首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND: In animal cells, GTPase signaling pathways are thought to generate cellular protrusions by modulating the activity of downstream actin-regulatory proteins. Although the molecular events linking activation of a GTPase to the formation of an actin-based process with a characteristic morphology are incompletely understood, Rac-GTP is thought to promote the activation of SCAR/WAVE, whereas Cdc42 is thought to initiate the formation of filopodia through WASP. SCAR and WASP then activate the Arp2/3 complex to nucleate the formation of new actin filaments, which through polymerization exert a protrusive force on the membrane. RESULTS: Using RNAi to screen for genes regulating cell form in an adherent Drosophila cell line, we identified a set of genes, including Abi/E3B1, that are absolutely required for the formation of dynamic protrusions. These genes delineate a pathway from Cdc42 and Rac to SCAR and the Arp2/3 complex. Efforts to place Abi in this signaling hierarchy revealed that Abi and two components of a recently identified SCAR complex, Sra1 (p140/PIR121/CYFIP) and Kette (Nap1/Hem), protect SCAR from proteasome-mediated degradation and are critical for SCAR localization and for the generation of Arp2/3-dependent protrusions. CONCLUSIONS: In Drosophila cells, SCAR is regulated by Abi, Kette, and Sra1, components of a conserved regulatory SCAR complex. By controlling the stability, localization, and function of SCAR, these proteins may help to ensure that Arp2/3 activation and the generation of actin-based protrusions remain strictly dependant on local GTPase signaling.  相似文献   

2.
In vitro studies have shown that SCAR/WAVE activates the Arp2/3 complex to generate actin filaments, which in many cell types are organised into lamellipodia that are thought to have an important role in cell migration. Here we demonstrate that SCAR is utilised by Drosophila macrophages to drive their developmental and inflammatory migrations and that it is regulated via the Hem/Kette/Nap1-containing SCAR/WAVE complex. SCAR is also important in protecting against bacterial pathogens and in wound repair as SCAR mutant embryos succumb more readily to both sterile and infected wounds. However, in addition to driving the formation of lamellipodia in macrophages, SCAR is required cell autonomously for the correct processing of phagocytosed apoptotic corpses by these professional phagocytes. Removal of this phagocytic burden by preventing apoptosis rescues macrophage lamellipodia formation and partially restores motility. Our results show that efficient processing of phagosomes is critical for effective macrophage migration in vivo. These findings have important implications for the resolution of macrophages from chronic wounds and the behaviour of those associated with tumours, because phagocytosis of debris may serve to prolong the presence of these cells at these sites of pathology.  相似文献   

3.
The WAVE/SCAR complex promotes actin nucleation through the Arp2/3 complex, in response to Rac signaling. We show that loss of WVE-1/GEX-1, the only C. elegans WAVE/SCAR homolog, by genetic mutation or by RNAi, has the same phenotype as loss of GEX-2/Sra1/p140/PIR121, GEX-3/NAP1/HEM2/KETTE, or ABI-1/ABI, the three other components of the C. elegans WAVE/SCAR complex. We find that the entire WAVE/SCAR complex promotes actin-dependent events at different times and in different tissues during development. During C. elegans embryogenesis loss of CED-10/Rac1, WAVE/SCAR complex components, or Arp2/3 blocks epidermal cell migrations despite correct epidermal cell differentiation. 4D movies show that this failure occurs due to decreased membrane dynamics in specific epidermal cells. Unlike myoblasts in Drosophila, epidermal cell fusions in C. elegans can occur in the absence of WAVE/SCAR or Arp2/3. Instead we find that subcellular enrichment of F-actin in epithelial tissues requires the Rac-WAVE/SCAR-Arp2/3 pathway. Intriguingly, we find that at the same stage of development both F-actin and WAVE/SCAR proteins are enriched apically in one epithelial tissue and basolaterally in another. We propose that temporally and spatially regulated actin nucleation by the Rac-WAVE/SCAR-Arp2/3 pathway is required for epithelial cell organization and movements during morphogenesis.  相似文献   

4.
Cell rearrangements shape organs and organisms using molecular pathways and cellular processes that are still poorly understood. Here we investigate the role of the Actin cytoskeleton in the formation of the Drosophila compound eye, which requires extensive remodeling and coordination between different cell types. We show that CYFIP/Sra-1, a member of the WAVE/SCAR complex and regulator of Actin remodeling, controls specific aspects of eye architecture: rhabdomere extension, rhabdomere terminal web organization, adherens junctions, retina depth and basement membrane integrity. We demonstrate that some phenotypes manifest independently, due to defects in different cell types. Mutations in WAVE/SCAR and in ARP2/3 complex subunits but not in WASP, another major regulator of Actin nucleation, phenocopy CYFIP defects. Thus, the CYFIP-SCAR-ARP2/3 pathway orchestrates specific tissue remodeling processes.  相似文献   

5.
The formation of synapses and the proper construction of neural circuits depend on signaling pathways that regulate cytoskeletal structure and dynamics. After the mutual recognition of a growing axon and its target, multiple signaling pathways are activated that regulate cytoskeletal dynamics to determine the morphology and strength of the connection. By analyzing Drosophila mutations in the cytoplasmic FMRP interacting protein Cyfip, we demonstrate that this component of the WAVE complex inhibits the assembly of filamentous actin (F-actin) and thereby regulates key aspects of synaptogenesis. Cyfip regulates the distribution of F-actin filaments in presynaptic neuromuscular junction (NMJ) terminals. At cyfip mutant NMJs, F-actin assembly was accelerated, resulting in shorter NMJs, more numerous satellite boutons, and reduced quantal content. Increased synaptic vesicle size and failure to maintain excitatory junctional potential amplitudes under high-frequency stimulation in cyfip mutants indicated an endocytic defect. cyfip mutants exhibited upregulated bone morphogenetic protein (BMP) signaling, a major growth-promoting pathway known to be attenuated by endocytosis at the Drosophila NMJ. We propose that Cyfip regulates synapse development and endocytosis by inhibiting actin assembly.  相似文献   

6.
Actin nucleation facilitated by the ARP2/3 complex plays a central role in plant cell shape development. The molecular characterization of the distorted class of trichome mutants has recently revealed the SCAR/WAVE complex as an essential upstream activator of ARP2/3 function in plants. The SCAR/WAVE complex is conserved from animals to plants and, generally, is composed of the five subunits SCAR/WAVE, PIR121, NAP125, BRICK and ABI. In plants, four of the five subunits have been shown to participate in trichome and pavement morphogenesis. Plant ABI‐like proteins (ABIL), however, which constitute a small four‐member protein family in Arabidopsis thaliana, have not been characterized functionally, so far. Here we demonstrate that microRNA knock‐down of the ABIL3 gene leads to a distorted trichome phenotype reminiscent of ARP2/3 mutant phenotypes and consistent with a crucial role of the ABIL3 protein in an ARP2/3‐activating SCAR/WAVE complex. In contrast to ARP2/3 mutants, however, the ABIL3 knock‐down stimulated cell elongation in the root, indicating distinct functions of the ABIL3 protein in different tissues. Furthermore, we provide evidence that ABIL3 associates with microtubules in vivo, opening up the intriguing possibility that ABI‐like proteins have a function in linking SCAR/WAVE‐dependent actin nucleation with organization of the microtubule cytoskeleton.  相似文献   

7.
Actin polymerization drives multiple cell processes involving movement and shape change. SCAR/WAVE proteins connect signaling to actin polymerization through the activation of the Arp2/3 complex. SCAR/WAVE is normally found in a complex with four other proteins: PIR121, Nap1, Abi2,and HSPC300 (Figure S1A available online) [1-3]. However,there is no consensus as to whether the complex functions as an unchanging unit or if it alters its composition in response to stimulation, as originally proposed by Edenet al. [1]. It also is unclear whether complex members exclusively regulate SCAR/WAVEs or if they have additional targets [4-6]. Here, we analyze the roles of the unique Dictyostelium Abi. We find that abiA null mutants show less severe defects in motility than do scar null cells, indicating--unexpectedly--that SCAR retains partial activity in the absence of Abi. Furthermore, abiA null mutants have a serious defect in cytokinesis, which is not seen in other SCAR complex mutants and is seen only when SCAR itself is present. Detailed examination reveals that normal cytokinesis requires SCAR activity, apparently regulated through multiple pathways.  相似文献   

8.
Mutations in DCTN1, a component of the dynactin complex, are linked to neurodegenerative diseases characterized by a broad collection of neuropathologies. Because of the pleiotropic nature of dynactin complex function within the neuron, defining the causes of neuropathology in DCTN1 mutants has been difficult. We combined a genetic screen with cellular assays of dynactin complex function to identify genes that are critical for dynactin complex function in the nervous system. This approach identified the Drosophila homologue of Arfaptin, a multifunctional protein that has been implicated in membrane trafficking. We find that Arfaptin and the Drosophila DCTN1 homologue, Glued, function in the same pathway during synapse growth but not during axonal transport or synapse stabilization. Arfaptin physically associates with Glued and other dynactin complex components in the nervous system of both flies and mice and colocalizes with Glued at the Golgi in motor neurons. Mechanistically, membrane binding by Arfaptin mediates membrane association of the dynactin complex in motor neurons and is required for normal synapse growth. Arfaptin represents a novel dynactin complex–binding protein that specifies dynactin complex function during synapse growth.  相似文献   

9.
Dynamic actin polymerization drives a variety of morphogenetic events during metazoan development. Members of the WASP/WAVE protein family are central nucleation-promoting factors. They are embedded within regulatory networks of macromolecular complexes controlling Arp2/3-mediated actin nucleation in time and space. WAVE (Wiskott-Aldrich syndrome protein family verprolin-homologous protein) proteins are found in a conserved pentameric heterocomplex that contains Abi, Kette/Nap1, Sra-1/CYFIP, and HSPC300. Formation of the WAVE complex contributes to the localization, activity, and stability of the various WAVE proteins. Here, we established the Bimolecular Fluorescence Complementation (BiFC) technique in Drosophila to determine the subcellular localization of the WAVE complex in living flies. Using different split-YFP combinations, we are able to visualize the formation of the WAVE-Abi complex in vivo. We found that WAVE also forms dimers that are capable of forming higher order clusters with endogenous WAVE complex components. The N-terminal WAVE homology domain (WHD) of the WAVE protein mediates both WAVE-Abi and WAVE-WAVE interactions. Detailed localization analyses show that formation of WAVE complexes specifically takes place at basal cell compartments promoting actin polymerization. In the wing epithelium, hetero- and homooligomeric WAVE complexes co-localize with Integrin and Talin suggesting a role in integrin-mediated cell adhesion. RNAi mediated suppression of single components of the WAVE and the Arp2/3 complex in the wing further suggests that WAVE-dependent Arp2/3-mediated actin nucleation is important for the maintenance of stable integrin junctions.  相似文献   

10.
In migrating cells, the actin filament nucleation activity of ARP2/3 is an essential component of dynamic cell shape change and motility. In response to signals from the small GTPase Rac1, alterations in the composition and/or subcellular localization of the WAVE complex lead to ARP2/3 activation. The human WAVE complex subunit, WAVE1/SCAR1, was first identified in Dictyostelium and is a direct ARP2/3 activator. In the absence of an intact WAVE complex, SCAR/WAVE protein is destabilized. Although the composition of the five-subunit WAVE complex is well characterized, the means by which individual subunits and fully assembled WAVE complexes regulate ARP2/3 in vivo are unclear. The molecular genetics of trichome distortion in Arabidopsis is a powerful system to understand how signaling pathways and ARP2/3 control multicellular development. In this paper we prove that the GNARLED gene encodes a homolog of the WAVE subunit NAP125. Despite the moderate level of amino acid identity between Arabidopsis and human NAP125, both homologs were functionally interchangeable in vivo and interacted physically with the putative Arabidopsis WAVE subunit ATSRA1. gnarled trichomes had nearly identical cell shape and actin cytoskeleton phenotypes when compared to ARP2/3 subunit mutants, suggesting that GRL positively regulates ARP2/3.  相似文献   

11.
The SCAR/WAVE complex drives actin-based protrusion, cell migration, and cell separation during cytokinesis. However, the contribution of the individual complex members to the activity of the whole remains a mystery. This is primarily because complex members depend on one another for stability, which limits the scope for experimental manipulation. Several studies suggest that Abi, a relatively small complex member, connects signaling to SCAR/WAVE complex localization and activation through its polyproline C-terminal tail. We generated a deletion series of the Dictyostelium discoideum Abi to investigate its exact role in regulation of the SCAR complex and identified a minimal fragment that would stabilize the complex. Surprisingly, loss of either the N terminus of Abi or the C-terminal polyproline tail conferred no detectable defect in complex recruitment to the leading edge or the formation of pseudopods. A fragment containing approximately 20% Abi—and none of the sites that couple to known signaling pathways—allowed the SCAR complex to function with normal localization and kinetics. However, expression of N-terminal Abi deletions exacerbated the cytokinesis defect of the Dictyostelium abi mutant, which was earlier shown to be caused by the inappropriate activation of SCAR. This demonstrates, unexpectedly, that Abi does not mediate the SCAR complex''s ability to make pseudopods, beyond its role in complex stability. Instead, we propose that Abi has a modulatory role when the SCAR complex is activated through other mechanisms.  相似文献   

12.
Catching the WAVEs of Plant Actin Regulation   总被引:3,自引:0,他引:3  
Plants, as all other eukaryotic organisms, depend on a dynamic actin cytoskeleton for proper function and development. Actin dynamics is a complex process, regulated by a number of actin-binding proteins and large multiprotein complexes like ARP2/3 and WAVE. The ARP2/3 complex is recognized as a nucleator of actin filaments, and it generates a highly branched network of interlaced microfilaments. Results from multiple organisms show that ARP2/3 activity is regulated through multiple pathways. Recent results from plants point to a signaling pathway leading from the small GTPase RAC/ROP through a protein complex containing the ARP2/3-activating protein WAVE. This signaling pathway appears to be evolutionarily conserved. Support for this regulatory mechanism comes from studies of mutations in genes encoding subunits of the putative ARP2/3 complex and the WAVE complex in Arabidopsis. Several such mutants have defects of actin filament organization, leading to a conspicuous “distorted” trichome phenotype. Multiple growth and developmental phenotypes reported for napp/gnarled/atnap, pirp/pirogi/atpir, and distorted3 mutants reveal that these WAVE proteins are also required for a wider variety of cellular functions in addition to regulating trichome cell growth. These results have implications for the current view on cell morphogenesis in plants.  相似文献   

13.
We identify Kette, a key regulator of actin polymerization, as a substrate for Drosophila protein tyrosine phosphatase PTP61F, as well as for dAbl tyrosine kinase. We further show that dAbl is a direct substrate for PTP61F. Therefore, Kette phosphotyrosine levels are regulated both directly and indirectly by PTP61F. Kette and PTP61F genetically interact in the regulation of F-actin organization in pupal eye discs, suggesting that tyrosine phosphorylation is essential for the proper regulation of Kette-mediated actin dynamics. This hypothesis was confirmed by demonstrating the loss of Kette-mediated F-actin organization and lamella formation in S2 cells in a Kette Y482F mutant in which the dAbl phosphorylation site was eliminated. Our results establish for the first time that PTP61F and dAbl ensure proper actin organization through the coordinated and reversible tyrosine phosphorylation of Kette.The actin cytoskeleton is regulated as a function of development, cell motility, intracellular transport, and the cell cycle by the polymerization of G-actin to F-actin (34). Correct regulation of actin cytoskeletal dynamics is essential to numerous differentiating and cellular processes in the nervous system (9) and musculature (42), among others. Actin polymerization is regulated by a number of proteins, among which is human NCK-associated protein 1 (NAP-1 [3, 4, 45]). It and its Drosophila orthologue, Kette (Hem in FlyBase), are critical components in both SCAR/WAVE and WASP complexes, which play essential roles in transducing Rac1 signals to initiate Arp2/3-dependent actin polymerization (6, 25, 40, 48). Murine NAP-1 interacts with NCK, an SH2-SH3 adaptor protein (4), and is essential for proper neuronal differentiation in the cortex (53). Neuronal differentiation and neural tube defects are observed in NAP-1 mutant mice, apparently due to reduced localization of WAVE1 to the cell membrane (53).In Drosophila, loss of kette activity specifically results in the accumulation of cytosolic F-actin (6). Kette protein associates with F-actin in the cytosol, but also at focal contact sites, where it apparently antagonizes SCAR/WAVE function and activates WASP-dependent actin polymerization (6). Despite its role in repressing SCAR/WAVE function, Kette serves to protect the complex from proteosome-mediated degradation and is critical to its intracellular localization (25). At the level of the organism, kette alleles affect axonal growth and pathfinding due to aberrant actin cytoskeleton formation, for example, altering crossing of the embryonic ventral midline by VUM neuron axons, as well as generating aberrant axonal projections in both motor and sensory neurons (21). Like mammalian NAP-1, Drosophila kette also interacts with the fly NCK orthologue, dreadlocks (dock) (21). Other evidence for the conserved interaction of Kette with signaling cascades is provided by the observation that kette mutant phenotypes are partially rescuable by overexpression of the small G protein Rac1 (21). The interaction of kette with dock suggests the possibility of tyrosine phosphorylation in the regulation of Kette activity, but no evidence supporting this hypothesis has been reported.Signaling by tyrosine phosphorylation in various metazoans controls numerous processes involved in cellular differentiation and proliferation. Many of the components regulating tyrosine phosphorylation have been identified and characterized using genetic, biochemical, molecular, and genomic sequence analyses (31). However, in contrast to the very well-characterized regulation of cellular processes by kinase-mediated tyrosine phosphorylation (15, 52), their regulation by dephosphorylation by protein tyrosine phosphatases (PTPs) has generally lagged behind. Although the functions of several receptor PTPs have been clearly defined as playing essential roles in axon guidance in both Drosophila (12, 23, 41, 47, 50) and mammals (44, 49), our understanding of nontransmembrane PTPs (NT-PTPs) is more limited. Only three of the eight putative Drosophila NT-PTPs have been characterized genetically. Corkscrew (Csw) acts as a downstream effector of various receptor protein tyrosine kinases (PTKs) and is essential for R7 photoreceptor development (35). PTP-enhancer of Ras1 has been characterized as an essential regulator antagonizing signaling mediated by Ras1, possibly through tyrosine dephosphorylation of mitogen-activated protein kinase (24, 36). More recently, it has been shown that PTP-meg participates in the establishment and maintenance of axon projections in the Drosophila brain (51). Other than these, the functions of Drosophila NT-PTPs remain largely unknown.PTP61F was originally identified as an NT-PTP that contains one phosphatase domain in the N-terminal region and five proline-rich motifs in the C-terminal tail (29). It is the Drosophila orthologue of mammalian PTP1B and T-cell PTP (TC-PTP) (1), which have been implicated in the regulation of signaling by both insulin (39) and JAK/STAT (33). Two PTP61F isoforms due to alternative splicing possess unique sequences at the C terminus, which determine either internal membrane-association (PTP61Fm) or nuclear localization (PTP61Fn) (29). To date, limited data suggest that PTP61F may participate in the downregulation of JAK/STAT signaling (2, 32), although the underlying mechanism remains unexplored. While PTP61F may recognize the adaptor proteins DOCK (10) and Abi (20) as potential substrates, the signaling pathways involving these interactions have not been clearly defined. In this study, we demonstrate for the first time that the regulation of Kette, and hence the localization and polymerization of the actin cytoskeleton, is achieved by reversible tyrosine phosphorylation under the control of both PTP61F and the PTK dAbl.  相似文献   

14.
15.
The actin cytoskeleton dynamically reorganizes the cytoplasm during cell morphogenesis. The actin-related protein (Arp)2/3 complex is a potent nucleator of actin filaments that controls a variety of endomembrane functions including the endocytic internalization of plasma membrane , vacuole biogenesis , plasma-membrane protrusion in crawling cells , and membrane trafficking from the Golgi . Therefore, Arp2/3 is an important signaling target during morphogenesis. The evolutionarily conserved Rac-WAVE-Arp2/3 pathway links actin filament nucleation to cell morphogenesis . WAVE translates Rac-GTP signals into Arp2/3 activation by regulating the stability and/or localization of the activator subunit Scar/WAVE . The WAVE complex includes Sra1/PIR121/CYFIP1, Nap1/NAP125, Abi-1/Abi-2, Brick1(Brk1)/HSPC300, and Scar/WAVE : Defining the in vivo function of each subunit is an important step toward understanding this complicated signaling pathway. Brk1/HSPC300 has been the most recalcitrant WAVE-complex protein and has no known function. In this paper, we report that Arabidopsis brick1 (brk1) is a member of the "distorted group" of trichome morphology mutants, a group that defines a WAVE-ARP2/3 morphogenesis pathway . In this paper we provide the first strong genetic and biochemical evidence that BRK1 is a critical WAVE-complex subunit that selectively stabilizes the Arp2/3 activator SCAR2.  相似文献   

16.
17.
18.
The dynamic nature of the eukaryotic actin cytoskeleton is essential for the locomotion of animal cells and the morphogenesis of plant and fungal cells. The F-actin nucleating/branching activity of the Arp2/3 complex is a key function for all of these processes. The SCAR/WAVE family represents a group of Arp2/3 activators that are associated with lamellipodia formation. A protein complex of PIR121, NAP1, ABI, and HSPC300 is required for SCAR regulation by cell signaling pathways, but the exact nature of this interaction is controversial and represents a continually evolving model. The mechanism originally proposed was of a SCAR trans repressing complex supported by evidence from in vitro experiments. This model was reinforced by genetic studies in the Drosophila central nervous system and Dictyostelium, where the knockout of certain SCAR-complex components leads to excessive SCAR-mediated actin polymerization. Conflicting data have steadily accumulated from animal tissue culture experiments suggesting that the complex activates rather than represses in vivo SCAR activity. Recent biochemical evidence supports the SCAR-complex activator model. Here, we show that genetic observations in Arabidopsis are compatible with an activation model and provide one potential mechanism for the regulation of the newly identified Arabidopsis Arp2/3 complex.  相似文献   

19.
The actin nucleation‐promoting factors SCAR/WAVE and WASp, together with associated elements, mediate the formation of muscle fibres through myoblast fusion during Drosophila embryogenesis. Our phenotypic analysis, following the disruption of these two pathways, suggests that they function in a sequential manner. Suppressor of cyclic AMP receptor (SCAR) activity is required before the formation of pores in the membranes of fusing cells, whereas Wiskott–Aldrich syndrome protein (WASp) promotes the expansion of nascent pores and completion of the fusion process. Genetic epistasis experiments are consistent with this step‐wise temporal progression. Our observations further imply a separate, Rac‐dependent role for the SCAR complex in promoting myoblast migration. In keeping with the sequential utilization of the two systems, we observe abnormal accumulations of filamentous actin at the fusion sites when both pathways are disrupted, resembling those present when only SCAR‐complex function is impaired. This observation further suggests that actin‐filament accumulation at the fusion sites might not depend on Arp2/3 activity altogether.  相似文献   

20.
In the nervous system, neurons form in different regions, then they migrate and occupy specific positions. We have previously shown that RP2/sib, a well-studied neuronal pair in the Drosophila ventral nerve cord (VNC), has a complex migration route. Here, we show that the Hem protein, via the WAVE complex, regulates migration of GMC-1 and its progeny RP2 neuron. In Hem or WAVE mutants, RP2 neuron either abnormally migrates, crossing the midline from one hemisegment to the contralateral hemisegment, or does not migrate at al and fail to send out its axon projection. We report that Hem regulates neuronal migration through stabilizing WAVE. Since Hem and WAVE normally form a complex, our data argues that in the absence of Hem, WAVE, which is presumably no longer in a complex, becomes susceptible to degradation. We also find that Abelson tyrosine kinase affects RP2 migration in a similar manner as Hem and WAVE, and appears to operate via WAVE. However, while Abl negatively regulates the levels of WAVE, it regulates migration via regulating the activity of WAVE. Our results also show that during the degradation of WAVE, Hem function is opposite to that of and downstream of Abl.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号