首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
High CO(2) Requiring Mutant of Anacystis nidulans R(2)   总被引:4,自引:7,他引:4       下载免费PDF全文
Some physiological characteristics of a mutant (E1) of Anacystis nidulans R2, incapable of growing at air level of CO2, are described. E1 is capable of accumulating inorganic carbon (Ci) internally as efficiently as the wild type (R2). The apparent photosynthetic affinity for Ci in E1, however, is some 1000 times lower than that of R2. The kinetic parameters of ribulose 1,5-bisphosphate carboxylase/oxygenase from E1 are similar to those observed in R2. The mutant appears to be defective in its ability to utilize the intracellular Ci pool for photosynthesis and depends on extracellular supply of Ci in the form of CO2. The very high apparent photosynthetic Km (CO2) of the mutant indicate a large diffusion resistance for CO2. Data obtained here are used to calculate the permeability coefficient for CO2 between the bulk medium and the carboxylation site of cyanobacteria.  相似文献   

2.
The rate of adaptation of high CO2 (5% v/v CO2 in air)-grown Anabaena to a low level of CO2 (0.05% v/v in air) was determined as a function of O2 concentration. Exposure of cells to low (2.6%) O2 concentration resulted in an extended lag in the adaptation to low CO2 concentration. The rate of adaptation following the lag was not affected by the concentration of O2. The length of the lag period is markedly affected by the O2/CO2 concentration ratio, indicating that the signal for adaptation to low CO2 may be related to the relative rate of ribulose-1,5-bisphosphate carboxylase/oxygenase activities, rather than to CO2 concentration proper. This suggestion is supported by the observed accumulation of phosphoglycolate following transfer of cells from high to low CO2 concentration.  相似文献   

3.
The apparent affinity of photosynthesis for inorganic carbon in Anabaena variabilis strain M-3 increased during the course of adaptation from high to low CO2 concentration (5% and 0.03% v/v CO2 in air, respectively). This was attributed to an increased ability of the cells to accumulate inorganic carbon during the course of adaptation to low CO2 conditions. The release of phycobiliproteins was used to evaluate the sensitivity of the cells to lysozyme treatment followed by osmotic shock. High CO2-grown cells were more sensitive to this treatment than were low CO2 ones. The efflux of inorganic carbon from cells preloaded with radioactive bicarbonate is faster in high than it is in low CO2-adapted cells. It is postulated that the cell wall or membrane components undergo changes during the course of adaptation to low CO2 conditions. This is supported by electron micrographs showing differences in the cell wall appearance between high and low CO2-grown cells. The increasing ability to accumulate HCO3 and the lessened sensitivity to lysozyme during adaptation to low CO2 conditions depends on protein synthesis. The increase in affinity for inorganic carbon during the adaptation to low CO2 conditions is severely inhibited by the presence of spectinomycin. Incubation in the light significantly lessens the time required for the adaptation to low CO2 conditions.  相似文献   

4.
Omata T  Ogawa T 《Plant physiology》1986,80(2):525-530
When cells of Anacystis nidulans strain R2 grown under high CO2 conditions (3%) were transferred to low CO2 conditions (0.05%), their ability to accumulate inorganic carbon (Ci) increased up to 8 times. Cytoplasmic membranes (plasmalemma) isolated at various stages of low CO2 adaptation were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. There was a marked increase of a 42-kilodalton polypeptide in the cytoplasmic membrane during adaptation; a linear relationship existed between the amount of this polypeptide and the Ci-accumulating capability of the cells. No significant changes were observed during this process in the amount of other polypeptides in the cytoplasmic membranes or in the polypeptide profiles of the thylakoid membranes, cell walls, and soluble fractions. Spectinomycin, an inhibitor of protein biosynthesis, inhibited both the increase of the 42-kilodalton polypeptide and the induction of high Ci-accumulating capability. The incorporation of [35S]sulfate into membrane proteins was greatly reduced during low CO2 adaptation. Radioautograms of the 35S-labeled membrane proteins revealed that synthesis of the 42-kilodalton polypeptide in the cytoplasmic membrane was specifically activated during the adaptation, while that of most other proteins was greatly suppressed. These results suggested that the 42-kilodalton polypeptide in the cytoplasmic membrane is involved in the active Ci transport by A. nidulans strain R2 and its synthesis under low CO2 conditions leads to high Ci-transporting activity.  相似文献   

5.
《BBA》1987,893(2):219-224
The effect of O2 on inorganic carbon (Ci) transport was studied with a high CO2-requiring mutant (E1) of Anacystis nidulans R2. Oxygen (above 2%) inhibited Ci transport by 15–35|X% at CO2 concentrations above 200 μl/l, but had no apparent effect at low, limiting CO2 concentration. The action spectra for Ci transport measured in the presence or absence of 20% O2 showed two peaks around 684 and 625 nm, corresponding to chlorophyll a and phycocyanin absorption, respectively. The difference between these two spectra (anaerobic minus aerobic) showed one peak around 625 nm, which indicates that a linear electron transport from water to O2 is involved in the O2 inhibition of Ci transport. Dithiothreitol could overcome the inhibition by O2. The results suggested that the O2 inhibition is a result of inactivation of the Ci-transporting system.  相似文献   

6.
The effect of pH, O2 concentration, and temperature on the CO2 compensation point (Г[CO2]) of isolated Asparagus sprengeri Regel mesophyll cells has been determined in a closed, aqueous environment by a sensitive gas-chromatographic technique. Measured values range between 10 and 100 microliters per liter CO2 depending upon experimental conditions. The Г(CO2) increases with increasing temperature. The rate of increase is dependent upon the O2 concentration and is more rapid at high (250-300 micromolar), than at low (30-60 micromolar), O2 concentrations. The differential effect of temperature on Г(CO2) is more pronounced at pH 6.2 than at pH 8.0, but this pH-dependence is not attributable to a direct, differential effect of pH on the relative rates of photosynthesis and photorespiration, as the O2-sensitive component of Г(CO2) remains constant over this range. The Г(CO2) of Asparagus cells at 25°C decreases by 50 microliters per liter when the pH is raised from 6.2 to 8.0, regardless of the prevailing O2 concentration. It is suggested that the pH-dependence of Г(CO2) is related to the ability of the cell to take up CO2 from the aqueous environment. The correlation between high HCO3 concentrations and low Г(CO2) at alkaline pH indicates that extracellular HCO3 facilitates the uptake of CO2, possibly by increasing the flux of inorganic carbon from the bulk medium to the cell surface. The strong O2− and temperature-dependence of Г(CO2) indicates that isolated Asparagus mesophyll cells lack an efficient means for concentrating intracellular CO2 to a level sufficient to reduce or suppress photorespiration.  相似文献   

7.
Cells of the cyanobacterium, Synechococcus PCC7942, grown under high inorganic carbon (Ci) conditions (1% CO2; pH 8) were found to be photosynthetically dependent on exogenous CO2. This was judged by the fact that they had a similar photosynthetic affinity for CO2 (K0.5[CO2] of 3.4-5.4 micromolar) over the pH range 7 to 9 and that the low photosynthetic affinity for Ci measured in dense cell suspensions was improved by the addition of exogenous carbonic anhydrase (CA). The CA inhibitor, ethoxyzolamide (EZ), was shown to reduce photosynthetic affinity for CO2 in high Ci cells. The addition of 200 micromolar EZ to high Ci cells increased K0.5(CO2) from 4.6 micromolar to more than 155 micromolar at pH 8.0, whereas low Ci cells (grown at 30 microliters CO2 per liter of air) were less sensitive to EZ. EZ inhibition in high and low Ci cells was largely relieved by increasing exogenous Ci up to 100 millimolar. Lipid soluble CA inhibitors such as EZ and chlorazolamide were shown to be the most effective inhibitors of CO2 usage, whereas water soluble CA inhibitors such as methazolamide and acetazolamide had little or no effect. EZ was found to cause a small drop in photosystem II activity, but this level of inhibition was not sufficient to explain the large effect that EZ had on CO2 usage. High Ci cells of Anabaena variabilis M3 and Synechocystis PCC6803 were also found to be sensitive to 200 micromolar EZ. We discuss the possibility that the inhibitory effect of EZ on CO2 usage in high Ci cells of Synechococcus PCC7942 may be due to inhibition of a `CA-like' function associated with the CO2 utilizing Ci pump or due to inhibition of an internal CA activity, thus affecting CO2 supply to ribulose bisphosphate carboxylase-oxygenase.  相似文献   

8.
Chlamydomonas reinhardtii and other unicellular green algae have a high apparent affinity for CO2, little O2 inhibition of photosynthesis, and reduced photorespiration. These characteristics result from operation of a CO2-concentrating system. The CO2-concentrating system involves active inorganic carbon transport and is under environmental control. Cells grown at limiting CO2 concentrations have inorganic carbon transport activity, but cells grown at 5% CO2 do not. Four membrane-associated polypeptides (Mr 19, 21, 35, and 36 kilodaltons) have been identified which either appear or increase in abundance during adaptation to limiting CO2 concentrations. The appearance of two of the polypeptides occurs over roughly the same time course as the appearance of the CO2-concentrating system activity in response to CO2 limitation.  相似文献   

9.
Photosynthetic CO2 and O2 exchange was studied in two moss species, Hypnum cupressiforme Hedw. and Dicranum scoparium Hedw. Most experiments were made during steady state of photosynthesis, using 18O2 to trace O2 uptake. In standard experimental conditions (photoperiod 12 h, 135 micromoles photons per square meter per second, 18°C, 330 microliters per liter CO2, 21% O2) the net photosynthetic rate was around 40 micromoles CO2 per gram dry weight per hour in H. cupressiforme and 50 micromoles CO2 per gram dry weight per hour in D. scoparium. The CO2 compensation point lay between 45 and 55 microliters per liter CO2 and the enhancement of net photosynthesis by 3% O2versus 21% O2 was 40 to 45%. The ratio of O2 uptake to net photosynthesis was 0.8 to 0.9 irrespective of the light intensity. The response of net photosynthesis to CO2 showed a high apparent Km (CO2) even in nonsaturating light. On the other hand, O2 uptake in standard conditions was not far from saturation. It could be enhanced by only 25% by increasing the O2 concentration (saturating level as low as 30% O2), and by 65% by decreasing the CO2 concentration to the compensation point. Although O2 is a competitive inhibitor of CO2 uptake it could not replace CO2 completely as an electron acceptor, and electron flow, expressed as gross O2 production, was inhibited by both high O2 and low CO2 levels. At high CO2, O2 uptake was 70% lower than the maximum at the CO2 compensation point. The remaining activity (30%) can be attributed to dark respiration and the Mehler reaction.  相似文献   

10.
The growth of the halotolerant cyanobacterium Aphanothece halophytica, previously adapted to 0.5 molar NaCl, was optimal when NaCl concentration in culture medium was in the range 0.5 to 1.0 molar. The growth was delayed at either too low or too high salinities with lag time of ca. 0.5 day in 0.25 molar NaCl and ca. 2 days in 2 molar NaCl under the experimental conditions. However, the growth rates at the logarithmic phase were similar in the culture media containing NaCl in the range 0.25 to 2.0 molar. The capacity of photosynthetic CO2 fixation increased 3.7-fold in the cells at the logarithmic phase as NaCl concentration in the culture medium increased from 0.25 to 2.0 molar. The protein level of ribulose 1,5-bisphosphate carboxylase/oxygenase was also found to increase with increasing salinity using both an immunoblotting method and protein A-gold immunoelectron microscopy. These results indicate that high photosynthetic capacity and high ribulose 1,5-bisphosphate carboxylase/oxygenase content may entail an important role in betaine synthesis and adaptation of the A. halophytica cells to high NaCl level.  相似文献   

11.
To quantify stem respiration (RS) under elevated CO2 (eCO2), stem CO2 efflux (EA) and CO2 flux through the xylem (FT) should be accounted for, because part of respired CO2 is transported upwards with the sap solution. However, previous studies have used EA as a proxy of RS, which could lead to equivocal conclusions. Here, to test the effect of eCO2 on RS, both EA and FT were measured in a free‐air CO2 enrichment experiment located in a mature Eucalyptus native forest. Drought stress substantially reduced EA and RS, which were unaffected by eCO2, likely as a consequence of its neutral effect on stem growth in this phosphorus‐limited site. However, xylem CO2 concentration measured near the stem base was higher under eCO2, and decreased along the stem resulting in a negative contribution of FT to RS, whereas the contribution of FT to RS under ambient CO2 was positive. Negative FT indicates net efflux of CO2 respired below the monitored stem segment, likely coming from the roots. Our results highlight the role of nutrient availability on the dependency of RS on eCO2 and suggest stimulated root respiration under eCO2 that may shift vertical gradients in xylem [CO2] confounding the interpretation of EA measurements.  相似文献   

12.
Active CO(2) Transport by the Green Alga Chlamydomonas reinhardtii   总被引:6,自引:6,他引:0       下载免费PDF全文
Mass spectrometric measurements of dissolved free 13CO2 were used to monitor CO2 uptake by air grown (low CO2) cells and protoplasts from the green alga Chlamydomonas reinhardtii. In the presence of 50 micromolar dissolved inorganic carbon and light, protoplasts which had been washed free of external carbonic anhydrase reduced the 13CO2 concentration in the medium to close to zero. Similar results were obtained with low CO2 cells treated with 50 micromolar acetazolamide. Addition of carbonic anhydrase to protoplasts after the period of rapid CO2 uptake revealed that the removal of CO2 from the medium in the light was due to selective and active CO2 transport rather than uptake of total dissolved inorganic carbon. In the light, low CO2 cells and protoplasts incubated with carbonic anhydrase took up CO2 at an apparently low rate which reflected the uptake of total dissolved inorganic carbon. No net CO2 uptake occurred in the dark. Measurement of chlorophyll a fluorescence yield with low CO2 cells and washed protoplasts showed that variable fluorescence was mainly influenced by energy quenching which was reciprocally related to photosynthetic activity with its highest value at the CO2 compensation point. During the linear uptake of CO2, low CO2 cells and protoplasts incubated with carbonic anhydrase showed similar rates of net O2 evolution (102 and 108 micromoles per milligram of chlorophyll per hour, respectively). The rate of net O2 evolution (83 micromoles per milligram of chlorophyll per hour) with washed protoplasts was 20 to 30% lower during the period of rapid CO2 uptake and decreased to a still lower value of 46 micromoles per milligram of chlorophyll per hour when most of the free CO2 had been removed from the medium. The addition of carbonic anhydrase at this point resulted in more than a doubling of the rate of O2 evolution. These results show low CO2 cells of Chlamydomonas are able to transport both CO2 and HCO3 but CO2 is preferentially removed from the medium. The external carbonic anhydrase is important in the supply to the cells of free CO2 from the dehydration of HCO3.  相似文献   

13.
Photosynthetic carbon metabolism was characterized in four photoautotrophic cell suspension cultures. There was no apparent difference between two soybean (Glycine max) and one cotton (Gossypium hirsutum) cell line which required 5% CO2 for growth, and a unique cotton cell line that grows at ambient CO2 (660 microliters per liter). Photosynthetic characteristics in all four lines were more like C3 mesophyll leaf cells than the cell suspension cultures previously studied. The pattern of 14C-labeling reflected the high ratio of ribulosebisphosphate carboxylase to phosphoenolpyruvate carboxylase activity and showed that CO2 fixation occurred primarily by the C3 pathway. Photorespiration occurred at 330 microliters per liter CO2, 21% O2 as indicated by the synthesis of high levels of 14C-labeled glycine and serine in a pulse-chase experiment and by oxygen inhibition of CO2 fixation. Short-term CO2 fixation in the presence and absence of carbonic anhydrase showed CO2, not HCO3, to be the main source of inorganic carbon taken up by the low CO2-requiring cotton cells. The cells did not have a CO2-concentrating mechanism as indicated by silicone oil centrifugation experiments. Carbonic anhydrase was absent in the low CO2-requiring cotton cells, present in the high CO2-requiring soybean cell lines, and absent in other high CO2 cell lines examined. Thus, the presence of carbonic anhydrase is not an essential requirement for photoautotrophy in cell suspension cultures which grow at either high or low CO2 concentrations.  相似文献   

14.
The effects of gas phase O2 concentration (1%, 20.5%, and 42.0%, v/v) on the quantum yield of net CO2 fixation and fluorescence yield of chlorophyll a are examined in leaf tissue from Nicotiana tabacum at normal levels of CO2 and 25 to 30°C. Detectable decreases in nonphotochemical quenching of absorbed excitation occurred at the higher O2 levels relative to 1% O2 when irradiance was nearly or fully saturating for photosynthesis. Photochemical quenching was increased by high O2 levels only at saturating irradiance. Simultaneous measurements of CO2 and H2O exchange and fluorescence yield permit estimation of partitioning of linear photosynthetic electron transport between net CO2 fixation and O2-dependent, dissipative processes such as photorespiration as a function of leaf internal CO2 concentration. Changes in the in vivo CO2:O2 `specificity factor' (Ksp) with increasing irradiance are examined. The magnitude Ksp was found to decline from a value of 85 at moderate irradiance to 68 at very low light, and to 72 at saturating photon flux rates. The results are discussed in terms of the applicability of the ribulose bisphosphate carboxylase/oxygenase enzyme model to photosynthesis in vivo.  相似文献   

15.
Scenedesmus cells grown on high CO2, when adapted to air levels of CO2 for 4 to 6 hours in the light, formed two concentrating processes for dissolved inorganic carbon: one for utilizing CO2 from medium of pH 5 to 8 and one for bicarbonate accumulation from medium of pH 7 to 11. Similar results were obtained with assays by photosynthetic O2 evolution or by accumulation of dissolved inorganic carbon inside the cells. The CO2 pump with K0.5 for O2 evolution of less than 5 micromolar CO2 was similar to that previously studied with other green algae such as Chlamydomonas and was accompanied by plasmalemma carbonic anhydrase formation. The HCO3 concentrating process between pH 8 to 10 lowered the K0.5 (DIC) from 7300 micromolar HCO3 in high CO2 grown Scenedesmus to 10 micromolar in air-adapted cells. The HCO3 pump was inhibited by vanadate (Ki of 150 micromolar), as if it involved an ATPase linked HCO3 transporter. The CO2 pump was formed on low CO2 by high-CO2 grown cells in growth medium within 4 to 6 hours in the light. The alkaline HCO3 pump was partially activated on low CO2 within 2 hours in the light or after 8 hours in the dark. Full activation of the HCO3 pump at pH 9 had requirements similar to the activation of the CO2 pump. Air-grown or air-adapted cells at pH 7.2 or 9 accumulated in one minute 1 to 2 millimolar inorganic carbon in the light or 0.44 millimolar in the dark from 150 micromolar in the media, whereas CO2-grown cells did not accumulate inorganic carbon. A general scheme for concentrating dissolved inorganic carbon by unicellular green algae utilizes a vanadate-sensitive transporter at the chloroplast envelope for the CO2 pump and in some algae an additional vanadate-sensitive plasmalemma HCO3 transporter for a HCO3 pump.  相似文献   

16.
Pinus radiata D. Don (half-sib families 20010 and 20062) and Pinus caribaea var hondurensis (an open-pollinated family) were grown for 49 weeks at seven levels of phosphorus and at CO2 concentrations of either 340 or 660 microliters per liter, to establish if the phosphorus requirements differed between the CO2 concentrations and if mycorrhizal associations were affected. When soil phosphorus availability was low, phosphorus uptake was increased by elevated CO2. This may have been related to changes in mycorrhizal competition. When the phosphorus concentration in the youngest fully expanded needles was above 600 milligrams per kilogram the shoot weight of all pine families was greater at high CO2 due to increases in rates of photosynthesis. More dry weight was partitioned to the stems of P. radiata family 20010 and P. caribaea. At foliar phosphorus concentrations above 1000 milligrams per kilogram (P. radiata) and 700 milligrams per kilogram (P. caribaea), growth did not increase at 340 microliters of CO2 per liter. Soluble sugar levels in the same needles mirrored the growth response, but the starch concentration declined with increasing phosphorus. At 660 microliters of CO2 per liter, shoot weight and soluble sugar concentrations were still increasing up to a foliar P concentration of 1800 milligrams per kilogram for P. radiata and 1600 milligrams per kilogram for P. caribaea. The starch concentrations did not decline. These results indicate that higher foliar phosphorus concentrations are required to realize the maximum growth potential of pines at elevated CO2.  相似文献   

17.
Snyder FW 《Plant physiology》1974,53(3):514-515
Amount and products of photosynthesis during 10 minutes were measured at different 14CO2 concentrations in air. With tobacco (Nicotiana tabacum L. cv. Maryland Mammoth) leaves the percentage of 14C in glycine plus serine was highest (42%) at 0.005% CO2, and decreased with increasing CO2 concentration to 7% of the total at 1% CO2 in air. However, above 0.03% CO2 the total amount of 14C incorporated into the glycine and serine pool was about constant. At 0.005% or 0.03% CO2 the percentage and amount of 14C in sucrose was small but increased greatly at higher CO2 levels as sucrose accumulated as an end product. Relatively similar data were obtained with sugar beet (Beta vulgaris L. cv. US H20) leaves. The results suggest that photorespiration at high CO2 concentration is not inhibited but that CO2 loss from it becomes less significant.  相似文献   

18.
Photosynthetic characteristics of four high-CO2-requiring mutants of Chlamydomonas reinhardtii were compared to those of wild type before and after a 24-hour exposure to limiting CO2 concentrations. The four mutants represent two loci involved in the CO2-concentrating system of this unicellular alga. All mutants had a lower photosynthetic affinity for inorganic carbon than did the wild type when grown at an elevated CO2 concentration, indicating that the genetic lesion in each is expressed even at elevated CO2 concentrations. Wild type and all four mutants exhibited adaptive responses to limiting CO2 characteristic of the induction of the CO2-concentrating system, resulting in an increased affinity for inorganic carbon only in wild type. Although other components of the CO2-concentrating system were induced in these mutants, the defective component in each was sufficient to prevent any increase in the affinity for inorganic carbon. It was concluded that the genes corresponding to the ca-1 and pmp-1 loci exhibit at least partially constitutive expression and that all components of the CO2-concentrating system may be required to significantly affect the photosynthetic affinity for inorganic carbon.  相似文献   

19.
The critical fusion frequency (CFF) for the ERG of a dipteran compound eye was measured under atmospheric conditions of low and high pCO2. It was found that following an increase in CO2 concentration to 80%, the CFF decreased from a mean value of 283 to 108 Hz within 60 sec and remained at this lower figure as long as the CO2 concentration was high. Recovery to control values was observed upon removal of the CO2. This result is compared with changes in the waveform of the single-flash ERG resulting from an identical CO2 increase. The low CFF is associated with a single, monophasis negative wave isolated by CO2 from the normally complex ERG. This negative wave is identified as the receptor cell component.It is suggested that two mechanisms are responsible for the frequency-dependent response characteristics of the dipteran eye. One resides at the level of the receptor cells and is responsible for the CFF recorded at 80% CO2, while the second involves ganglionic feedback upon the receptor cells and is necessary for the maintenance of the higher CFF recorded under normal atmospheric conditions.  相似文献   

20.
Photorespiration in Air and High CO(2)-Grown Chlorella pyrenoidosa   总被引:2,自引:2,他引:0       下载免费PDF全文
Shelp BJ  Canvin DT 《Plant physiology》1981,68(6):1500-1503
Oxygen inhibition of photosynthesis and CO2 evolution during photorespiration were compared in high CO2-grown and air-grown Chlorella pyrenoidosa, using the artificial leaf technique at pH 5.0. High CO2 cells, in contrast to air-grown cells, exhibited a marked inhibition of photosynthesis by O2, which appeared to be competitive and similar in magnitude to that in higher C3 plants. With increasing time after transfer to air, the photosynthetic rate in high CO2 cells increased while the O2 effect declined. Photorespiration, measured as the difference between 14CO2 and 12CO2 uptake, was much greater and sensitive to O2 in high CO2 cells. Some CO2 evolution was also present in air-grown algae; however, it did not appear to be sensitive to O2. True photosynthesis was not affected by O2 in either case. The data indicate that the difference between high CO2 and air-grown algae could be attributed to the magnitude of CO2 evolution. This conclusion is discussed with reference to the oxygenase reaction and the control of photorespiration in algae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号