首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
The probable presence of oxytocin in the hypothalamo-hypophysial system of two reptilian species, the snake Natrix maura and the turtle Mauremys caspica, was re-investigated. A high-pressure liquid chromatographic analysis of the turtle neural lobe revealed the existence of vasotocin, mesotocin, and a third compound co-eluting with oxytocin. Brains from both species were fixed by vascular perfusion with Bouin's fluid. Adjacent paraffin sections were immunostained using antisera against the following substances: (1) bovine oxytocin-neurophysin; (2) a mixture of bovine oxytocin-neurophysin and vasopressin-neurophysin; (3) dogfish neurophysins; (4) oxytocin; (5) arginine-vasotocin; (6) mesotocin; (7) somatostatin. Immunoreactivity against oxytocin was found in parvocellular neurons of the snake suprachiasmatic nucleus and cerebrospinal-fluid contacting neurons of the medial nucleus of the infundibular recess of both species, the latter immunoreactivity being much more conspicuous in the turtle. Numerous fibers containing immunoreactive oxytocin extended between the medial nucleus of the infundibular recess, and the internal region of the medium eminence and the neural lobe. The oxytocin-immunoreactivity in all locations was completely abolished by preabsorption of the anti-oxytocin serum with three different oxytocin preparations. None of the neurons of the suprachiasmatic and medial nucleus of the infundibular recess, including the oxytocin-immunoreactive elements, reacted with either the antineurophysin sera used, or the anti-vasotocin or anti-mesotocin antibodies. The possible existence of a reptilian oxytocin-neurophysin is discussed. The alternative that, in the reptilian hypothalamus, neurons synthesize a compound closely related to, but different from oxytocin is also considered.  相似文献   

2.
Summary The anatomical distribution of neurons and nerve fibers containing corticotropin-releasing factor (CRF) has been studied in the brain of the snake, Natrix maura, by means of immunocytochemistry using an antiserum against rat CRF. To test the possible coexistence of CRF with the neurohypophysial peptides arginine vasotocin (AVT) and mesotocin (MST) adjacent sections were stained with antisera against the two latter peptides. CRF-immunoreactive (CRF-IR) neurons exist in the paraventricular nucleus (PVN). In some neurons of the PVN, coexistence of CRF with MST or of CRF with AVT has been shown. Numerous CRF-IR fibers run along the hypothalamo-hypophysial tract and end in the outer layer of the median eminence. In addition, some fibers reach the neural lobe of the hypophysis. CRF-IR perikarya have also been identified in the following locations: dorsal cortex, nucleus accumbens, amygdala, subfornical organ, lamina terminalis, nucleus of the paraventricular organ, nucleus of the oculomotor nerve, nucleus of the trigeminal nerve, and reticular formation. In addition to all these locations CRF-IR fibers were also observed in the lateral septum, supraoptic nucleus, habenula, lateral forebrain bundle, paraventricular organ, hypothalamic ventromedial nucleus, raphe and interpeduncular nuclei.  相似文献   

3.
Summary The immunocytochemical and lectin-binding properties of the magnocellular neurosecretory neurons in the hypothalamus of 2 reptilian species, the snake Natrix maura and the lizard Liolaemus cyanogaster, were investigated. Particular attention was paid to the secretory droplets present in these neurons. Antisera against bovine neurophysins I+II, arginine-vasotocin, and mesotocin were used. The following lectins were applied: concanavalin A (Con A), wheat-germ agglutinin (WGA), and Limax flavus agglutinin (LFA). Adjacent 1-m-thick methacrylate sections were used to investigate the same secretory neuron and the same colloid droplets with all three antisera and all three lectins. Several sections were treated with trypsin and urea before immunostaining or lectin binding. Con A bound to both vasotocin- and mesotocin-immunoreactive neurons, WGA exclusively to vasotocin neurons; neither of these neurons reacted with LFA. The colloid droplets were present in vasotocin neurons but absent in the mesotocin neurons. These secretory droplets showed an affinity for Con A but not for WGA, and reacted with antisera against neurophysins and vasotocin. In Natrix maura, the colloid droplets became reactive with Con A and the antisera used only after pretreatment of the sections with trypsin and urea. Within the hypothalamo-neurohypophyseal system, antiserum against vasotocin and WGA revealed the same fiber bundles. It is concluded (i) that in reptiles the vasotocin-neurophysin precursor is glycosylated, (ii) that vasotocin neurons have the exclusive capacity to form colloid droplets, and (iii) that these droplets are an intracisternal (RER) storage form of the vasotocin-neurophysin precursor.This work was partially supported by Grants BOJA 27/9/88 from the Dirección General de Universidades e Investigación de Junta de Andalucía and DGICYT PB87-0710 from the Comisión Interministerial de Ciencia y Tecnología, Madrid, to P.F.-LL.; and Grant 89-01 from the Dirección de Investigaciones, Universidad Austral de Chile, to E.M.R.  相似文献   

4.
Summary The distribution of mesotocin and vasotocin was studied in the brain of the lizard Gekko gecko with antisera specific for either peptide. Both mesotocinergic and vasotocinergic perikarya are found in the paraventricular and supraoptic nuclei of the hypothalamus, whereas vasotocinergic neurons are exclusively present in the bed nucleus of the stria terminalis and in a cell group of the rhombencephalon. The distributional pattern of the mesotocinergic fibers corresponds closely to that of the vasotocinergic fibers. However, throughout the entire brain the mesotocinergic innervation is less dense than the vasotocinergic innervation. No sex differences are present in the mesotocinergic fiber system.Abbreviations acc nucleus accumbens - bst bed nucleus of the stria terminalis - bv blood vessel - dB diagonal band of Broca - dc dorsal cortex - dth dorsolateral thalamic nucleus - lc lateral cortex - me median eminence - oc optic chiasma - ot optic tract - pag periaqueductal grey - pvn paraventricular nucleus - rc rhombencephalic cell group - sep septum - son supraoptic nucleus - tect mesencephalic tectum - vth ventrolateral thalamus  相似文献   

5.
Two separate and distinct retinal projections to the hypothalamus in the iguanid lizard Dipsosaurus dorsalis were described using horseradish peroxidase and cobalt-filling techniques. Both of the projections were unilateral and completely crossed; one terminated in the supraoptic nucleus and the other in the suprachiasmatic nucleus. Immunocytochemical analysis showed that the supraoptic nucleus contained cell bodies and fibers that cross-react with antibodies raised against arginine vasopressin, while the suprachiasmatic nucleus contained arginine vasopressin-like immunoreactive fibers emanating from cells in the nearby paraventricular nucleus. The suprachasmatic nucleus contained a dense plexus of fibers that cross-reacted with neuropeptide-Y antibody. Antiserum against vasoactive intestinal polypeptide showed no reactivity in any part of the forebrain, while antiserum against serotonin showed sparse and uniform reactivity throughout the forebrain, including the suprachiasmatic nucleus. These results, together with other data, indicate that the suprachiasmatic nucleus of D. dorsalis is homologous to the suprachiasmatic nuclei of rodents, structures known to contain circadian pacemakers. We suggest that the suprachiasmatic nucleus may play a similar role in the circadian system of D. dorsalis.  相似文献   

6.
Summary The distribution of immunoreactive arginine vasotocin (AVT-ir) was determined in the brain of the lizard Anolis carolinensis. Cells and fibers containing AVT-ir were found in the medial septal region, lamina terminalis, lateral forebrain bundle, preoptic area, supraoptic nucleus, anterior hypothalamus, paraventricular nucleus, periventricular nucleus, arcuate nucleus, and ventromedial nucleus of the thalamus. Occasional AVT-ir cells were found in the interpeduncular nucleus. Fibers containing AVT-ir were found in the cortex, around the olfactory ventricle, in the diagonal band of Broca, amygdala area, dorsal ventricular ridge, striatum, nucleus accumbens, septum, ventromedial hypothalamus, lateral hypothalamus, medial forebrain bundle, median eminence, pars nervosa, nucleus of the solitary tract, locus coeruleus, cerebellar cortex (granular layer), dorsal part of the nucleus of the lateral lemniscus, substantia nigra, and myelencephalon. The intensity of AVT-ir staining was, in general, greater in males than in females. Comparison of AVT-ir distribution in A. carolinensis with those previously published for other reptilian species revealed species-specific differences in distribution of AVT.  相似文献   

7.
Summary In the hypothalamus of the turtle, Lissemys punctata granosa, two magnocellular and 23 parvocellular neuronal complexes can be distinguished. The magnocellular complexes include the nucleus supraopticus and the nucleus paraventricularis; paraventricular neurons are partly arranged in rows parallel to the third ventricle. Most infundibular parvocellular nuclei display neurons disposed in rows parallel to the ventricular surface. In the preoptic region, the prominent parvocellular neuronal complexes encompass the nucleus periventricularis anterior, lateral preoptic area, the nucleus of the anterior commissure and the nucleus suprachiasmaticus. The prominent nucleus periventricularis posterior extends caudad and shows neurons arranged in vertical rows parallel to the third ventricle. Other parvocellular nuclei of the rostral hypothalamus are composed of clustered subunits. The nucleus arcuatus is a fairly large nuclear entity extending from the level marked dorsally by the nucleus paraventricularis to the area occupied by the nucleus of the paraventricular organ. A well-developed ventromedial nucleus is located ventrolateral to the paraventricular organ. The prominent paraventricular organ consists of tightly arranged neurons, some of which possess apical projections into the third ventricle; it is surrounded by the nucleus of the paraventricular organ. Nucleus hypothalamicus medialis et lateralis, nucleus hypothalamicus posterior and the nuclei recessus infundibuli are further nuclear units of the tuberal region. The caudal end of the hypothalamus is marked by the nucleus mamillaris; its neurons are scattered among the fibers of the retroinfundibular commissure. The median eminence is well developed and shows a large medial and two lateral protrusions into the infundibular recess.  相似文献   

8.
Summary The tracer Phaseolus vulgaris-leucoagglutinin (PHA-L) was injected into the lateral septum of the rat at different rostrocaudal locations to study the efferent septal projections to the anterior hypothalamus. For spatial correlation of these septofugal elements with the vasopressinergic system a dual immunocytochemical technique was used (i) to demonstrate nerve fibers and their corresponding bouton-like structures labeled with the tracer, and (ii) to identify vasopressin in the same section. The hypothalamic paraventricular and supraoptic nuclei, the accessory hypothalamic magnocellular system, and the suprachiasmatic nucleus are recipients of PHA-L-labeled fibers from all parts of the lateral septum. Close appositions between (i) these axons and their varicosities, and (ii) vasopressin-immunoreactive perikarya and their processes, putatively indicating functional interrelationships, were observed in all these nuclear areas, especially in their neuropil formations.Abbreviations F fornix - OC optic chiasm - OT optic tract - PVN paraventricular nucleus - SCN suprachiasmatic nucleus - SON supraoptic nucleus - III third ventricle  相似文献   

9.
Summary To elucidate the role of hypothalamic neuropeptides in regulation of reproductive phenomena of seasonally breeding feral mammals, we used Japanese long-fingered bats, Miniopterus schreibersii fuliginosus, for immunocytochemical study of distribution of the following neuropeptides in the hypothalamus: arginin vasopressin, oxytocin, luteinizing hormone-releasing hormone, somatostatin, corticotropin-releasing factor, and growth hormone-releasing factor. The size, shape and location of supraoptic, paraventricular, suprachiasmatic, and arcuate nuclei of the bat were determined. Arginin vasopressin-and oxytocin-immunoreactive magnocellular neurons were found in the supraoptic and paraventricular nuclei, where they exhibited separate distribution into two distinct groups. Parvocellular arginin vasopressin neurons occurred only in the suprachiasmatic nucleus. The hibernating bats exhibited slightly increased numbers of vasopressin and oxytocin neurons in the supraoptic and paraventricular nuclei. The pregnant bat displayed further increased numbers of vasopressin and oxytocin neurons in both nuclei. Somatostatin-immunoreactive neurons in the paraventricular nucleus were also immunopositive to anti-oxytocin serum, while those in the ventromedial and arcuate nuclei reacted solely to anti-somatostatin serum. They projected to the anterior median eminence and infundibular stalk. Luteinizing hormone-releasing hormone-immunoreactive perikarya were scattered throughout the basal hypothalamus, being particularly abundant in the arcuate nucleus. They were larger in size in hibernating bats than those in normal (non-pregnant) and pregnant females. They projected fibers mainly to the internal layer of the median eminence and infundibular stalk. A few luteinizing hormone-releasing hormone-reactive fibers were also observed in the organum vasculosum laminae terminalis, lateral habenular nuclei, pineal stalk, retroflexus fasciculus, and olfactory tubercle. Corticotropin releasing factor-immunoreactive perikarya were distributed in the paraventricular nucleus and medial preoptic area and projected into the external layer of the anterior median eminence, while growth hormone-releasing factor-immunoreactive perikarya occurred only in the arcuate nucleus and projected into the posterior part of the median eminence.  相似文献   

10.
Summary The distribution of catecholamine synthesizing enzymes within the paraventricular nucleus of the rat hypothalamus is elucidated immunocytochemically by use of antibodies to tyrosine hydroxylase, dopamine -hydroxylase, and phenylethanolamine-N-methyltransferase. Tyrosine hydroxylase-immunostained cell bodies are localized in the periventricular stratum and adjacent parvocellular regions, but rarely in magnocellular subnuclei of the paraventricular nucleus. Tyrosine hydroxylase-immunostained fibers are present in greatest density in the periventricular zone, and moderate density in the parvocellular and magnocellular subnuclei. Dopamine -hydroxylase-immunostained fibers are remarkably dense in the posterior magnocellular division of the paraventricular nucleus, especially in the dorso-lateral portion where vasopressin-containing cells predominate. Noradrenergic fiber input to these magnocellular neurons is likely since phenylethanolamine-N-methyltransferase-immunostained fibers are sparse in magnocellular subnuclei of the paraventricular nucleus. Dual immunocytochemical staining of thick and thin tissue sections demonstrates with clarity an anatomical association of dopamine -hydroxylase-immunostained fibers and magnocellular neurons. Dopamine -hydroxylase-immunostained and phenylethanolamine-N-methyltransferase-immunostained fibers are dense in the medial parvocellular component of the paraventricular nucleus; distinct features of both antisera are presented.  相似文献   

11.
The hypothalamic suprachiasmatic nucleus is centrally involved in generation of several circadian rhythms. Neurons of the mammalian suprachiasmatic nucleus express a number of neuropeptides including vasopressin. The suprachiasmatic nucleus of the mink (Mustela vison) is easily distinguished from neighbouring hypothalamic areas and the underlying optic chiasm as a small nucleus containing densely packed parvocellular neurons. A dorsal and ventral subdivision were clearly recognized within the midportion and caudal part of the nuclcus. Using immunohistochemistry, we have identified vasopressin-, neurophysin-, and vasoactive intestinal peptide-immunoreactive neuronal elements in the hypothalamus of the mink. Vasoactive intestinal peptide-immunoreactive neurons can be observed in the ventral aspect of the suprachiasmatic nucleus, but to our surprise, no vasopressin immunoreactive perikarya are found within the suprachiasmatic nucleus, this absence being independent of the experienced annual cycle. The hypothalamic paraventricular and supraoptic nuclei contain large numbers of vasopressin-, neurophysin-and vasoactive intestinal peptide-immunoreactive magnocellular neurons with extensive projections towards the infundibulum and neurohypophysis. A comparative analysis of the distribution of vasopressin-immunoreactive elements in a number of conventional laboratory animals has demonstrated that, in contrast to the rat, golden hamster and Mongolian gerbil, neither vasopressin-containing perikarya in the suprachiasmatic nucleus nor fine calibered immunoreactive fibres entering the adjacent subparaventricular zone are present in the mink. The mink is a photodependent seasonal breeder, and thus vasopressin-immunoreactive neurons in the suprachiasmatic nuclei may not be essential for the photoperiodic regulation of reproduction and seasonal events experienced by this species.  相似文献   

12.
Summary A double immunofluorescence method was devised to localize simultaneously urotensin-I (UI) and -II (UII) immunoreactivities in the caudal neurosecretory system of the goby, Gillichthys mirabilis. In a sequential fashion, sections of the posterior spinal cord and urophysis were treated with antiserum to corticotropin-releasing factor (CRF) that cross-reacts with UI, fluorescein-conjugated sheep anti-rabbit IgG, biotinylated anti-UII and rhodamine-conjugated avidin. UI and UII immunoreactivities appeared to coexist in some neurons and in most fibers and urophysial tissue; the remainder of the fibers and urophysis and the majority of neurons were immunoreactive for CRF/ UI only. No convincing evidence of immunoreactivity for UII only was found. A few nonreactive cells were seen, but these may not be neurosecretory neurons. The two immunoreactive cell types were not segregated topographically, and the intensity of perikaryal immunofluorescence for CRF/UI was variable. To explain these results a hypothesis that all caudal neurosecretory cells may synthesize both UI and UII and that immunoreactive differences may reflect different states of cellular activity, is suggested. This sequential double immunofluorescence method offers several advantages over other techniques and is especially useful for co-localization studies when primary antisera from different species are not available.  相似文献   

13.
Summary The location, cytology and projections of vasopressin-, oxytocin-, and neurophysin-producing neurons in the guinea pig were investigated using specific antisera against vasopressin, oxytocin or neurophysin in the unlabeled antibody enzyme immunoperoxidase method. Light microscopic examination of the neurons of the supraoptic and paraventricular nuclei shows that hormone is transported not only in axons, but also in processes having the characteristics of dendrites. Neurons were found to contain only vasopressin or oxytocin; all neurons containing neurophysin appear to contain either vasopressin or oxytocin. In the neural lobe, vasopressin and oxytocin terminals are intermingled. In the median eminence, vasopressin and oxytocin fibers are intermingled in the internal zone. In a caudal portion of the median eminence, a number of vasopressin and neurophysin (but few oxytocin) axons enter the external zone from the internal zone, and surround portal capillaries. In the supraoptic nucleus, vasopressin neurons outnumber oxytocin neurons with a ratio of at least 5:1. The paraventricular nucleus is separated into two distinct groups of neurons, a lateral group consisting of only vasopressin neurons, and a medial group consisting of only oxytocin neurons. In addition to axons passing to the neurohypophysis, a number of axons appear to interconnect the supraoptic and paraventricular nuclei.Supported by the Deutsche Forschungsgemeinschaft (SFB 51, C/21 and C/27), (We 608/3)Acknowledgements. The authors are greatly indebted to Mmes. R. Köpp-Eckmann, B. Reijerman, A. Scheiber, I. Wild and Mr. U. Schrell for technical assistance, to Mmes. P. Campbell and U. Wolf for editorial assistance, and to Dr. R.R. Dries and Ferring Pharmaceuticals, Kiel, for the generous provision of high quality peptides  相似文献   

14.
Summary The anterograde Phaseolus vulgaris-leucoagglutinin (PHA-L) tracing technique was used to determine the distribution of efferent fibers originating in the lateral septal nucleus of the guinea pig. For complementary detection of the chemical identity of the target neurons, double-labeling immunocytochemistry was performed with antibodies to PHA-L and to vasopressin, oxytocin, vasoactive intestinal polypeptide, serotonin or dopamine -hydroxylase, respectively. The hypothalamus received the majority of the PHA-L-stained septofugal fibers. Here, a specific topography was observed. (1) The medial and lateral preoptic area, (2) the anterior, lateral, dorsal, posterior hypothalamic and retrochiasmatic area, (3) the supraoptic, paraventricular, suprachiasmatic, dorsomedial, caudal ventromedial and arcuate nuclei, and (4) the tuberomammillary, medial and lateral supramammillary, dorsal and ventral premammillary nuclei always contained PHA-L-labeled fibers. The rostral portion of the ventromedial nucleus and the medial and lateral mammillary nucleus only occasionally showed weak terminal labeling. In other diencephalic areas, termination of PHA-L-labeled fibers was observed in the epithalamus and the nuclei of the midline region of the thalamus. In the mesencephalon, terminal varicosities occurred in the ventral tegmental area, interfascicular and interpeduncular nucleus, and periaqueductal gray. In addition, the dorsal and medial raphe nuclei of the metencephalon, together with the locus coeruleus and the dorsal tegmental nucleus, received lateral septal efferents.  相似文献   

15.
Summary The adult optic lobes of the blowfly Calliphora erythrocephala were found to be innervated by more than 2000 neurons immunoreactive to antisera raised against the neuropeptides FMRFamide, its fragment RFamide, and gastrin/cholecystokinin (CCK). All of the CCK-like immunoreactive (CCK-IR) neurons also reacted with antisera to RFamide, FMRFamide and pancreatic polypeptide. A few RFamide/FMRFamide-like immunoreactive (RF-IR) neurons did not react with CCK antisera; they reacted instead with antisera to Leu-enkephalin and Met-enkephalin-Arg6-Phe7. The RF-IR neurons are, thus, heterogeneous with respect to their contents of immunoreactive peptides. Two of the RF-IR neuron types innervating the adult optic lobes could be traced in their entirety only after following their postembryonic development, because of the complexity of the trajectories of the immunoreactive neuronal process in the adult insect. The majority of the cell bodies of the RF-IR and CCK-IR neurons lie within the optic lobes and are derived from imaginal neuroblasts of the inner and outer optic anlagen. Six of the peptidergic neurons are, however, metamorphosing larval neurons with their cell bodies in the central part of the protocerebrum. The full extent of immunoreactivitiy is not attained in some of the neurons until the late pupal or early adult stage. The larval optic center was also found to be innervated by neurons immuno-reactive with both RFamide and CCK antisera. The cell bodies of these RF-IR/CCK-IR neurons are located near the developing lamina (one on each side). In the 24 h pupa, the cell bodies of these neurons are still immunoreactive, but thereafter they cannot be immunolabeled apparently due to cell death or a change in transmitter phenotype.  相似文献   

16.
Summary The neurosecretory systems producing mesotocin (MT) and vasotocin (VT) (the avian homologues of oxytocin and vasopressin, respectively) were characterized in the brains of the domestic mallard and Japanese quail by means of indirect immunofluorescence techniques using specific antisera. In the anterior preoptic region, including the organum vasculosum of the lamina terminalis, and at different levels of the supraoptic and paraventricular nuclei, separate mesotocin- and vasotocin-producing neurons were identified. Mesotocinergic and vasotocinergic neurons were also located in the tuberomammillary area, among the ectomammillary tract fibers. The supraoptico-neurohypophysial tract, formed by vasotocin- and mesotocincontaining axons, enters the internal zone of the median eminence and ends in the posterior lobe of the pituitary. The external zone of the rostral median eminence appears to contain vasotocin and mesotocin fibers, which terminate in close contact with the capillaries of the hypophysial portal system.With contributions by Dr. B. Kerdelhué, Laboratoire des Hormones Polypeptidiques du CNRS, 91190 Gif-sur-Yvette, France  相似文献   

17.
The distribution of oxytocin (OXT) and vasopressin (VP) neurons in the diencephalon of the hibernating Japanese horseshoe bat, Rhinolophus ferrumequinum, was immunohistochemically investigated by the avidin-biotin complex method. Magnocellular OXT and VP neurons were localized mainly in the paraventricular nucleus and the supraoptic nucleus. In addition to these main nuclei, both kinds of magnocellular neurons were also found in the periventricular nucleus, perifornical area and lateral hypothalamic area. Extensively distributed parvocellular neurons containing only VP were observed in the rostral and middle portions of the suprachiasmatic nucleus. The size of OXT and VP magnocellular neurons was almost equal in the paraventricular and ventromedial supraoptic nuclei, whereas VP neurons were significantly larger than OXT neurons in the dorsolateral supraoptic nucleus. The OXT and VP cells in the ventral supraoptic nucleus showed a distinctive elliptical shape. Both OXT and VP fibers were distributed in the lateral habenular nucleus, stria medullaris thalami, lateral preoptic area, stria terminalis, and medial and supracapsular part of the bed nucleus of the stria terminalis. Moreover, OXT fibers were found in the substantia nigra, and VP fibers were noted in the nucleus reunions and the paraventricular nucleus of the thalamus.  相似文献   

18.
Summary CP-14, a tetradecapeptide from the predicted mutant vasopressin precursor in the homozygous Brattleboro rat was detected immunocytochemically in the supraoptic nucleus of homozygous Brattleboro but not normal rats. The staining was localized to the periphery of the perikarya. CP-14 immunoreactivity was not found in the neural lobes, paraventricular nuclei, accessory nuclei or suprachiasmatic nuclei of either homozygous Brattleboro or normal rats. Vasopressin immunoreactivity was found in the neural lobe and in the perinuclear region of neurons of the supraoptic, paraventricular, suprachiasmatic and accessory nuclei of normal rats. Vasopressin immunoreactivity was also found in homozygous Brattleboro rats, mainly in the ventral part of the supraoptic nucleus: densely stained solitary cells were found amongst other faintly stained perikarya. In both cell-types the staining was mainly in the periphery of the perikarya. No vasopressin immunoreactivity was detected in the paraventricular nuclei, suprachiasmatic nuclei, accessory nuclei or neural lobe of homozygous Brattleboro rats.CP-14 and vasopressin immunoreactivities were found to be co-localized; both were present in the periphery of the same perikarya of the supraoptic nuclei of homozygous Brattleboro rats. Differential staining was found with antioxytocin serum in both normal rats and homozygous Brattleboro rats: separate neurons were stained for either oxytocin or vasopressin and CP-14. Immunoreactive oxytocin was found mainly in the perinuclear region of the neurons from the supraoptic, paraventricular and accessory nuclei.  相似文献   

19.
The distribution of perikarya and fibers containing corticotropin-releasing factor (CRF) was studied in the brain of the teleost Sparus aurata by immunocytochemistry using the peroxidase-antiperoxidase method. Antisera against rat CRF, arginine vasotocin, and human adrenocorticotropin (ACTH) were used. Most CRF-immunoreactive neurons were located in the nucleus lateralis tuberis, but they were absent from the nucleus preopticus, which only contained arginine vasotocin neurons. Few CRF perikarya were identified in the nucleus preopticus periventricularis and in the mesencephalic tegmentum. A conspicuous bundle of immunoreactive fibers ran along the diencephalic floor and pituitary stalk to end near the cells of the hypophysial pars intermedia. No CRF was seen near the adenohypophysial rostral pars distalis. Our results suggest that, in Sparus aurata, CRF is a releasing factor for melanotropic cells. Its role as a releasing factor for ACTH is discussed.  相似文献   

20.
Summary By means of the rapid Golgi-impregnation technique, intraependymal nerve cells and CSF-contacting neurons were demonstrated in the periventricular layer of the paraventricular nucleus (PVN) of the Japanese quail, chicken and house sparrow. When immunocytochemistry was applied to the brains of Japanese quail, chicken and Pekin duck these cellular elements displayed vasotocin- and neurophysin immunoreactions. In the present material intraependymal and cerebrospinal fluid-contacting neurons of the paraventricular nucleus (PVN) were never stained with antisera against avian vasointestinal peptide (VIP), corticotropin releasing factor (CRF), angiotensin II and serotonin. The periventricular zone of the PVN comprises conspicuous fiber networks immunoreactive with antisera to neurophysin, vasotocin and CRF. Our results indicate a general morphologic pattern of the above-mentioned peptidergic systems in all avian species investigated, irrespective of their taxonomic position or of certain peculiarities of the habitat and functional adaptation. The present neuromorphological results may provide a basis for further functional analysis of the interrelationships between the compartments containing cerebrospinal fluid and the neuroendocrine hypothalamic centers involved in various autonomic control mechanisms.Supported by grants from the MPI (60%), the Italian CNR (83.00447.04, 84.01769.04, 85.00515.04), and the Deutscher Akademischer Austauschdienst to G.C.P. and C.V.P., and from the Deutsche Forschungsgemeinschaft to H.W.K. (Ko 758/2-4)Preliminary results were previously presented at the 78th Versammlung der Anatomischen Gesellschaft (Viglietti-Panzica et al. 1984a) and at the 8th meeting of the European Neuroscience Association (Viglietti-Panzica et al. 1984b)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号