase Lck and the SLP-76 family adaptor protein Clnk (cytokine-dependent hematopoietic cell linker) to induce HPK1 tyrosine phosphorylation and relocation to the plasma membrane, which in lymphocytes results in recruitment of HPK1 to the contact site of antigen-presenting cell (APC)-T-cell conjugates. Relocation and clustering of HPK1 cause its enzymatic activation, which is accompanied by phosphorylation of regulatory sites in the HPK1 kinase activation loop. We show that full activation of HPK1 is dependent on autophosphorylation of threonine 165 and phosphorylation of serine 171, which is a target site for protein kinase D (PKD) in vitro. Upon T-cell receptor stimulation, PKD robustly augments HPK1 kinase activity in Jurkat T cells and enhances HPK1-driven SAPK/JNK and NF-kappaB activation; conversely, antisense down-regulation of PKD results in reduced HPK1 activity. Thus, activation of major lymphocyte signaling pathways via HPK1 involves (i) relocation, (ii) autophosphorylation, and (iii) transphosphorylation of HPK1 by PKD.  相似文献   

7.
Activation of the serine/threonine kinase, protein kinase D (PKD/PKC mu) via a phorbol ester/PKC-dependent pathway involves phosphorylation events. The present study identifies five in vivo phosphorylation sites by mass spectrometry, and the role of four of them was investigated by site-directed mutagenesis. Four sites are autophosphorylation sites, the first of which (Ser(916)) is located in the C terminus; its phosphorylation modifies the conformation of the kinase and influences duration of kinase activation but is not required for phorbol ester-mediated activation of PKD. The second autophosphorylation site (Ser(203)) lies in that region of the regulatory domain, which in PKC mu interacts with 14-3-3tau. The last two autophosphorylation sites (Ser(744) and Ser(748)) are located in the activation loop but are only phosphorylated in the isolated PKD-catalytic domain and not in the full-length PKD; they may affect enzyme catalysis but are not involved in the activation of wild-type PKD by phorbol ester. We also present evidence for proteolytic activation of PKD. The fifth site (Ser(255)) is transphosphorylated downstream of a PKC-dependent pathway after in vivo stimulation with phorbol ester. In vivo phorbol ester stimulation of an S255E mutant no longer requires PKC-mediated events. In conclusion, our results show that PKD is a multisite phosphorylated enzyme and suggest that its phosphorylation may be an intricate process that regulates its biological functions in very distinct ways.  相似文献   

8.
The recognition and signaling of DNA double strand breaks involves the participation of multiple proteins, including the protein kinase ATM (mutated in ataxia-telangiectasia). ATM kinase is activated in the vicinity of the break and is recruited to the break site by the Mre11-Rad50-Nbs1 complex, where it is fully activated. In human cells, the activation process involves autophosphorylation on three sites (Ser(367), Ser(1893), and Ser(1981)) and acetylation on Lys(3016). We now describe the identification of a new ATM phosphorylation site, Thr(P)(1885) and an additional autophosphorylation site, Ser(P)(2996), that is highly DNA damage-inducible. We also confirm that human and murine ATM share five identical phosphorylation sites. We targeted the ATM phosphorylation sites, Ser(367) and Ser(2996), for further study by generating phosphospecific antibodies against these sites and demonstrated that phosphorylation of both was rapidly induced by radiation. These phosphorylations were abolished by a specific inhibitor of ATM and were dependent on ATM and the Mre11-Rad50-Nbs1 complex. As found for Ser(P)(1981), ATM phosphorylated at Ser(367) and Ser(2996) localized to sites of DNA damage induced by radiation, but ATM recruitment was not dependent on phosphorylation at these sites. Phosphorylation at Ser(367) and Ser(2996) was functionally important because mutant forms of ATM were defective in correcting the S phase checkpoint defect and restoring radioresistance in ataxia-telangiectasia cells. These data provide further support for the importance of autophosphorylation in the activation and function of ATM in vivo.  相似文献   

9.
Mixed-lineage kinase 1 (MLK1) is a mitogen-activated protein kinase kinase kinase capable of activating the c-Jun NH(2)-terminal kinase (JNK) pathway. Full-length MLK1 has 1104 amino acids and a domain structure identical to MLK2 and MLK3. Immunoblot and mass spectrometry show that MLK1 is threonine (and possibly serine) phosphorylated in or near the activation loop. A kinase-dead mutant is not, consistent with autophosphorylation. Mutation to alanine of any of the four serine or threonine residues in the activation loop reduces both the activity of the recombinant kinase domain and JNK pathway activation driven by full-length MLK1 expressed in mammalian cells. Furthermore, the gel mobility of the mutant MLK1s is closer to that of the kinase-dead than wild type, consistent with reduced phosphorylation. Thr312 is the key residue: MLK1[T312A] retains only basal activity (about 1-2% of wild type), and its gel mobility is indistinguishable from kinase-dead. Thr312 does not suffice, however; phosphorylation of multiple sites is necessary for full activation of MLK1. An activation mechanism consistent with these data involves phosphorylation of multiple sites in the activation loop, with phosphorylation of Thr312 required for full phosphorylation. This mechanism is broadly similar to that previously reported for MLK3 [Leung, I. W., and Lassam, N. (2001) J. Biol. Chem. 276, 1961-1967], but the key residue differs.  相似文献   

10.
Aurora B kinase activity is required for successful cell division. In this paper, we show that Aurora B is phosphorylated at serine 331 (Ser331) during mitosis and that phosphorylated Aurora B localizes to kinetochores in prometaphase cells. Chk1 kinase is essential for Ser331 phosphorylation during unperturbed prometaphase or during spindle disruption by taxol but not nocodazole. Phosphorylation at Ser331 is required for optimal phosphorylation of INCENP at TSS residues, for Survivin association with the chromosomal passenger complex, and for complete Aurora B activation, but it is dispensable for Aurora B localization to centromeres, for autophosphorylation at threonine 232, and for association with INCENP. Overexpression of Aurora B(S331A), in which Ser331 is mutated to alanine, results in spontaneous chromosome missegregation, cell multinucleation, unstable binding of BubR1 to kinetochores, and impaired mitotic delay in the presence of taxol. We propose that Chk1 phosphorylates Aurora B at Ser331 to fully induce Aurora B kinase activity. These results indicate that phosphorylation at Ser331 is an essential mechanism for Aurora B activation.  相似文献   

11.
TAK1, a member of the mitogen-activated kinase kinase kinase family, is activated in vivo by various cytokines, including interleukin-1 (IL-1), or when ectopically expressed together with the TAK1-binding protein TAB1. However, this molecular mechanism of activation is not yet understood. We show here that endogenous TAK1 is constitutively associated with TAB1 and phosphorylated following IL-1 stimulation. Furthermore, TAK1 is constitutively phosphorylated when ectopically overexpressed with TAB1. In both cases, dephosphorylation of TAK1 renders it inactive, but it can be reactivated by preincubation with ATP. A mutant of TAK1 that lacks kinase activity is not phosphorylated either following IL-1 treatment or when coexpressed with TAB1, indicating that TAK1 phosphorylation is due to autophosphorylation. Furthermore, mutation to alanine of a conserved serine residue (Ser-192) in the activation loop between kinase domains VII and VIII abolishes both phosphorylation and activation of TAK1. These results suggest that IL-1 and ectopic expression of TAB1 both activate TAK1 via autophosphorylation of Ser-192.  相似文献   

12.
Autophosphorylation is an important mechanism by which protein kinases regulate their own biological activities. Salt inducible kinase 1 (SIK1) is a regulator in the feedback cascades of cAMP-mediated gene expression, while its kinase domain also features autophosphorylation activity. We provide evidence that Ser186 in the activation loop is the site of autophosphorylation and essential for the kinase activity. Ser186 is located at the +4 position of the critical Thr residue Thr182, which is phosphorylated by upstream kinases such as LKB1. The relationship between phosphorylation at Ser186 and at Thr182 in COS-7 cells indicates that the former is a prerequisite for the latter. Glycogen synthase kinase-3beta (GSK-3beta) phosphorylates Ser/Thr residues located at the fourth position ahead of the pre-phosphorylated Ser/Thr residues, and inhibitors of GSK-3beta reduce the phosphorylation at Thr182. The results of an in vitro reconstitution assay also indicate that GSK-3beta could be the SIK1 kinase. However, overexpression and knockdown of GSK-3beta in LKB1-defective HeLa cells suggests that GSK-3beta alone may not be able to phosphorylate or activate SIK1, indicating that LKB1 may play a crucial role by phosphorylating SIK1 at Thr182, possibly as an initiator of the autophosphorylation cascade, and GSK-3beta may phosphorylate SIK1 at Thr182 by recognizing the priming-autophosphorylation at Ser186 in cultured cells. This may also be the case for the other isoform SIK2, but not for SIK3.  相似文献   

13.
Mechanism of activation of protein kinase B by insulin and IGF-1.   总被引:53,自引:1,他引:52       下载免费PDF全文
Insulin activated endogenous protein kinase B alpha (also known as RAC/Akt kinase) activity 12-fold in L6 myotubes, while after transfection into 293 cells PKBalpha was activated 20- and 50-fold in response to insulin and IGF-1 respectively. In both cells, the activation of PKBalpha was accompanied by its phosphorylation at Thr308 and Ser473 and, like activation, phosphorylation of both of these residues was prevented by the phosphatidylinositol 3-kinase inhibitor wortmannin. Thr308 and/or Ser473 were mutated to Ala or Asp and activities of mutant PKBalpha molecules were analysed after transfection into 293 cells. The activity of wild-type and mutant PKBalpha was also measured in vitro after stoichiometric phosphorylation of Ser473 by MAPKAP kinase-2. These experiments demonstrated that activation of PKBalpha by insulin or insulin-like growth factor-1 (IGF-1) results from phosphorylation of both Thr308 and Ser473, that phosphorylation of both residues is critical to generate a high level of PKBalpha activity and that the phosphorylation of Thr308 in vivo is not dependent on phosphorylation of Ser473 or vice versa. We propose a model whereby PKBalpha becomes phosphorylated and activated in insulin/IGF-1-stimulated cells by an upstream kinase(s).  相似文献   

14.
The cAMP-dependent protein kinase (PKA) from Candida albicans is a tetramer composed of two catalytic subunits (C) and two type II regulatory subunits (R). To evaluate the role of a putative autophosphorylation site of the R subunit (Ser(180)) in the interaction with C, this site was mutated to an Ala residue. Recombinant wild-type and mutant forms of the R subunit were expressed in Escherichia coli and purified. The wild-type recombinant R subunit was fully phosphorylated by the purified C subunit, while the mutant form was not, confirming that Ser(180) is the target for the autophosphorylation reaction. Association and dissociation experiments conducted with both recombinant R subunits and purified C subunit showed that intramolecular phosphorylation of the R subunit led to a decreased affinity for C. This diminished affinity was reflected by an 8-fold increase in the concentration of R subunit needed to reach half-maximal inhibition of the kinase activity and in a 5-fold decrease in the cAMP concentration necessary to obtain half-maximal dissociation of the reconstituted holoenzyme. Dissociation of the mutant holoenzyme by cAMP was not affected by the presence of MgATP. Metabolic labeling of yeast cells with [(32)P]orthophosphate indicated that the R subunit exists as a serine phosphorylated protein. The possible involvement of R subunit autophosphorylation in modulating C. albicans PKA activity in vivo is discussed.  相似文献   

15.
Many growth factors whose receptors are protein tyrosine kinases stimulate the MAP kinase pathway by activating first the GTP-binding protein Ras and then the protein kinase p74raf-1. p74raf-1 phosphorylates and activates MAP kinase kinase (MAPKK). To understand the mechanism of activation of MAPKK, we have identified Ser217 and Ser221 of MAPKK1 as the sites phosphorylated by p74raf-1. This represents the first characterization of sites phosphorylated by this proto-oncogene product. Ser217 and Ser221 lie in a region of the catalytic domain where the activating phosphorylation sites of several other protein kinases are located. Among MAPKK family members, this region is the most conserved, suggesting that all members of the family are activated by the phosphorylation of these sites. A 'kinase-dead' MAPKK1 mutant was phosphorylated at the same residues as the wild-type enzyme, establishing that both sites are phosphorylated directly by p74raf-1, and not by autophosphorylation. Only the diphosphorylated form of MAPKK1 (phosphorylated at both Ser217 and Ser221) was detected, even when the stoichiometry of phosphorylation by p74raf-1 was low, indicating that phosphorylation of one of these sites is rate limiting, phosphorylation of the second then occurring extremely rapidly. Ser217 and Ser221 were both phosphorylated in vivo within minutes when PC12 cells were stimulated with nerve growth factor. Analysis of MAPKK1 mutants in which either Ser217 or Ser221 were changed to glutamic acid, and the finding that inactivation of maximally activated MAPKK1 required the dephosphorylation of both serines, shows that phosphorylation of either residue is sufficient for maximal activation.  相似文献   

16.
Chatti K  Farrar WL  Duhé RJ 《Biochemistry》2004,43(14):4272-4283
The phosphorylation of an "activation loop" within protein kinases is commonly associated with establishing catalytic competence, and phosphorylation of the Tyr(1007) residue in the activation loop of Janus kinase 2 (JAK2) has been shown to be essential for intracellular propagation of cytokine-initiated signaling. We provide evidence for the presence of a basal activity state of JAK2, which was observed in the absence of activation loop phosphorylation. Phosphorylation of the JAK2 activation loop was essential for conversion to the high-activity state, characterized by high-efficiency ATP utilization during autophosphorylation. Mutagenesis of activation loop tyrosine residues Tyr(1007/1008) to phenylalanine residues impaired, but did not abolish, the enzyme's ability to autophosphorylate. The activation loop mutant JAK2 could also transphosphorylate an inactive JAK2 fragment coexpressed in Sf21 cells, providing evidence of exogenous substrate phosphorylation. The mutant enzyme remained in a basal activity state characterized by low-efficiency ATP utilization during autophosphorylation. Mutagenesis of a critical Lys(882) residue to a glutamate residue abolished all evidence of kinase activity, confirming that the observed activity of Tyr-to-Phe mutants was not due to another kinase. Our data are consistent with the proposal that JAK2 is an inefficient but active enzyme in the absence of activation loop phosphorylation and is capable of conversion to a high-activity state by autophosphorylation under physiological ATP concentrations. This theoretically precludes the need for an upstream activating kinase. The activation process of JAK2 may be envisioned as a multistate process involving at least two kinetically distinct states of activity.  相似文献   

17.
Eukaryotic-like protein Ser/Thr and Tyr kinases have only recently been discovered in prokaryotes. In most cases, their biochemical properties have been poorly characterized. The nitrogen-fixing and heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120 houses a family of eukaryotic-like Ser/Thr kinases. Some of these enzymes are required for cell growth or development under certain conditions. None of them, however, has been shown experimentally to possess Ser/Thr kinase activity. A gene, pknC, encoding a novel putative Ser/Thr kinase was isolated from Anabaena sp. PCC 7120. The recombinant PknC was shown to be phosphorylated on a Thr residue. This phosphorylation was probably due to the autophosphorylation activity of PknC itself because mutation of two amino acid residues within the subdomain II of its catalytic domain eliminated the phosphorylation of PknC. PknC displayed also a Ser kinase activity towards several nonspecific substrates, and the two residues needed for PknC autophosphorylation was equally required for the phosphorylation of other substrates. PknC is thus a Ser/Thr kinase with broad substrate specificity. The activity of PknC is likely to be regulated in vivo in order to limit the spectrum of its substrate specificity.  相似文献   

18.
Oxidative stress induced by cell treatments with H(2)O(2) activates protein kinase D (PKD) via a protein kinase C (PKC)-dependent signal transduction pathway (Waldron, R. T., and Rozengurt, E. (2000) J. Biol. Chem. 275, 17114-17121). Here we show that oxidative stress induces PKC-dependent activation loop Ser(744) and Ser(748) phosphorylation to mediate dose- and time-dependent activation of PKD, both endogenously expressed in Swiss 3T3 cells and stably overexpressed in Swiss 3T3-GFP.PKD cells. Although oxidative stress induced PKD activation loop phosphorylation and activation with identical kinetics, both were dose-dependently blocked by preincubation of cells with selective inhibitors of PKC (GF109203X and G?6983) or c-Src (PP2). Inhibition of Src tyrosine kinase activity eliminated oxidative stress-induced direct PKD tyrosine phosphorylation, but only partially attenuated activation loop phosphorylation and activation. Mutation of a putative tyrosine phosphorylation site on PKD, Tyr(469) to phenylalanine, had no effect on its activation by oxidative stress in transfected COS-7 cells. Similarly, a mutant with Tyr(469) replaced by aspartic acid had increased basal activity but was also further activated by oxidative stress. Thus, PKD tyrosine phosphorylation at this site neither produced full activation by itself nor was required for oxidative stress-induced activation mediated by activation loop phosphorylation. In addition to PKD activation, activation loop phosphorylation in response to oxidative stress also redistributed activated PKD to cell nuclei, as revealed by PKD indirect immunofluorescence, imaging of a PKD-green fluorescent protein fusion construct (GFP-PKD), and analysis of nuclear pellets. Cell preincubation with G?6983 strongly diminished H(2)O(2)-induced nuclear relocalization of GFP-PKD. Taken together, these results indicate that PKC-mediated PKD Ser(744) and Ser(748) phosphorylation induced by oxidative stress integrates PKD activation with redistribution to the nucleus.  相似文献   

19.
Noelle V  Tennagels N  Klein HW 《Biochemistry》2000,39(24):7170-7177
We examined the effects of mutations of tyrosine and serine autophosphorylation sites on the dual specificity of the insulin receptor kinase (IRKD) in vitro using autophosphorylation and substrate phosphorylation and phosphopeptide mapping. For comparable studies, the recombinant kinases were overexpressed in the baculovirus system, purified, and analyzed. The phosphate incorporation into the enzymes was in the range of 3-4.5 mol/mol, and initial velocities of autophosphorylation were reduced up to 2-fold. However, the mutation Y1151F in the activation loop inhibited phosphate incorporation in the C-terminal serine residues 1275 and 1309, due to a 10-fold decrease of the initial velocity of serine autophosphorylation. Although the K(M) and V(MAX) values of this mutant were only slightly altered in substrate phosphorylation reactions using a recombinant C-terminal insulin receptor peptide (K(M): Y1151F, 9.9 +/- 0.4 microM; IRKD, 6.1 +/- 0.2 microM; V(MAX): Y1151F, 72 +/- 4 nmol min(-)(1) mg(-)(1); IRKD, 117 +/- 6 nmol min(-)(1) mg(-)(1)), diminished phosphate incorporation into serine residues of the peptide was observed. In contrast, the phosphorylation of a recombinant IRS-1 fragment, which was shown to be phosphorylated markedly on serine residues by IRKD, was not affected by any kinase mutation. These results underline that IRKD is a kinase with dual specificity. The substrate specificity toward C-terminal serine phosphorylation sites can be modified by a single amino acid substitution in the activation loop, whereas the specificity toward IRS-1 is not affected, suggesting that the C-terminus and the activation loop interact.  相似文献   

20.
TESK1 (testis-specific protein kinase 1) is a protein kinase with a structure composed of an N-terminal protein kinase domain and a C-terminal proline-rich domain. Whereas the 3.6-kilobase TESK1 mRNA is expressed predominantly in the testis, a faint 2.5-kilobase TESK1 mRNA is expressed ubiquitously. The kinase domain of TESK1 contains in the catalytic loop in subdomain VIB an unusual DLTSKN sequence, which is not related to the consensus sequence of either serine/threonine kinases or tyrosine kinases. In this study, we show that TESK1 has kinase activity with dual specificity on both serine/threonine and tyrosine residues. In an in vitro kinase reaction, the kinase domain of TESK1 underwent autophosphorylation on serine and tyrosine residues and catalyzed phosphorylation of histone H3 and myelin basic protein on serine, threonine, and tyrosine residues. Site-directed mutagenesis analyses revealed that Ser-215 within the "activation loop" of the kinase domain is the site of serine autophosphorylation of TESK1. Replacement of Ser-215 by alanine almost completely abolished serine autophosphorylation and histone H3 kinase activities. In contrast, replacement of Ser-215 by glutamic acid abolished serine autophosphorylation activity but retained histone H3 kinase activity. These results suggest that autophosphorylation of Ser-215 is an important step to positively regulate the kinase activity of TESK1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号