首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plant expansin proteins induce plant cell wall extension and have the ability to extend and disrupt cellulose. In addition, these proteins show synergistic activity with cellulases during cellulose hydrolysis. BsEXLX1 originating from Bacillus subtilis is a structural homolog of a β‐expansin produced by Zea mays (ZmEXPB1). The Langmuir isotherm for binding of BsEXLX1 to microcrystalline cellulose (i.e., Avicel) revealed that the equilibrium binding constant of BsEXLX1 to Avicel was similar to those of other Type A surface‐binding carbohydrate‐binding modules (CBMs) to microcrystalline cellulose, and the maximum number of binding sites on Avicel for BsEXLX1 was also comparable to those on microcrystalline cellulose for other Type A CBMs. BsEXLX1 did not bind to cellooligosaccharides, which is consistent with the typical binding behavior of Type A CBMs. The preferential binding pattern of a plant expansin, ZmEXPB1, to xylan, compared to cellulose was not exhibited by BsEXLX1. In addition, the binding capacities of cellulose and xylan for BsEXLX1 were much lower than those for CtCBD3. Biotechnol. Bioeng. 2013; 110: 401–407. © 2012 Wiley Periodicals, Inc.  相似文献   

2.
We made use of EXLX1, an expansin from Bacillus subtilis, to investigate protein features essential for its plant cell wall binding and wall loosening activities. We found that the two expansin domains, D1 and D2, need to be linked for wall extension activity and that D2 mediates EXLX1 binding to whole cell walls and to cellulose via distinct residues on the D2 surface. Binding to cellulose is mediated by three aromatic residues arranged linearly on the putative binding surface that spans D1 and D2. Mutation of these three residues to alanine eliminated cellulose binding and concomitantly eliminated wall loosening activity measured either by cell wall extension or by weakening of filter paper but hardly affected binding to whole cell walls, which is mediated by basic residues located on other D2 surfaces. Mutation of these basic residues to glutamine reduced cell wall binding but not wall loosening activities. We propose domain D2 as the founding member of a new carbohydrate binding module family, CBM63, but its function in expansin activity apparently goes beyond simply anchoring D1 to the wall. Several polar residues on the putative binding surface of domain D1 are also important for activity, most notably Asp82, whose mutation to alanine or asparagine completely eliminated wall loosening activity. The functional insights based on this bacterial expansin may be extrapolated to the interactions of plant expansins with cell walls.  相似文献   

3.
Summary Tests made to utilize lignocellulosics as a substrate for the production of cellulases showed that the enzyme production from steam and explosion decompressed aspen wood (SED) by Tricoderma reesei RUT-C30 was low, and the enzyme system produced was deficient in exoglucanase and -glucosidase activities. Mixing this substrate with 10–20% pure cellulose lessened this deficiency and improved enzyme production. The enzyme system produced from the mixed substrate was rich in xylanase and had saccharifying ability equal to that produced in medium containing pure cellulose.  相似文献   

4.
Expansin is a plant protein family that induces plant cell wall‐loosening and cellulose disruption without exerting cellulose‐hydrolytic activity. Expansin‐like proteins have also been found in other eukaryotes such as nematodes and fungi. While searching for an expansin produced by bacteria, we found that the BsEXLX1 protein from Bacillus subtilis had a structure that was similar to that of a β‐expansin produced by maize. Therefore, we cloned the BsEXLX1 gene and expressed it in Escherichia coli to evaluate its function. When incubated with filter paper as a cellulose substrate, the recombinant protein exhibited both cellulose‐binding and cellulose‐weakening activities, which are known functions of plant expansins. In addition, evaluation of the enzymatic hydrolysis of filter paper revealed that the recombinant protein also displayed a significant synergism when mixed with cellulase. By comparing the activity of a mixture of cellulase and the bacterial expansin to the additive activity of the individual proteins, the synergistic activity was found to be as high as 240% when filter paper was incubated with cellulase and BsEXLX1, which was 5.7‐fold greater than the activity of cellulase alone. However, this synergistic effect was observed when only a low dosage of cellulase was used. This is the first study to characterize the function of an expansin produced by a non‐eukaryotic source. Biotechnol. Bioeng. 2009;102: 1342–1353. © 2008 Wiley Periodicals, Inc.  相似文献   

5.
Plant cell wall degradation into fermentable sugars by cellulases is one of the greatest barriers to biofuel production. Expansin protein loosens the plant cell wall by opening up the complex of cellulose microfibrils and polysaccharide matrix components thereby increasing its accessibility to cellulases. We over-expressed cucumber expansin in maize kernels to produce enough protein to assess its potential to serve as an industrial enzyme for applications particularly in biomass conversion. We used the globulin-1 embryo-preferred promoter to express the cucumber expansin gene in maize seed. Expansin protein was targeted to one of three sub-cellular locations: the cell wall, the vacuole, or the endoplasmic reticulum (ER). To assess the level of expansin accumulation in seeds of transgenic kernels, a high throughput expansin assay was developed. The highest expressing plants were chosen and enriched crude expansin extract from those plants was tested for synergistic effects with cellulase on several lignocellulosic substrates. Activity of recombinant cucumber expansin from transgenic kernels was confirmed on these pretreated substrates. The best transgenic lines (ER-targeted) can now be used for breeding to increase expansin expression for use in the biomass conversion industry. Results of these experiments show the success of expansin over-expression and accumulation in transgenic maize seed without negative impact on growth and development and confirm its synergistic effect with cellulase on deconstruction of complex cell wall substrates.  相似文献   

6.
7.
The relationship between the physicochemical properties of lignocellulosic substrates and enzyme digestion is still not well known. After different pretreatments, cellulase hydrolysis and measurements of physicochemical characteristics by column solute exclusion, particle size analysis, X‐ray diffraction, Fourier transform infrared spectroscopy and solid state 13C nuclear magnetic resonance were performed in this study. Partial least squares was then applied to seek the key factors limiting the rate and extent of cellulose digestion. According to the PLS results, the most important factor for cellulose digestion was accessible interior surface area, followed by delignification and the destruction of the hydrogen bonds. The cellulose digestion at 2 and 24 hr were improved with the increased accessibility of interior surface area to the reporter molecules of 5.1‐nm diameter. Removal of lignin and breaking of hydrogen bonds were also found to significantly promote cellulose conversion. Other properties, including the breakdown of intramolecular hydrogen bonds, cellulose crystallinity, and hemicellulose content, had less effect on the efficiency of enzymatic hydrolysis. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

8.
9.
Cost-effective release of fermentable sugars from non-food biomass through biomass pretreatment/enzymatic hydrolysis is still the largest obstacle to second-generation biorefineries. Therefore, the hydrolysis performance of 21 bacterial cellulase mixtures containing the glycoside hydrolase family 5 Bacillus subtilis endoglucanase (BsCel5), family 9 Clostridium phytofermentans processive endoglucanase (CpCel9), and family 48 C. phytofermentans cellobiohydrolase (CpCel48) was studied on partially ordered low-accessibility microcrystalline cellulose (Avicel) and disordered high-accessibility regenerated amorphous cellulose (RAC). Faster hydrolysis rates and higher digestibilities were obtained on RAC than on Avicel. The optimal ratios for maximum cellulose digestibility were dynamic for Avicel but nearly fixed for RAC. Processive endoglucanase CpCel9 was the most important for high cellulose digestibility regardless of substrate type. This study provides important information for the construction of a minimal set of bacterial cellulases for the consolidated bioprocessing bacteria, such as Bacillus subtilis, for converting lignocellulose to biocommodities in a single step.  相似文献   

10.
11.
Expansin(细胞壁松弛蛋白)的发展   总被引:6,自引:0,他引:6  
Expansin是一种体外诱导分离的植物细胞壁伸展的蛋白,在修饰细胞壁基础上使细胞膨胀。Expansin的功能众多,除了促进细胞生长,还包括影响营养生长、形态发生、授粉受精、果实软化等,并表现出高度的组织、器官和细胞特异性。目前已经在多种植物及其他一些生物范围内对expansin及类expansin序列和蛋白质进行了研究,并对它们的作用机制进行了探索。  相似文献   

12.
Studying the binding properties of cellulases to lignocellulosic substrates is critical to achieving a fundamental understanding of plant cell wall saccharification. Lignin auto-fluorescence and degradation products formed during pretreatment impede accurate quantification of individual glycosyl hydrolases (GH) binding to pretreated cell walls. A high-throughput fast protein liquid chromatography (HT-FPLC)-based method has been developed to quantify cellobiohydrolase I (CBH I or Cel7A), cellobiohydrolase II (CBH II or Cel6A), and endoglucanase I (EG I or Cel7B) present in hydrolyzates of untreated, ammonia fiber expansion (AFEX), and dilute-acid pretreated corn stover (CS). This method can accurately quantify individual enzymes present in complex binary and ternary protein mixtures without interference from plant cell wall-derived components. The binding isotherms for CBH I, CBH II, and EG I were obtained after incubation for 2 h at 4 °C. Both AFEX and dilute acid pretreatment resulted in increased cellulase binding compared with untreated CS. Cooperative binding of CBH I and/or CBH II in the presence of EG I was observed only for AFEX treated CS. Competitive binding between enzymes was found for certain other enzyme-substrate combinations over the protein loading range tested (i.e., 25-450 mg/g glucan). Langmuir single-site adsorption model was fitted to the binding isotherm data to estimate total available binding sites E(bm) (mg/g glucan) and association constant K(a) (L/mg). Our results clearly demonstrate that the characteristics of cellulase binding depend not only on the enzyme GH family but also on the type of pretreatment method employed.  相似文献   

13.
14.
Binding characteristics of human spleen soluble galactoside-binding protein (galaptin) were studied using simple galactosides, galactose-terminated disaccharides, cluster glycosides containing up to 6 terminal lactosyl residues, bovine serum albumin derivatives containing 7 to 40 lactosyl residues, desialylated serum glycoproteins, and glycopeptides derived thereof as inhibitors in a newly developed binding assay. In this assay, aminohexyl lactoside was attached to divinyl sulfone-activated Sepharose, which was then used to bind 125I-galaptin. Similarly derivatized Sepharose containing mannoside served as a control. The assay is sensitive, maintains linearity in the concentration range of 125I-galaptin tested, and has very low nonspecific binding. The following new findings were made. 1) All the alpha-D-galactopyranosides with non-sugar aglycon were better inhibitors than the corresponding beta-D-galactopyranoside. 2) The S-galactosides were better inhibitors than the corresponding O-galactosides, regardless of the anomeric configuration. 3) Many Gal beta 1-4- and Gal beta 1-3-linked disaccharides were tested. Although the galaptin did not appear to recognize N-acetylglucosamine as a monosaccharide, the presence of this sugar penultimate to galactose increased the binding affinity by as much as 500-fold, as was the case for N-acetyllactosamine. Of a particular importance is the presence of an equatorial 3-OH group on this sugar. We synthesized the 3-deoxy derivative of N-acetyllactosamine and found that it had 50-fold lower binding affinity compared to N-acetyllactosamine. 4) The binding sites of this lectin do not seem to be operating in a cooperative fashion, since synthetic lactose-containing divalent ligands with various inter-galactose distances did not increase the binding affinity significantly.  相似文献   

15.
16.
Abstract

The reproductive success of starlings (Sturnus vulgaris) using nest boxes in Hawke's Bay, New Zealand, differed significantly according to the type of box, but this may reflect the competence of the parents as well as the quality of the site. The most young fledged from boxes of 310 cm2 internal basal area, significantly fewer from boxes of 520 cm2 or more, and insignificantly fewer from boxes of 180 cm2. Success increased with the depth of the nest box up to at least 200 mm. Sites with large entrance holes were little used, suggesting that starlings prefer minimal access clearance (perhaps to exclude predators) and the nest bowl to be dark. The box material (wood, concrete, or PVC) had no significant effect on use or success.  相似文献   

17.
In the structure of bovine F1-ATPase inhibited with residues 1-60 of the bovine inhibitor protein IF1, the α-helical inhibitor interacts with five of the nine subunits of F1-ATPase. In order to understand the contributions of individual amino acid residues to this complex binding mode, N-terminal deletions and point mutations have been introduced, and the binding properties of each mutant inhibitor protein have been examined. The N-terminal region of IF1 destabilizes the interaction of the inhibitor with F1-ATPase and may assist in removing the inhibitor from its binding site when F1Fo-ATPase is making ATP. Binding energy is provided by hydrophobic interactions between residues in the long α-helix of IF1 and the C-terminal domains of the βDP-subunit and βTP-subunit and a salt bridge between residue E30 in the inhibitor and residue R408 in the C-terminal domain of the βDP-subunit. Several conserved charged amino acids in the long α-helix of IF1 are also required for establishing inhibitory activity, but in the final inhibited state, they are not in contact with F1-ATPase and occupy aqueous cavities in F1-ATPase. They probably participate in the pathway from the initial interaction of the inhibitor and the enzyme to the final inhibited complex observed in the structure, in which two molecules of ATP are hydrolysed and the rotor of the enzyme turns through two 120° steps. These findings contribute to the fundamental understanding of how the inhibitor functions and to the design of new inhibitors for the systematic analysis of the catalytic cycle of the enzyme.  相似文献   

18.
The aim of the present study was to characterize the enzymatic deinking of various types of waste paper. Studies on the optimization of enzymatic deinking have been performed previously using commercially available enzyme preparations containing cellulase and hemicellulase. The enzymatic deinking of different types of waste paper demonstrated a high efficiency of 86.6% on laser-printed paper, but a low deinking efficiency of 12.9% was obtained with newspaper. All enzymatic treatments significantly improved the drainage rate of the deinked waste paper. Enzymatic deinking increased the tensile index of magazine paper but reduced the tensile index of bubble jet-printed paper, photocopy paper and newspaper. Enzymatic hydrolysis caused a 21.1% reduction in the tear index for bubble jet-printed paper, but a 3.1% increase in the tear index was obtained for laser-printed paper relative to respective blank. In addition, enzymatic hydrolysis increased the burst index by 4.7% relative to blank for laser-printed paper. However, photocopy paper showed the highest reduction (8.3%) in the burst index relative to blank. Taken together, these results suggest that enzymatic hydrolysis is both advantageous and detrimental to the mechanical properties of deinked paper. Thus, the proper regulation of enzymatic hydrolysis is crucial to improve the quality of recycled paper.  相似文献   

19.
The attachment of Rhizobium japonicum 61A89 and Rhizobium spp. 32H1 to the roots of wheat and rice seedlings is analyzed in terms of an equilibrium model. A Langmuir adsorption isotherm describes the binding. Strain 61A89 binds to a greater extent than does strain 32H1, and the equilibrium constants for each strain binding to wheat are strongly temperature dependent. Both time-dependent dissociation and association, predicted by an equilibrium model, have been found. The dissociation rate constant for 32H1 is approximately twice that of 61A89, and each is weakly temperature dependent. The rate equation for the binding of exponentially growing 61A89 to wheat roots has been solved as a function of time. Theory and experiment both indicate that the binding at very short times is much less than the equilibrium values. The binding of Azotobacter vinelandii 12837 to wheat roots has also been measured. Root-associated Azotobacter fixes nitrogen, whereas under aerobic growth conditions, root-associated 61A89 and 32H1 do not. The effect of metabolic inhibitors and antibiotics on the binding of Rhizobia and Azotobacter was examined.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号