首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Atelopus is among the most threatened of all amphibian genera. Most species of harlequin frogs disappeared more than two decades ago and only a few still exist. From ten critically endangered Atelopus species endemic to Venezuela, Atelopus cruciger is the only one that can be located at present. To assess the status of remnant populations of A. cruciger and to provide the demographic data for designing in situ management programs, we estimated: (1) the population size; (2) the apparent survival; and (3) the recruitment rates of one remnant population using mark‐recapture data. The adult population size varied (69–117), and this variation was not related to that of abundance indices based on visual counts at the river margins. Thus, caution is recommended when using visual counts as an index of abundance in Atelopus, because capture rates differ significantly among months and between seasons. Despite the observed variations, this population appears to be stable. Previous reports suggest that species of Atelopus are long‐lived. For populations of long‐lived species to remain approximately constant, recruitment must be low. Our mark‐recapture study, however, showed that adults tend to remain in the population for approximately 15 mo, but an average of 165 new frogs are recruited every year. Although immigration and emigration are possibilities, the site fidelity and the absence of nearby streams suggests that movement in and out of the study area is less important than births and deaths. Under the proposed hypothesis of a short life expectancy/high recruitment, the risk of extinction must be lower than previously thought.  相似文献   

2.
We derive point and interval estimates for an urban population of green tree frogs (Hyla cinerea) from capture–mark–recapture field data obtained during the years 2006–2009. We present an infinite-dimensional least-squares approach which compares a mathematical population model to the statistical population estimates obtained from the field data. The model is composed of nonlinear first-order hyperbolic equations describing the dynamics of the amphibian population where individuals are divided into juveniles (tadpoles) and adults (frogs). To solve the least-squares problem, an explicit finite difference approximation is developed. Convergence results for the computed parameters are presented. Parameter estimates for the vital rates of juveniles and adults are obtained, and standard deviations for these estimates are computed. Numerical results for the model sensitivity with respect to these parameters are given. Finally, the above-mentioned parameter estimates are used to illustrate the long-time behavior of the population under investigation.  相似文献   

3.
Gruber B  Henle K 《Oecologia》2008,154(4):679-690
Mortality during movement between habitat patches is the most obvious cost of dispersal, but rarely it has been demonstrated empirically. An approach is presented, which uses capture–mark–recapture data of an arboreal gecko species to determine the effect of individual movement on local survival in a spatially structured population. Because capture–mark–recapture data are widely available for a range of animal species, it should be possible to extend their application to other species. The method is based on the assumption that the tendency to be a territorial animal or to be a floating animal is fixed during the study period. The advantage of our approach is that only one additional parameter has to be estimated for describing movement risks. We further tested the power of our approach to detect an association of movement and mortality with simulated capture histories. The study revealed a strong negative effect of movement on local survival. Hence, animals that moved more often between trees had a lower survival rate. Interestingly, the mean movement rate for males was significantly higher than for females, which should lead to a biased sex ratio towards females in the population. As there was an even sex ratio in the population, we discuss not mutually exclusive explanations for this finding like differences in emigration rates between sexes, differences in survival rates between sexes, or a skewed sex ratio in offspring.  相似文献   

4.
Amphibians have been declining worldwide and the comprehension of the threats that they face could be improved by using mark–recapture models to estimate vital rates of natural populations. Recently, the consequences of marking amphibians have been under discussion and the effects of toe clipping on survival are debatable, although it is still the most common technique for individually identifying amphibians. The passive integrated transponder (PIT tag) is an alternative technique, but comparisons among marking techniques in free‐ranging populations are still lacking. We compared these two marking techniques using mark–recapture models to estimate apparent survival and recapture probability of a neotropical population of the blacksmith tree frog, Hypsiboas faber. We tested the effects of marking technique and number of toe pads removed while controlling for sex. Survival was similar among groups, although slightly decreased from individuals with one toe pad removed, to individuals with two and three toe pads removed, and finally to PIT‐tagged individuals. No sex differences were detected. Recapture probability slightly increased with the number of toe pads removed and was the lowest for PIT‐tagged individuals. Sex was an important predictor for recapture probability, with males being nearly five times more likely to be recaptured. Potential negative effects of both techniques may include reduced locomotion and high stress levels. We recommend the use of covariates in models to better understand the effects of marking techniques on frogs. Accounting for the effect of the technique on the results should be considered, because most techniques may reduce survival. Based on our results, but also on logistical and cost issues associated with PIT tagging, we suggest the use of toe clipping with anurans like the blacksmith tree frog.  相似文献   

5.
Populations that fluctuate in size may become small at particular times and therefore be at risk of extinction. I used skeletochronology to examine the potential for fluctuations in population size in the threatened frog species Geocrinia alba and Geocrinia vitellina from southwestern Australia. The change in number of lines of arrested growth (LAG) in toe bones of recaptured frogs indicated that most individuals probably gain one LAG annually. Therefore, skeletochronology can be used for age determination. From a combination of skeletochronology and a mark–recapture study, both species appear to live for a maximum of six years. However, the majority of adult males only bred in a single year, which gave rise to a consistently dominant three-year-old age class. A drop in the number of two-year-old frogs and a large increase in the number of three-year-olds (up to 85%) from 1993 to 1994 in both species highlighted the potential for substantial fluctuations in population size. Widespread changes in abundance of between 25 and 50% may therefore be expected over periods as short as one or two years, due to variation in recruitment success.  相似文献   

6.
Open population capture‐recapture models are widely used to estimate population demographics and abundance over time. Bayesian methods exist to incorporate open population modeling with spatial capture‐recapture (SCR), allowing for estimation of the effective area sampled and population density. Here, open population SCR is formulated as a hidden Markov model (HMM), allowing inference by maximum likelihood for both Cormack‐Jolly‐Seber and Jolly‐Seber models, with and without activity center movement. The method is applied to a 12‐year survey of male jaguars (Panthera onca) in the Cockscomb Basin Wildlife Sanctuary, Belize, to estimate survival probability and population abundance over time. For this application, inference is shown to be biased when assuming activity centers are fixed over time, while including a model for activity center movement provides negligible bias and nominal confidence interval coverage, as demonstrated by a simulation study. The HMM approach is compared with Bayesian data augmentation and closed population models for this application. The method is substantially more computationally efficient than the Bayesian approach and provides a lower root‐mean‐square error in predicting population density compared to closed population models.  相似文献   

7.
Population‐level data are urgently needed for amphibians in light of the ongoing amphibian extinction crisis. Studies focused on population dynamics are not only important for rare species but also for common species which shape ecosystems to a greater degree than those that are rare. Some of the greatest global amphibian species diversity is found in Madagascar, yet there are few studies on the ecology of frog species on the island. We carried out a mark‐recapture study on the widespread frog Mantidactylus betsileanus (Mantellidae: Mantellinae: Mantidactylus) at two adjacent rainforest sites in east‐central Madagascar to assess its population size and structure. To do so, we validated and implemented an individual identification protocol using photographs of the ventral patterns of frogs and identified individuals with photographic‐matching software. Using this rapid, non‐invasive survey method, we were able to estimate a density of 26 and 28 frogs per 100 m2 at each of the two sites sampled. Our results show the rainforests near the village of Andasibe, Madagascar support remarkably high amphibian abundance, helping illustrate the significant ecological role of frogs in this ecosystem. Further, individual frog markings allowed us to develop more precise estimates than traditional survey methods. This study provides a blueprint to augment existing population studies or develop new monitoring programs in Madagascar and beyond.  相似文献   

8.
Newman RA  Squire T 《Molecular ecology》2001,10(5):1087-1100
We investigated genetic population structure in wood frogs (Rana sylvatica) from a series of Prairie Pothole wetlands in the northern Great Plains. Amphibians are often thought to exist in demographic metapopulations, which require some movement between populations, yet genetic studies have revealed strong subdivision among populations, even at relatively fine scales (several km). Wood frogs are highly philopatric and studies of dispersal suggest that they may exhibit subdivision on a scale of approximately 1-2 km. We used microsatellites to examine population structure among 11 breeding assemblages separated by as little as 50 m up to approximately 5.5 km, plus one population separated from the others by 20 km. We found evidence for differentiation at the largest distances we examined and among a few neighbouring ponds, but most populations were strikingly similar in allele frequencies, suggesting high gene flow among all but the most distant populations. We hypothesize that the few significant differences among neighbouring populations at the finest scale may be a transient effect of extinction-recolonization founder events, driven by periodic drying of wetlands in this hydrologically dynamic landscape.  相似文献   

9.
The purpose of many wildlife population studies is to estimate density, movement, or demographic parameters. Linking these parameters to covariates, such as habitat features, provides additional ecological insight and can be used to make predictions for management purposes. Line‐transect surveys, combined with distance sampling methods, are often used to estimate density at discrete points in time, whereas capture–recapture methods are used to estimate movement and other demographic parameters. Recently, open population spatial capture–recapture models have been developed, which simultaneously estimate density and demographic parameters, but have been made available only for data collected from a fixed array of detectors and have not incorporated the effects of habitat covariates. We developed a spatial capture–recapture model that can be applied to line‐transect survey data by modeling detection probability in a manner analogous to distance sampling. We extend this model to a) estimate demographic parameters using an open population framework and b) model variation in density and space use as a function of habitat covariates. The model is illustrated using simulated data and aerial line‐transect survey data for North Atlantic right whales in the southeastern United States, which also demonstrates the ability to integrate data from multiple survey platforms and accommodate differences between strata or demographic groups. When individuals detected from line‐transect surveys can be uniquely identified, our model can be used to simultaneously make inference on factors that influence spatial and temporal variation in density, movement, and population dynamics.  相似文献   

10.
Mark‐recaptures studies are often conducted to monitor trends in sturgeon populations. However, many of these studies experience low recapture rates, minimal movement between marking‐recapture phases suggesting that sturgeon as a group are not conducive to mark‐recapture techniques. In this study, two mark‐recapture studies that were conducted differently were reviewed. A study was conducted on the Mattagami River using random nets set throughout the study area in both the mark and recapture phases. The other study was conducted on Lake of the Woods and marked sturgeon in tributaries during the spawning period and the recapture phase within the lake and river during the summer foraging period using random nets sets. Sturgeon's conduciveness to mark‐recapture studies was assessed on the Mattagami River mark‐recapture study by determining detection probability (p) using a hierarchical Bayesian model with data augmentation among three effects: individual effect, temporal effects, and behavioural response effects. Detection probability was constant over individuals and temporally suggesting model M0 (Otis, Burnham, White, & Anderson, 1978 ) was suitable for lake sturgeon in the Mattagami River; only the M0 would converge for the Lake of the Woods study. For this study, the assumption that “all individuals have the same probability of being captured during the marking phase” was believed to have been violated given approximately 16%–20% of adult Lake Sturgeon from a population spawn within a year. A population estimate accounting for p provided estimates 56% lower than calculated by a Chapman modification of the Peterson estimate for a closed population. Bias was believed to have been introduced as the Lake of the Woods population did not account for the non‐spawning adults that were encountered during the recapture phase and not vulnerable during the initial marking phase. This was not unique to the Lake of the Woods study as other sturgeon studies, especially multi‐year, assumes a closed population which potentially biased estimates and overestimated their recovery.  相似文献   

11.
Only fragments are known about the functions of leaf litter patches in streams for terrestrial organisms. We investigated the movement patterns of Ezo brown frogs (Rana pirica) on two occasions, in autumn 2014 and summer 2015, and the occurrence of frogs in rivers and along riverbanks on three occasions from summer to autumn 2014 along a 1.5-km stream segment that flows through the Bekanbeushi wetland, northern Japan. Ezo brown frog movement was biased toward the river channel in late autumn and this movement pattern coincided with relatively abundant Ezo brown frogs on the riverbed from autumn to winter 2014. The distribution shift was also supported by decreasing abundance of Ezo brown frogs on riverbanks from autumn to winter (no sighting in winter) during daytime observations. The abundance of overwintering Ezo brown frogs in the channel was associated most positively with leaf litter dry mass and depth, with flow velocity being relatively less important at the quadrat scale (0.063 m2). Our results demonstrated that Ezo brown frogs overwinter in the stream and suggest that leaf litter patches positively affect the quality of the overwintering habitat.  相似文献   

12.
We compared the population dynamics of a riparian ranid frog, Rana swinhoana, before (1996–1999) and after (1999–2001) a strong earthquake. This earthquake caused little disturbance to the vegetation and landscape of the study site but the stream and ponds dried up within a week. Nearly all frogs marked (1002 of 1004) before the earthquake had disappeared after the earthquake. Smaller, unmarked frogs began to appear in stream habitats about 9 mo after the earthquake, and the frog population was much smaller than it was before the earthquake. Population dynamics and temporal and spatial distribution of frogs before and after the earthquake correlated closely with the hydrology of the stream and ponds. The movement patterns of frogs before and after the earthquake were similar, suggesting frog behavior did not change in response to drastic changes in hydrology, and frogs continued to exhibit strong site-fidelity. Following the earthquake, stream water volume was much lower, especially in the summer, which allowed the normally winter-breeding frogs to breed year-round. Results demonstrate that a population of R. swinhoana can disappear suddenly as the result of a natural disturbance. We propose that anuran species that exhibit strong site-fidelity are particularly susceptible to extirpation of local populations because frogs may lack the behavioral plasticity to respond to sudden water depletion.  相似文献   

13.
Despite widespread global reports of declining amphibian populations, supporting long‐term census data are few, limiting opportunities to study changes in numbers and survival over time. However, in New Zealand, for the past 25 years (1983–2008), we studied Leiopelma pakeka, a threatened, terrestrial frog that inhabits rocky boulder banks under forest on Maud Island. Using night sampling at least annually on two 12 × 12 m plots, we had 5390 captures of 1000+ individuals, 327 on one plot (grid 1), 751 on the other (grid 2). The mean (±SE) number of frogs found per night was 11.3 (±0.6) on grid 1 and 25.6 (±1.4) on grid 2. We used capture‐recapture models to estimate population size, proportion of animals remaining beneath the surface and survival rate. The mean (±SE) population estimate was 131 (±14.7) frogs on grid 1 and 367 (±38.7) on grid 2. Over 25 years the estimated population increased on grid 1 and fluctuated on grid 2. Some frogs were captured on most sampling visits, others less often, evidently failing to emerge from cover each visit. Using a combination of open and closed population models, we estimated the mean (±SE) proportion remaining underground was 0.63 (±0.12) on grid 1 and 0.53 (±0.07) on grid 2. Our research represents one of the longest‐run population studies of any frog, and we recorded significant longevity, two males reaching 35+ and 37+ years, a female 34+ years. No significant differences occurred between mean annual survival rates of apparent females and males, or between the two sites. The number of toes clipped for individual identification had little influence on the return rate, once the effect of time of first capture was removed.  相似文献   

14.
栖息地状况对小型兽类种群动态具有明显影响。在质量好,食物资源丰富,隐蔽条件优良的栖息地中小型兽类具有较高的存活率,种群繁殖时间更长,体重比较高。有关栖息地和种群动态方面国内外已有研究报道(Brown,1988;Corp et al.,1997;Quinn et al.,2003;Schnurr et al.,2004)。  相似文献   

15.
Spatial capture–recapture (SCR) models are a relatively recent development in quantitative ecology, and they are becoming widely used to model density in studies of animal populations using camera traps, DNA sampling and other methods which produce spatially explicit individual encounter information. One of the core assumptions of SCR models is that individuals possess home ranges that are spatially stationary during the sampling period. For many species, this assumption is unlikely to be met and, even for species that are typically territorial, individuals may disperse or exhibit transience at some life stages. In this paper we first conduct a simulation study to evaluate the robustness of estimators of density under ordinary SCR models when dispersal or transience is present in the population. Then, using both simulated and real data, we demonstrate that such models can easily be described in the BUGS language providing a practical framework for their analysis, which allows us to evaluate movement dynamics of species using capture–recapture data. We find that while estimators of density are extremely robust, even to pathological levels of movement (e.g., complete transience), the estimator of the spatial scale parameter of the encounter probability model is confounded with the dispersal/transience scale parameter. Thus, use of ordinary SCR models to make inferences about density is feasible, but interpretation of SCR model parameters in relation to movement should be avoided. Instead, when movement dynamics are of interest, such dynamics should be parameterized explicitly in the model.  相似文献   

16.
1. Three independent methods were used to investigate population structure in the butterfly Plebejus argus . First, migration and dispersal ability were measured by mark–release–recapture in seven adjacent habitat patches, and by release of butterflies in unoccupied habitat. Secondly, colonization of newly created habitat was observed over 7 years. Finally, genetic differentiation of local populations within a metapopulation was investigated. Sampled local populations included parts of the mark–release–recapture study area.
2. Plebejus argus is relatively sedentary: the maximum movement detected was 395 m, and only 2% of individuals moved further than 100 m between recaptures on different days. None the less, adjacent local populations in the mark–release–recapture study area were linked by occasional migration, with ≈ 1.4% of individuals moving between patches separated by 13–200 m.
3. Despite low mobility, observed colonizations occurred rapidly over distances of 1 km. Because P. argus occurs at high population densities, 1.4% migration can generate enough migrants to colonize newly suitable habitat quickly at this spatial scale.
4. Mark–release–recapture data were used to predict that there would be limited genetic differentiation through drift between local populations at this spatial scale. The prediction was supported by allele frequency data for the same local populations.
5. Genetic differentiation often indicates higher levels of migration than are revealed by the movements of marked individuals. This study shows that when experimental releases and extensive marking are undertaken in areas that are large relative to most movements, indirect measures of gene flow and direct measures of dispersal can concur.
6. Evidence from the three different approaches was complementary, indicating that P. argus occurs as metapopulations within the study area.  相似文献   

17.
Prompt detection of declines in abundance or distribution of populations is critical when managing threatened species that have high population turnover. Population monitoring programs provide the tools necessary to identify and detect decreases in abundance that will threaten the persistence of key populations and should occur in an adaptive management framework which designs monitoring to maximize detection and minimize effort. We monitored a population of Litoria aurea at Sydney Olympic Park over 5 years using mark–recapture, capture encounter, noncapture encounter, auditory, tadpole trapping, and dip‐net surveys. The methods differed in the cost, time, and ability to detect changes in the population. Only capture encounter surveys were able to simultaneously detect a decline in the occupancy, relative abundance, and recruitment of frogs during the surveys. The relative abundance of L. aurea during encounter surveys correlated with the population size obtained from mark–recapture surveys, and the methods were therefore useful for detecting a change in the population. Tadpole trapping and auditory surveys did not predict overall abundance and were therefore not useful in detecting declines. Monitoring regimes should determine optimal survey times to identify periods where populations have the highest detectability. Once this has been achieved, capture encounter surveys provide a cost‐effective method of effectively monitoring trends in occupancy, changes in relative abundance, and detecting recruitment in populations.  相似文献   

18.
The inability to account for the availability of individuals in the study area during capture–mark–recapture (CMR) studies and the resultant confounding of parameter estimates can make correct interpretation of CMR model parameter estimates difficult. Although important advances based on the Cormack–Jolly–Seber (CJS) model have resulted in estimators of true survival that work by unconfounding either death or recapture probability from availability for capture in the study area, these methods rely on the researcher's ability to select a method that is correctly matched to emigration patterns in the population. If incorrect assumptions regarding site fidelity (non‐movement) are made, it may be difficult or impossible as well as costly to change the study design once the incorrect assumption is discovered. Subtleties in characteristics of movement (e.g. life history‐dependent emigration, nomads vs territory holders) can lead to mixtures in the probability of being available for capture among members of the same population. The result of these mixtures may be only a partial unconfounding of emigration from other CMR model parameters. Biologically‐based differences in individual movement can combine with constraints on study design to further complicate the problem. Because of the intricacies of movement and its interaction with other parameters in CMR models, quantification of and solutions to these problems are needed. Based on our work with stream‐dwelling populations of Atlantic salmon Salmo salar, we used a simulation approach to evaluate existing CMR models under various mixtures of movement probabilities. The Barker joint data model provided unbiased estimates of true survival under all conditions tested. The CJS and robust design models provided similarly unbiased estimates of true survival but only when emigration information could be incorporated directly into individual encounter histories. For the robust design model, Markovian emigration (future availability for capture depends on an individual's current location) was a difficult emigration pattern to detect unless survival and especially recapture probability were high. Additionally, when local movement was high relative to study area boundaries and movement became more diffuse (e.g. a random walk), local movement and permanent emigration were difficult to distinguish and had consequences for correctly interpreting the survival parameter being estimated (apparent survival vs true survival).  相似文献   

19.
Although studies of population genetic structure are very common, whether genetic structure is stable over time has been assessed for very few taxa. The question of stability over time is particularly interesting for frogs because it is not clear to what extent frogs exist in dynamic metapopulations with frequent extinction and recolonization, or in stable patches at equilibrium between drift and gene flow. In this study we collected tissue samples from the same five populations of leopard frogs, Rana pipiens, over a 22-30 year time interval (11-15 generations). Genetic structure among the populations was very stable, suggesting that these populations were not undergoing frequent extinction and colonization. We also estimated the effective size of each population from the change in allele frequencies over time. There exist few estimates of effective size for frog populations, but the data available suggest that ranid frogs may have much larger ratios of effective size (Ne) to census size (Nc) than toads (bufonidae). Our results indicate that R. pipiens populations have effective sizes on the order of hundreds to at most a few thousand frogs, and Ne/Nc ratios in the range of 0.1-1.0. These estimates of Ne/Nc are consistent with those estimated for other Rana species. Finally, we compared the results of three temporal methods for estimating Ne. Moment and pseudolikelihood methods that assume a closed population gave the most similar point estimates, although the moment estimates were consistently two to four times larger. Wang and Whitlock's new method that jointly estimates Ne and the rate of immigration into a population (m) gave much smaller estimates of Ne and implausibly large estimates of m. This method requires knowing allele frequencies in the source of immigrants, but was thought to be insensitive to inexact estimates. In our case the method may have failed because we did not know the true source of immigrants for each population. The method may be more sensitive to choice of source frequencies than was previously appreciated, and so should be used with caution if the most likely source of immigrants cannot be identified clearly.  相似文献   

20.
Abstract.  1. A mark–recapture study was conducted on the American Apollo butterfly Parnassius clodius Menetries during three field seasons (1998–2000) to examine its movement patterns over the course of a season within a sagebrush meadow in Grand Teton National Park, Wyoming, U.S.A. The study examined how resources affected butterfly distribution patterns and used mark–recapture data to gain insight into movement differences between sexes and over time.
2. The average straight-line movement of P. clodius was 202 m day−1, adjusted for sampling effort at different distances. Movement estimates in all 3 years were highly correlated with the average distance between plots sampled.
3. Butterfly abundance was correlated positively with per cent cover of its host plant Dicentra uniflora , but this relationship decreased in importance during the peak of the flight period when individuals may be more interested in finding mates. There was a weak, positive correlation between butterfly abundance and the abundance of its primary nectar source, Eriogonum umbellatum in 1999, but no relationship in 2000.
4. Survival, recapture, and transition probabilities were estimated using open population, capture–recapture models. Survival and recapture probability decreased over the course of each season, while the probability of moving between plots increased. Recapture probability was significantly lower for females than for males among all 3 years, but there was no difference between the sexes in survival rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号