首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
C G Burd  G Dreyfuss 《The EMBO journal》1994,13(5):1197-1204
Pre-mRNA is processed as a large complex of pre-mRNA, snRNPs and pre-mRNA binding proteins (hnRNP proteins). The significance of hnRNP proteins in mRNA biogenesis is likely to be reflected in their RNA binding properties. We have determined the RNA binding specificity of hnRNP A1 and of each of its two RNA binding domains (RBDs), by selection/amplification from pools of random sequence RNA. Unique RNA molecules were selected by hnRNP A1 and each individual RBD, suggesting that the RNA binding specificity of hnRNP A1 is the result of both RBDs acting as a single RNA binding composite. Interestingly, the consensus high-affinity hnRNP A1 binding site, UAGGGA/U, resembles the consensus sequences of vertebrate 5' and 3' splice sites. The highest affinity 'winner' sequence for hnRNP A1 contained a duplication of this sequence separated by two nucleotides, and was bound by hnRNP A1 with an apparent dissociation constant of 1 x 10(-9) M. hnRNP A1 also bound other RNA sequences, including pre-mRNA splice sites and an intron-derived sequence, but with reduced affinities, demonstrating that hnRNP A1 binds different RNA sequences with a > 100-fold range of affinities. These experiments demonstrate that hnRNP A1 is a sequence-specific RNA binding protein. UV light-induced protein-RNA crosslinking in nuclear extracts demonstrated that an oligoribonucleotide containing the A1 winner sequence can be used as a specific affinity reagent for hnRNP A1 and an unidentified 50 kDa protein. We also show that this oligoribonucleotide, as well as two others containing 5' and 3' pre-mRNA splice sites, are potent inhibitors of in vitro pre-mRNA splicing.  相似文献   

2.
3.
Heterogeneous nuclear ribonucleoprotein (hnRNP) A2 is a trans-acting RNA-binding protein that mediates trafficking of RNAs containing the cis-acting A2 response element (A2RE). Previous work has shown that A2RE RNAs are transported to myelin in oligodendrocytes and to dendrites in neurons. hnRNP E1 is an RNA-binding protein that regulates translation of specific mRNAs. Here, we show by yeast two-hybrid analysis, in vivo and in vitro coimmunoprecipitation, in vitro cross-linking, and fluorescence correlation spectroscopy that hnRNP E1 binds to hnRNP A2 and is recruited to A2RE RNA in an hnRNP A2-dependent manner. hnRNP E1 is colocalized with hnRNP A2 and A2RE mRNA in granules in dendrites of oligodendrocytes. Overexpression of hnRNP E1 or microinjection of exogenous hnRNP E1 in neural cells inhibits translation of A2RE mRNA, but not of non-A2RE RNA. Excess hnRNP E1 added to an in vitro translation system reduces translation efficiency of A2RE mRNA, but not of nonA2RE RNA, in an hnRNP A2-dependent manner. These results are consistent with a model where hnRNP E1 recruited to A2RE RNA granules by binding to hnRNP A2 inhibits translation of A2RE RNA during granule transport.  相似文献   

4.
We have previously isolated a protein from mouse liver nuclei that specifically binds to single stranded (TTAGGG)n repeats. TTAGGG is the telomeric repeats of mammals and we therefore named the new protein single stranded telomere binding protein (sTBP). Further studies now identify sTBP as heterogeneous nuclear ribonucleoprotein (hnRNP) A2/B1 on the basis of amino acid sequence determination and antibody reactivity. A2 and B1 form a major part of the protein component of hnRNP particles and are abundant nuclear proteins. Unexpectedly, A2/B1 has a high specificity for binding to the RNA equivalent of TTAGGG, UUAGGG, but under the same conditions does not appear to have a strong affinity for a number of other RNA species.  相似文献   

5.
Camptothecin (CPT) is an anti-tumor natural product that forms a ternary complex with topoisomerase I (top I) and DNA (CPT-top I-DNA). In this study, we identified the direct interaction between CPT and human heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) using the T7 phage display technology. On an avidin-agarose bead pull down assay, hnRNP A1 protein was selectively pulled down in the presence of C20-biotinylated CPT derivative (CPT-20-B) both in vitro and in vivo. The interaction was also confirmed by an analysis on a quartz-crystal microbalance (QCM) device, yielding a KD value of 82.7 nM. A surface plasmon resonance (SPR) analysis revealed that CPT inhibits the binding of hnRNP A1 to top I (KD: 260 nM) in a non-competitive manner. Moreover, an in vivo drug evaluation assay using Drosophila melanogaster showed that the knockout of the hnRNP A1 homolog Hrb87F gene showed high susceptibility against 5–50 μM of CPT as compared to a wild-type strain. Such susceptibility was specific for CPT and not observed after treatment with other cytotoxic drugs. Collectively, our data suggests that CPT directly binds to hnRNP A1 and non-competitively inhibits the hnRNP A1/top I interaction in vivo. The knockout strain loses the hnRNP A1 homolog as a both CPT-binding partner and naïve brakes of top I, which enhances the formation of the CPT-top I-DNA ternary complexes and subsequently sensitizes the growth inhibitory effect of CPT in D. melanogaster.  相似文献   

6.
The chemical stability of phosphodiester bonds of some oligoribonucleotides in the presence of a cofactor like polyvinylpyrolidine (PVP) is sequence dependent. It was found that pyrimidine-A (YA) and pyrimidine-C (YC) are especially susceptible to hydrolysis. The hydrolyzability of this same phosphodiester bond is dependent on its position in the oligomer. The presence of 3' and 5'-adjacent nucleotides enhances hydrolysis of the UA phosphodiester bond. The acceleration of the hydrolysis of UA by a 5'-adjacent nucleotide is not base dependent. However, a 3'-adjacent purine increases hydrolysis of a UA phosphodiester bond more than a 3'-pyrimidine. The presence of the exoamino group on the 3'-side base (on 6 and 4 position for adenosine and cytidine, respectively) of YA or YZ phosphodiester bond is required for hydrolysis.  相似文献   

7.
Antibodies induced against mammalian single-stranded DNA binding protein (ssDBP) UP I were shown to be cross-reactive with most of the basic hnRNP core proteins, the main constituents of 40S hnRNP particles. This suggested a structural relationship between both groups of proteins. Using the anti-ssDBP antibodies, a cDNA clone (pRP10) was isolated from a human liver cDNA library in plasmid expression vector pEX1. By DNA sequencing this clone was shown to encode in its 949 bp insert the last 72 carboxy terminal amino acids of the ssDBP UP I. Thereafter, an open reading frame continued for another 124 amino acids followed by a UAA (ochre) stop codon. Direct amino acid sequencing of a V8 protease peptide from hnRNP core protein A1 showed that this peptide contained at its amino terminus the last 11 amino acids of UP I followed by 19 amino acids which are encoded by the open reading frame of cDNA clone pRP10 immediately following the UP I sequence. This proves that ssDBP UP I arises by proteolysis from hnRNP core protein A1. This finding must lead to a re-evaluation of the possible physiological role of UP I and related ssDBPs. The formerly assumed function in DNA replication, although not completely ruled out, should be reconsidered in the light of a possible alternative or complementary function in hnRNA processing where UP I could either be a simple degradation product of core protein A1 (as a consequence of controlling the levels of active A1) or may continue to function as an RNA binding protein which has lost the ability to interact with the other core proteins.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
hnRNP A1 is a pre-mRNA binding protein that antagonizes the alternative splicing activity of splicing factors SF2/ASF or SC35, causing activation of distal 5' splice sites. The structural requirements for hnRNP A1 function were determined by mutagenesis of recombinant human hnRNP A1. Two conserved Phe residues in the RNP-1 submotif of each of two RNA recognition motifs appear to be involved in specific RNA-protein interactions and are essential for modulating alternative splicing. These residues are not required for general pre-mRNA binding or RNA annealing activity. The C-terminal Gly-rich domain is necessary for alternative splicing activity, for stable RNA binding and for optimal RNA annealing activity. hnRNP A1B, which is an alternatively spliced isoform of hnRNP A1 with a longer Gly-rich domain, binds more strongly to pre-mRNA but has only limited alternative splicing activity. In contrast, hnRNP A2 and B1, which have 68% amino acid identity with hnRNP A1, bind more weakly to pre-mRNA and have stronger splice site switching activities than hnRNP A1. We propose that specific combinations of antagonistic hnRNP A/B and SR proteins are involved in regulating alternative splicing of distinct subsets of cellular premRNAs.  相似文献   

9.
A mixed phage library containing random peptides from four to eight residues in length flanked by cysteine residues was screened using a recombinant soluble, form of human ICAM-1, which included residues 1–453, (ICAM-11–453). Phage bound to immobilized ICAM-11–453 were eluted by three methods: (1) soluble ICAM-11–453, (2) neutralizing murine monoclonal antibody, (anti-ICAM-1, M174F5B7), (3) acidic conditions. After three rounds of binding and elution, a single, unique ICAM-1 binding phage bearing the peptide EWCEYLGGYLRYCA was isolated; the identical phage was selected with each method of elution. Attempts to isolate phage from non-constrained (i.e., not containing cysteines) libraries did not yield a phage that bound to ICAM-1. Phage displaying EWCEYLGGYLRCYA bound to immobilized ICAM-11–453 and to ICAM-11–185, a recombinant ICAM-1, which contains only the two amino-terminal immunoglobulin domains residing within residues 1–185. This is the region of the ICAM-1 that is bound by LFA-1. The phage did not bind to proteins other than ICAM-1. The phage bound to two ICAM-1 mutants, which contained amino acid substitutions that dramatically decreased or eliminated the binding to LFA-1. Studies were also performed with the corresponding synthetic peptide. The linear form of the synthetic EWCEYLGGYLRCYA peptide was found to inhibit LFA-1 binding to immobilized ICAM-11–453 in a protein-protein binding assay. By contrast, the disulfide, cyclized, form of the peptide was inactive. The EWCEYL portion of the sequence is homologous to the EWPEYL sequence found within rhinovirus coat protein 14, a nonintegrin protein that binds to ICAM-1. Taken together, the results suggests that the EWCEYLGGYLRCYA sequence is capable to binding to immobilized ICAM-1. Phage display appears to represent a new approach for the identification of peptides that interfere with ICAM-1 binding to β2 integrins. © 1996 Wiley-Liss, Inc.  相似文献   

10.
Eukaryotic nuclear RNA binding proteins share a common sequence motif thought to be implicated in RNA binding. One of the two domains present in A1 hnRNP protein, has been modelled by homology in order to make a prediction of the main features of the RNA binding site. Acylphosphatase (EC 3.6.1.7) was selected as template for the modeling experiment. The predicted RNA binding site is a beta-sheet containing the two RNP consensus sequences as well as lysines and arginines conserved among the family.  相似文献   

11.
The autoantigen p43 is a nuclear protein initially identified with autoantibodies from dogs with a lupus-like syndrome. Here we show that p43 is an RNA-binding protein, and identify it as hnRNP G, a previously described component of heterogeneous nuclear ribonucleoprotein complexes. We demonstrate that p43/hnRNP G is glycosylated, and identify the modification as O-linked N-acetylglucosamine. A full-length cDNA clone for hnRNP G has been isolated and sequenced, and the predicted amino acid sequence for hnRNP G shows that it contains one RNP-consensus RNA binding domain (RBD) at the amino terminus and a carboxyl domain rich in serines, arginines and glycines. The RBD of human hnRNP G shows striking similarities with the RBDs of several plant RNA-binding proteins.  相似文献   

12.
The p53-induced Wig-1 gene encodes a double stranded RNA-binding zinc finger protein. We generated Saos-2 osteosarcoma cells expressing tetracycline-inducible Flag-tagged human Wig-1. Induction of Wig-1 expression by doxycycline inhibited cell growth in a long-term assay but did not cause any changes in cell cycle distribution nor increased fraction of apoptotic cells. Using co-immunoprecipitation and mass spectrometry, we identified two Wig-1-binding proteins, hnRNP A2/B1 and RNA Helicase A, both of which are involved in RNA processing. The binding was dependent on the presence of RNA. Our results establish a link between the p53 tumor suppressor and RNA processing via hnRNPA2/B1 and RNA Helicase A.  相似文献   

13.
From biochemical experiments it has been found that AT- and GC-specific dyes need a certain number of consecutive bases of the same type for binding one dye molecule. From known base sequences the amount of bases included in dye binding can be calculated and compared with experimental data from flow cytometry. Oryza sativa and Arabidopsis thaliana are the first higher plants which are nearly completely (>90%) sequenced. From the published sequences the theoretical fluorescence intensity of base-specific dyes in relation to a base-unspecific dye is calculated for different binding lengths. These values are compared with the actual fluorescence intensities of nuclei analyzed by flow cytometry. For all investigated dyes (DAPI, Hoechst 33258, Hoechst 33342 (all AT specific) and Mithramycin A (GC specific)) a binding length of 1 bp results from the comparison of theoretical and experimental data. This is, however, in disagreement with former results on dye binding. The main reason for the discrepancy seems to be the remaining gap in the sequencing of the Arabidopsis genome.  相似文献   

14.
Incomplete RNA splicing is a key feature of the retroviral life cycle. This is in contrast to the processing of most cellular pre-mRNAs, which are usually spliced to completion. In Rous sarcoma virus, splicing control is achieved in part through a cis-acting RNA element termed the negative regulator of splicing (NRS). The NRS is functionally divided into two parts termed NRS5' and NRS3', which bind a number of splicing factors. The U1 and U11 small nuclear ribonucleoproteins interact with sequences in NRS3', whereas NRS5' binds several proteins including members of the SR [corrected] family of proteins. Among the proteins that specifically bind NRS5' is a previously unidentified 55-kDa protein (p55). In this report we describe the isolation and identification of p55. The p55 binding site was localized by UV cross-linking to a 31-nucleotide segment, and a protein that binds specifically to it was isolated by RNA affinity selection and identified by mass spectrometry as hnRNP H. Antibodies against hnRNP H immunoprecipitated cross-linked p55 and induced a supershift of a p55-containing complex formed in HeLa nuclear extract. Furthermore, UV cross-linking and electrophoretic mobility shift assays indicated that recombinant hnRNP H specifically interacts with the p55 binding site, confirming that hnRNP H is p55. The possible roles of hnRNP H in NRS function are discussed.  相似文献   

15.
The C protein tetramer of hnRNP complexes binds approximately 150-230 nt of RNA with high cooperativity (McAfee J et al., 1996, Biochemistry 35:1212-1222). Three contiguously bound tetramers fold 700-nt lengths of RNA into a 19S triangular intermediate that nucleates 40S hnRNP assembly in vitro (Huang M et al., 1994, Mol Cell Biol 14:518-533). Although it has been assumed that the consensus RNA recognition motif (RRM) of C protein (residues 8-87) is the primary determinant of RNA binding, we report here that a recombinant construct containing residues 1-115 has very low affinity for RNA at physiological ionic strength (100 mM NaCl). Moreover, we demonstrate that an N-terminal deletion construct lacking the consensus RRM but containing residues 140-290 binds RNA with an affinity sufficient to account for the total free energy change observed for the binding of intact protein. Like native C protein, the 140-290 construct is a tetramer in solution and binds RNA stoichiometrically in a salt-resistant manner in 100-300 mM NaCl. Residues 140-179 of the N-terminal truncated variant contain 11 basic and 2 acidic residues, whereas residues 180-207 specify a leucine zipper motif that directs dimer assembly. Elements within the 50-residue carboxy terminus of C protein are required for tetramer assembly. A basic region followed by a leucine zipper is identical to the domain organization of the basic-leucine zipper (bZIP) class of DNA binding proteins. Sequence homologies with other proteins containing RRMs and the bZIP motif suggest that residues 140-207 represent a conserved bZIP-like RNA binding motif (designated bZLM). The steric orientation of four high-affinity RNA binding sites about rigid leucine zipper domains may explain in part C protein''s asymmetry, its large occluded site size, and its RNA folding activity.  相似文献   

16.
NY-ESO-1 is expressed by a broad range of human tumors and is often recognized by Abs in the sera of cancer patients with NY-ESO-1-expressing tumors. The NY-ESO-1 gene also encodes several MHC class I- and class II-restricted tumor epitopes recognized by T lymphocytes. In this study we report one novel pan-MHC class II-restricted peptide sequence, NY-ESO-1 87-111, that is capable of binding to multiple HLA-DR and HLA-DP4 molecules, including HLA-DRB1*0101, 0401, 0701, and 1101 and HLA-DPB1*0401 and 0402 molecules. We also demonstrate that peptide NY-ESO-1 87-111 stimulates Th1-type and Th-2/Th0-type CD4(+) T cells and clones when presented in the context of these HLA-DR and HLA-DP4 molecules. Both bulk CD4(+) T cells and CD4(+) T cell clones were capable of recognizing not only peptide-pulsed APCs, but also autologous dendritic cells, either loaded with the NY-ESO-1 protein or transfected with NY-ESO-1 cDNAs. Using IFN-gamma and IL-5 ELISPOT assays and PBL from patients with NY-ESO-1-expressing tumors, we observed the existence of Th1-type circulating CD4(+) T cells recognizing peptide NY-ESO-1 87-111 in the context of HLA-DP4 molecules. Taken together, these data represent the first report of an HLA-DR- and HLA-DP-restricted epitope from a tumor Ag. They also support the relevance of cancer vaccine trials with peptides NY-ESO-1 87-111 in the large number of cancer patients with NY-ESO-1-expressing tumors.  相似文献   

17.
18.
We have identified two zinc finger proteins of Trypanosoma cruzi, the protozoan parasite that causes Chagas disease in humans. These proteins, named tcZFP1 and tcZFP2, share the unusual zinc finger motif (CCCH) found in a diverse range of RNA-binding proteins involved in various aspects of the control of cell homeostasis and differentiation. We report here the functional expression of a recombinant tcZFP1, and the relative affinity and stability of the specific complexes formed between the protein and synthetic oligoribonucleotides containing C-rich sequences.  相似文献   

19.
The physiologic substrates of cytotoxic T lymphocyte granule-associated serine esterases (referred to hereafter as proteases or "granzymes"), and the role of these enzymes in cell-mediated activity remain unclear. We have developed an assay for possible ligands of the trypsin-like dimeric serine protease granzyme A based on Western immunoblotting techniques. This protein-binding assay demonstrates the selective binding of granzyme A to several proteins present in the target cell P815. The binding specificity is preserved when enzyme binding is performed in the presence of excess competing proteins, including such cationic species as lysozyme and RNase. Enzyme binding is inhibited, however, by heat or detergent inactivation of granzyme A. Subcellular fractionation of target cells shows that the nuclear fraction contains most granzyme A binding reactivity, which is recovered in the nuclear salt wash fraction. A protein with Mr = 100,000 and two closely migrating proteins with Mr = 35,000 and 38,000 are the predominant reactive moieties, and the N-terminal sequence of the 100-kDa protein confirmed that this protein was murine nucleolin. Incubation of granzyme A with nucleolin generates a discrete proteolytic cleavage product of Mr = 88,000. Since nucleolin is known to shuttle between nucleus and cytoplasm, the interaction of granzyme A and nucleolin may be important in the process of apoptosis which accompanies cytotoxic T lymphocyte-mediated lysis of target cells.  相似文献   

20.
A self-cleaving RNA sequence from hepatitis delta virus was modified to produce a ribozyme capable of catalyzing the cleavage of RNA in an intermolecular (trans) reaction. The delta-derived ribozyme cleaved substrate RNA at a specific site, and the sequence specificity could be altered with mutations in the region of the ribozyme proposed to base pair with the substrate. A substrate target size of approximately 8 nucleotides in length was identified. Octanucleotides containing a single ribonucleotide immediately 5' to the cleavage site were substrates for cleavage, and cleavage activity was significantly reduced only with a guanine base at that position. A deoxyribose 5' to the cleavage site blocked the reaction. These data are consistent with a proposed secondary structure for the self-cleaving form of the hepatitis delta virus ribozyme in which a duplex forms with sequences 3' to the cleavage site, and they support a proposed mechanism in which cleavage involves attack on the phosphorus at the cleavage site by the adjacent 2'-hydroxyl group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号