首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Folding and stability of bacterial outer membrane proteins (OMPs) are typically studied in vitro using model systems such as phospholipid vesicles or surfactant. OMP folding requires surfactant concentrations above the critical micelle concentration (cmc) and usually only occurs in neutral or zwitterionic surfactants, but not in anionic or cationic surfactants. Various Gram-negative bacteria produce the anionic biosurfactant rhamnolipid. Here we show that the OMP OmpA can be folded in rhamnolipid at concentrations above the cmc, though the thermal stability is reduced compared to the non-ionic surfactant dodecyl maltoside. We discuss implications for possible interactions between OMPs and biosurfactants in vivo.  相似文献   

2.
During the aerobic digestion process, the nitrogen which had been embedded in the activated sludge is solubilized to form ammoniacal and nitric nitrogen which are in turn transferred to the liquor and cause the increase of nitrogen loading in the sewage treatment plant. In this study, the anoxic-aerobic sludge digestion system which is a modified form of the conventional aerobic sludge digestion is made up of aerobic and anoxic tanks and are designed to remove both the volatile suspended solids and the total nitrogen (TN) simultaneously. The removal efficiencies of both VSS and TN were investigated by feeding waste-activated sludge continuously and semicontinuously. The maximum percent reduction of both VSS and TN was achieved at a Q(r)/Q(s) ratio of 2 in the continuous process. The semicontinuous process was used to improve the nitrogen removal efficiency further. In the semicontinuous process, the VSS reduction efficiency as well as the nitrogen removal efficiency increased remarkably under a constant Q(r)/Q(s) ratio of 2. This process also achieved a VSS reduction efficiency higher than the aerobic digestion process (control). It was suggested that the additional anoxic tank enhanced the sludge digestion. Furthermore, the anoxic-aerobic digestion system can be applied to other treatment media like the primary sludge, industrial sludge, animal manure, etc.  相似文献   

3.
Rhamnolipids were evaluated as biofouling reducing agents in this study. The permeability of the bacterial outer membrane was increased by rhamnolipids while the growth rate of Pseudomonas aeruginosa was not affected. The surface hydrophobicity was increased through the release of lipopolysaccharides and extracellular polymeric substances from the outer cell membrane. Rhamnolipids were evaluated as agents for the prevention and cleaning of biofilms. A high degree of biofilm detachment was observed when the rhamnolipids were used as a cleaning agent. In addition, effective biofilm reduction occurred when rhamnolipids were applied to various species of Gram-negative bacteria isolated from seawater samples. Biofilm reduction using rhamnolipids was comparable to commercially available surfactants. In addition, 20% of the water flux was increased after rhamnolipid treatment (300 μg ml?1, 6 h exposure time) in a dead-end filtration system. Rhamnolipids appear to have promise as biological agents for reducing membrane biofouling.  相似文献   

4.
目前鼠李糖脂生物表面活性剂主要由条件致病的铜绿假单胞菌生产获得,从而影响工业应用。为了开发一种相对安全的鼠李糖脂生产菌,将带有不同强度组成型合成启动子的鼠李糖基转移酶基因(Rhamnosyltransferase gene,rhl AB)以单、中、高3种拷贝数分别在大肠杆菌ATCC 8739中异源表达,实现了不同产量的鼠李糖脂异源合成。对rhl AB基因和rha BDAC基因簇(TDP-L-鼠李糖合成的基因簇)进一步利用合成启动子进行组合调控,筛选获得了最优生产鼠李糖脂工程菌——大肠杆菌TIB-RAB226。对大肠杆菌TIB-RAB226进行发酵温度优化,鼠李糖脂产量达到124.3 mg/L,是优化前的1.17倍。通过分批补料发酵,12h时鼠李糖脂产量达到209.2 mg/L。对发酵产物进行高效液相色谱-质谱联用技术分析,共检出相对含量变化的5类质核比不同的鼠李糖脂同系物。本研究可为异源合成产鼠李糖脂提供重要参考。  相似文献   

5.
张嵩元  汪卫东 《微生物学报》2021,61(10):3059-3075
鼠李糖脂是一类重要的生物表面活性剂。相比于化学合成的表面活性剂,其具有更优秀的理化性质及环境友好等特点,被广泛应用于微生物采油、环境污染修复等工程中。目前,鼠李糖脂的工业生产主要采用铜绿假单胞菌这一具有致病性的天然合成菌株,与此同时,受菌株遗传背景的限制,优化发酵过程等方法在产量提升方面遇到了一些瓶颈问题。利用基因工程方法对菌株进行改良有望进一步提高鼠李糖脂生产的安全性、产量、产物性能等多项指标,因此受到了越来越广泛的关注。本文综述了近年来利用基因工程方法优化鼠李糖脂生物合成的最新进展,讨论了异源合成、代谢通路改造、基因表达优化、蛋白质工程、底盘工程等多种策略的应用,并展望了一系列可行的研究方向。  相似文献   

6.

Background  

Microorganisms have devised ways by which they increase the bioavailability of many water immiscible substrates whose degradation rates are limited by their low water solubility. Hexadecane is one such water immiscible hydrocarbon substrate which forms an important constituent of oil. One major mechanism employed by hydrocarbon degrading organisms to utilize such substrates is the production of biosurfactants. However, much of the overall mechanism by which such organisms utilize hydrocarbon substrate still remains a mystery.  相似文献   

7.
In this study, the effect of a purified rhamnolipid biosurfactant on the hydrophobicity of octadecane-degrading cells was investigated to determine whether differences in rates of octadecane biodegradation resulting from the addition of rhamnolipid to four strains of Pseudomonas aeruginosa could be related to measured differences in hydrophobicity. Cell hydrophobicity was determined by a modified bacterial adherence to hydrocarbon (BATH) assay. Bacterial adherence to hydrocarbon quantitates the preference of cell surfaces for the aqueous phase or the aqueous-hexadecane interface in a two-phase system of water and hexadecane. On the basis of octadecane biodegradation in the absence of rhamnolipid, the four bacterial strains were divided into two groups: the fast degraders (ATCC 15442 and ATCC 27853), which had high cell hydrophobicities (74 and 55% adherence to hexadecane, respectively), and the slow degraders (ATCC 9027 and NRRL 3198), which had low cell hydrophobicities (27 and 40%, respectively). Although in all cases rhamnolipid increased the aqueous dispersion of octadecane at least 10(4)-fold, at low rhamnolipid concentrations (0.6 mM), biodegradation by all four strains was initially inhibited for at least 100 h relative to controls. At high rhamnolipid concentrations (6 mM), biodegradation by the fast degraders was slightly inhibited relative to controls, but the biodegradation by the slow degraders was enhanced relative to controls. Measurement of cell hydrophobicity showed that rhamnolipids increased the cell hydrophobicity of the slow degraders but had no effect on the cell hydrophobicity of the fast degraders. The rate at which the cells became hydrophobic was found to depend on the rhamnolipid concentration and was directly related to the rate of octadecane biodegradation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
9.
The solubilization and acidification of waste activated sludge (WAS) were apparently enhanced by external rhamnolipid (RL) addition. The maximum solute carbohydrate concentrations increased linearly from 48 ± 5 mg COD L−1 in the un-pretreated WAS (blank) to 566 ± 19 mg COD L−1, and protein increased from 1050 ± 8 to 3493 ± 16 mg COD L−1 at RL dosage of 0.10 g g−1 TSS. The highest VFAs concentration peaked at 3840 mg COD L−1 at RL dosage of 0.04 g g−1 TSS, which was 4.24-fold higher than the blank test. RL was generated in situ during WAS fermentation when external RL was added. It was detected that RL concentration was increased from initial 880 ± 92 mg L−1 to 1312 ± 7 mg L−1 at the end of 96 h with RL dosage of 0.04 g g−1 TSS, which was increased to 1.49-fold. Meanwhile, methane production was notably reduced to a quite low level of 2.0 mL CH4 g−1 VSS, showing effective inhibition of methanogens by RL (58.8 mL CH4 g−1 VSS in the blank). In addition, the activity of hydrolytic enzymes (protease and α-glucosidase) was enhanced accordingly. VFAs accumulation and RL generation in situ demonstrated that the additional RL substantially performed enhanced biological effects for waste activated sludge fermentation.  相似文献   

10.
Successful start-up strategy for anaerobic digestion of waste-activated sludge using internal inoculum and relationship between the shift of methanogenic community and the digester performance during start-up was investigated. Combination of TS control of inoculum and batch operation during early days enabled the successful start-up operation without serious volatile fatty acid accumulation, followed by the stable continuous operation. However, the propionate degradation was rate-limiting step during the batch operation. The results of real-time quantitative polymerase chain reaction analysis suggested that there was a correlation between the population of the genus Methanosarcina and the methane production rate coupled with acetate consumption during batch operation, and the results of terminal-restriction fragment length polymorphism (T-RFLP) revealed that the increasing intensity of T-RF peaks of hydrogenotrophic methanogens was associated with a decrease in the level of C3-acids.  相似文献   

11.
Luo K  Yang Q  Yu J  Li XM  Yang GJ  Xie BX  Yang F  Zheng W  Zeng GM 《Bioresource technology》2011,102(14):7103-7110
The combined effect of sodium dodecyl sulfate (SDS) and enzyme system on hydrolysis and acidification of waste activated sludge (WAS) was investigated. The results showed that the combined system was more effective in the promotion of sludge hydrolysis than sole SDS and sole enzyme, and the SDS + mixed-enzymes (ME) system had better hydrolysis performance than SDS + single enzyme system. Compared with SDS + protease and SDS + amylase systems, the soluble protein concentration in SDS + ME system increased respectively by 20.0% and 44.4%, and the soluble carbohydrate concentration increased by 78.3% and 37.0%, respectively. During the WAS acidification stage, the SDS, ME and SDS + ME system could make the maximum short-chain fatty acids (SCFAs) concentration increased by 1.82 (6th day), 2.04 (5th day), 2.32 (7th day) times, respectively. The composition analysis of SCFAs produced in SDS + ME system indicated that acetic acid was the most prevalent product and propionic acid was the second one.  相似文献   

12.
13.
Microbial enhanced oil recovery (MEOR) is a kind of enhanced oil recovery (EOR) development, often used as a tertiary stage where oil recovery is no longer possible utilizing primary and secondary conventional techniques. Among a few potential natural operators valuable for MEOR, biosurfactants, biopolymers and biosurfactant based nanoparticles assume key jobs. Biosurfactant which are produced by microorganisms’ act as are surface active agents that can be used as an alternative to chemically synthesized surfactants. Pseudomonas aeruginosa TEN01, a gram-negative bacterium isolated from the petroleum industry is a potential biosurfactant (Rhamnolipid) producer using cassava waste as the substrate. This work focuses on production and characterization of rhamnolipid from P. aeruginosa TEN01 and its use in enhanced oil recovery. The effectiveness of Chitosan that is deacetylated form of chitin which is a biopolymer that provides density and viscosity to the fluids is not known in enhanced oil recovery yet and so it is studied. Moreover, the fabrication of biosurfactant-mediated silver nanocrystals and its application in enhanced oil recovery is also studied. Sand-Pack column was constructed and the mechanism of oil recovery in the column was studied. While incubating the crude oil containing sand packed column with Biosurfactant-biopolymer and brine flooding in the ratio of 1:2, and Biosurfactant incubation - flooding with 3 g/l of biopolymer was found to be 34.28% and 44.5% respectively. The biosurfactant based silver nanoparticles are non-toxic and have better stability when compared to chemically synthesized silver nanoparticles. The oil recovery percentage by chemical based Ag NPs and biosurfactant based Ag NPs are 14.94% and 14.28% respectively.  相似文献   

14.
Heavy metal could lead to serious environmental risk to the ecosystem, destroy human health via the food chain. The heavy metal removal from sludge is an emergent issue. In this work, rhamnolipid, an environment-friendly material, was used to enhance heavy metal extraction from the sludge. The results showed that Cu, Zn, Cr, Pb, Ni, and Mn maximum extraction efficiencies were 35.10 ± 2.31%, 45.33 ± 3.24%, 27.58 ± 3.35%, 24.12 ± 3.51%, 43.31 ± 2.53% and 22.10 ± 2.11%, respectively; most of exchangeable and reducible fractions, and partly oxidizable and residual fractions have been extracted by the rhamnolipid solution. After treatment, IR values of heavy metals increased in the treated sludge, the IR values for Cu, Zn, Cr, Pb, Ni, and Mn were 0.24 ± 0.01, 0.25 ± 0.03, 0.21 ± 0.02, 0.32 ± 0.03, 0.22 ± 0.021 and 0.41 ± 0.03, respectively. MF values indicated that heavy metal mobility order was Zn>Ni>Cu>Mn>Cr>Pb in the treated sludge. According to the two risk assessment methods (risk assessment code, RAC and potential ecological risk index, PERI), the risk assessment of heavy metal was investigated in the after treatment sludge, which indicated that rhamnolipid could extract the mobility of heavy metal and lead to no or low risk to the ecosystem. Therefore, rhamnolipid was utilized to enhance heavy metal extraction from dewatered sludge in this study, which is a promising technique for heavy metal extraction from the dewatered sludge.  相似文献   

15.
The purpose of the present study was to investigate possible methods to enhance the rate of biodegradation of oil sludge from crude oil tank bottom, thus reducing the time usually required for bioremediation. Enhancement of biodegradation was achieved through bioaugmentation and biostimulation. About 10% and 20% sludge contaminated sterile and non-sterile soil samples were treated with bacterial consortium (BC), rhamnolipid biosurfactant (RL) and nitrogen, phosphorus and potassium (NPK) solution. Maximum n-alkane degradation occurred in the 10% sludge contaminated soil samples. The effects of treatment carried out with the non-sterile soil samples were more pronounced than in the sterile soils. Maximum degradation was achieved after the 56th day of treatment. n-Alkanes in the range of nC8-nC11 were degraded completely followed by nC12-nC21, nC22-nC31 and nC32-nC40 with percentage degradations of 100%, 83-98%, 80-85% and 57-73% respectively. Statistical analysis using analysis of variance and Duncan's multiple range test revealed that the level of amendments, incubation time and combination of amendments significantly influenced bacterial growth, protein concentration and surface tension at a 1% probability level. All tested additives BC, NPK and RL had significant positive effects on the bioremediation of n-alkane in petroleum sludge.  相似文献   

16.
A mathematical model with a consideration of energy spilling is developed to describe the activated sludge in the presence of different levels of metabolic uncouplers. The consumption of substrate and oxygen via energy spilling process is modeled with a Monod term, which is dependent on substrate and inhibitor. The sensitivity of the developed model is analyzed. Three parameters, maximum specific growth rate (μ max), energy spilling coefficient (q max), and sludge yield coefficient (Y H) are estimated with experimental data of different studies. The values of μ max, q max, and Y H are found to be 6.72 day-1, 5.52 day-1, and 0.60 mg COD mg-1 COD for 2, 4-dinitrophenol and 7.20 day-1, 1.58 day-1, and 0.62 mg COD mg-1 COD for 2, 4-dichlorophenol. Substrate degradation and sludge yield could be predicted with this model. The activated sludge process in the presence of uncouplers that is described more reasonably by the new model with a consideration of energy spilling. The effects of uncouplers on substrate consumption inhibition and excess sludge reduction in activated sludge are quantified with this model.  相似文献   

17.
Hydrogen was successfully produced by fermenting primary sewage sludge which had been both heat treated and digested with a commercially available enzyme preparation. When either heat treatment or enzymatic digestion were not used, no hydrogen was produced during fermentation. Heat treated mesophilic anaerobic sludge was used as an inoculum rather than a pure microbial culture. Fermentation was conducted at pH levels ranging from of 4.5 to 7.0. When fermentation took place at pH 5.5 a peak hydrogen production rate of 3.75 ml min(-1) was observed. At this pH the hydrogen yield was 0.37 mol H(2)mol(-1) carbohydrate, equivalent to 18.14L H(2)kg(-1) dry solids.  相似文献   

18.
The aim of the present study was to find methods for enhancing rates of hydrocarbon biodegradation in gasoline contaminated soil by ex situ bioremediation. Red soil (RS) was treated with gasoline-spilled soil (GS) from a gasoline station and different combinations of amendments were prepared using (i) mixed bacterial consortium (MC), (ii) poultry litter (PL), (iii) coir pith (CP) and (iv) rhamnolipid biosurfactant (BS) produced by Pseudomonas sp. DS10-129. The study was conducted for a period of 90 days during which bacterial growth, hydrocarbon degradation and growth parameters of Phaseolus aureus RoxB including seed germination, chlorophyll content, shoot and root length were measured. Approximately 67% and 78% of the hydrocarbons were effectively degraded within 60 days in soil samples amended with RS + GS + MC + PL + CP + BS at 0.1% and 1%. Maximum percentage of seed germination, shoot length, root length and chlorophyll content in P. aureus were recorded after 60 days in the above amendments. Further incubation to 90 days did not exhibit significant improvements. Statistical analysis using analysis of variance (ANOVA) and Duncan's multiple range test (DMRT) revealed that the level of amendments, incubation time and combination of amendments significantly influenced bacterial growth, hydrocarbon degradation, seed germination and chlorophyll content at a 1% probability level. All tested additives MC, PL, CP and rhamnolipid BS had significant positive effects on the bioremediation of GS.  相似文献   

19.
Phenanthrene solubilization and biodegradation with a biosurfactant (rhamnolipid) solution were investigated as a function of pH. Batch phenanthrene solubilization experiments were performed in the pH range 4–8 and the highest solubilities with the biosurfactant were detected around a pH of 4.5–5.5. The apparent solubility at pH 5.5 was 3.8 times greater than at pH 7 in the presence of 240 ppm rhamnolipid, probably due to the rhamnolipid—an anionic surfactant—forming different pH-dependent structures. Biodegradation experiments using Pseudomonas putida CRE 7 were performed in the absence and the presence of the rhamnolipid solution. Without the biosurfactant, the specific growth rate () at pH 6 was higher than at other pH values, and analysis for the total phenanthrene loss confirmed the trends in , with the greatest phenanthrene removal at pH 6. In presence of the rhamnolipid, the maximum value shifted to around pH 5, which showed maximum enhancement of solubility in the abiotic experiment. Although there was an increase in the observed specific growth rate with the biosurfactant, this increase was not as great as the increase in solubilization. For example, the 1.44 times increase in the value at pH 5 was lower than the 3.8 times enhancement in the solubility at the same pH. Thus, as observed by others, not all of the solubilized phenanthrene was bioavailable to the microorganisms. Interestingly, the results of a size distribution experiment showed that a large portion of the phenanthrene-rhamnolipid aggregates existed at a molecular weight of >300,000. Furthermore, this fraction appeared to be the most available for biodegradation, although not all the phenanthrene was bioavailable.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号