首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Malignant hyperthermia (MH) is a pharmacogenetic disorder of skeletal muscle triggered in susceptible individuals by inhalation anesthetics and depolarizing skeletal muscle relaxants. This syndrome has been linked to a missense mutation in the type 1 ryanodine receptor (RyR1) in more than 50% of cases studied to date. Using double-barreled Ca2+ microelectrodes in myotubes expressing wild-type RyR1 (WTRyR1) or RyR1 with one of four common MH mutations (MHRyR1), we measured resting intracellular Ca2+ concentration ([Ca2+]i). Changes in resting [Ca2+]i produced by several drugs known to modulate the RyR1 channel complex were investigated. We found that myotubes expressing any of the MHRyR1s had a 2.0- to 3.7-fold higher resting [Ca2+]i than those expressing WTRyR1. Exposure of myotubes expressing MHRyR1s to ryanodine (500 µM) or (2,6-dichloro-4-aminophenyl)isopropylamine (FLA 365; 20 µM) had no effects on their resting [Ca2+]i. However, when myotubes were exposed to bastadin 5 alone or to a combination of ryanodine and bastadin 5, the resting [Ca2+]i was significantly reduced (P < 0.01). Interestingly, the percent decrease in resting [Ca2+]i in myotubes expressing MHRyR1s was significantly greater than that for WTRyR1. From these data, we propose that the high resting myoplasmic [Ca2+]i in MHRyR1 expressing myotubes is due in part to a related structural conformation of MHRyR1s that favors "passive" calcium leak from the sarcoplasmic reticulum. ryanodine; FLA 365; bastadin 5; resting intracellular calcium concentration; sarcoplasmic reticulum  相似文献   

2.
The rapid cooling (RC) response in muscle is an increase in cytoplasmic Ca2+ concentration ([Ca2+]i) that is probably caused by Ca2+ release from the sarcoplasmic reticulum (SR). However, the molecular bases of this response have not been completely elucidated. Three different isoforms of the SR Ca2+ release channels, or ryanodine receptors (RyRs), have been isolated (RyR1, RyR2, and RyR3). In the current investigation, the RC response was studied in RyR-null muscle cells (1B5) before and after transduction with HSV-1 virions containing the cDNAs encoding for RyR1, RyR2, or RyR3. Cells were loaded with fluo 4-AM to monitor changes in [Ca2+]i and perfused with either cold (0°C), room temperature (RT), or RT buffer containing 40 mM caffeine. Control cells showed no significant response to cold or caffeine, whereas robust Ca2+ transients were recorded in response to both RC and caffeine in transduced cells expressing any one of the three RyR isoforms. Our data demonstrate directly that RyRs are responsible for the RC response and that all three isoforms respond in a similar manner. Ca2+ release from RyRs is likely caused by a RC-induced conformational change of the channel from the closed to the open state. calcium release channel; sarcoplasmic reticulum; excitation-contraction coupling  相似文献   

3.
Four ryanodine receptor type 1 and 2 chimeras (R4, R9, R10, and R16) and their respective wild-type ryanodine receptors (type 1 and 2; wtRyR1 and wtRyR2) were expressed in dyspedic 1B5 to identify possible negative regulatory modules of the Ca2+ release channel that are under the influence of the dihydropyridine receptor (DHPR). Responses of intact 1B5 myotubes expressing each construct to caffeine in the absence or presence of either La3+ and Cd2+ or the organic DHPR blocker nifedipine were determined by imaging single 1B5 myotubes loaded with fluo 4. The presence of La3+ and Cd2+ or nifedipine in the external medium at concentrations known to block Ca2+ entry through the DHPRs significantly decreased the caffeine EC50 of wtRyR1 (2.80 ± 0.12 to 0.83 ± 0.09 mM; P < 0.05). On the other hand, DHPR blockade did not significantly alter the caffeine EC50 values of wtRyR2, chimeras R10 and R16, whereas the caffeine EC50 values of chimeras R4 and R9 were significantly increased (1.27 ± 0.05 to 2.60 ± 0.16 mM, and 1.15 ± 0.03 to 2.11 ± 0.32 mM, respectively; P < 0.05). Despite the fact that all the chimeras form fully functional Ca2+ release channels in situ, sarcoplasmic reticulum (SR) containing R4, R10, and R16 did not possess high-affinity binding of [3H]ryanodine regardless of Ca2+ concentration. These results suggest the presence of an interaction between RyR1 and the DHPR, which is not present in RyR2, that contributes negative control of SR Ca2+ release induced by direct agonists such as caffeine. Although we were unable to define the negative module using RyR1-RyR2 chimeras, they further demonstrated that the RyR is very sensitive to long-range allosterism. ryanodine receptor type 1; dihydropyridine receptor; excitation-contraction coupling; negative module  相似文献   

4.
To activate skeletal muscle contraction, action potentials must be sensed by dihydropyridine receptors (DHPRs) in the T tubule, which signal the Ca2+ release channels or ryanodine receptors (RyRs) in the sarcoplasmic reticulum (SR) to open. We demonstrate here an inhibitory effect of the T tubule on the production of sparks of Ca2+ release. Murine primary cultures were confocally imaged for Ca2+ detection and T tubule visualization. After 72 h of differentiation, T tubules extended from the periphery for less than one-third of the myotube radius. Spontaneous Ca2+ sparks were found away from the region of cells where tubules were found. Immunostaining showed RyR1 and RyR3 isoforms in all areas, implying inhibition of both isoforms by a T tubule component. To test for a role of DHPRs in this inhibition, we imaged myotubes from dysgenic mice (mdg) that lack DHPRs. These exhibited T tubule development similar to that of normal myotubes, but produced few sparks, even in regions where tubules were absent. To increase spark frequency, a high-Ca2+ saline with 1 mM caffeine was used. Wild-type cells in this saline plus 50 µM nifedipine retained the topographic suppression pattern of sparks, but dysgenic cells in high-Ca2+ saline did not. Shifted excitation and emission ratios of indo-1 in the cytosol or mag-indo-1 in the SR were used to image [Ca2+] in these compartments. Under the conditions of interest, wild-type and mdg cells had similar levels of free [Ca2+] in cytosol and SR. These data suggest that DHPRs play a critical role in reducing the rate of spontaneous opening of Ca2+ release channels and/or their susceptibility to Ca2+-induced activation, thereby suppressing the production of Ca2+ sparks. excitation-contraction coupling; sarcoplasmic reticulum; ryanodine receptors; Ca2+ imaging  相似文献   

5.
The human renal Na-PO4cotransporter gene NaPi-3 was expressed in human embryonic kidneyHEK-293 cells, and the transport characteristics were measured in cellstransfected with a vector containing NaPi-3 or with the vector alone(sham transfected). The initial rate of32PO4influx had saturation kinetics for external Na andPO4 with K Na1/2 of 128 mM(PO4 = 0.1 mM) andK PO41/2of 0.084 mM (extracellular Na = 143 mM) in sham- and NaPi-3-transfectedcells expressing the transporter. Transfection had no effect on theNa-independent 32PO4influx, but transfection increased Na-dependent32PO4influxes 2.5- to 5-fold. Of the alkali cations, only Na significantly supported PO4 influx. Arsenateinhibited flux with an inhibition constant of 0.4 mM. The phosphatetransport in sham- and NaPi-3-transfected cells has nearly the sametemperature dependence in the absence and presence of extracellularNa. The Na-dependent phosphate flux decreased with pH insham-transfected cells but was pH independent in transfected cells. TheNa-dependent32PO4influx was inhibited byp-chloromercuriphenylsulfonate,phosphonoformate, phloretin, vanadate, and5-(N-methyl-N-isobutyl)-amiloridebut not by amiloride or other amiloride analogs. These functional characteristics are in general agreement with the known behavior ofNaPi-3 homologues in the renal tubule of other species and, thus,demonstrate the fidelity of this transfection system for the study ofthis protein. Commensurate with the increased functional expression,there was an increase in the amount of NaPi-3 protein by Westernanalysis.

  相似文献   

6.
Malignant hyperthermia (MH) is an inherited pharmacogenetic disorder caused by mutations in the skeletal muscle ryanodine receptor (RyR1) and the dihydropyridine receptor (DHPR) 1S-subunit. We characterized the effects of an MH mutation in the DHPR cytoplasmic III-IV loop of 1S (R1086H) on DHPR-RyR1 coupling after reconstitution in dysgenic (1S null) myotubes. Compared with wild-type 1S, caffeine-activated Ca2+ release occurred at approximately fivefold lower concentrations in nonexpressing and R1086H-expressing myotubes. Although maximal voltage-gated Ca2+ release was similar in 1S- and R1086H-expressing myotubes, the voltage dependence of Ca2+ release was shifted 5 mV to more negative potentials in R1086H-expressing myotubes. Our results demonstrate that 1S functions as a negative allosteric modulator of release channel activation by caffeine/voltage and that the R1086H MH mutation in the intracellular III-IV linker disrupts this negative regulatory influence. Moreover, a low caffeine concentration (2 mM) caused a similar shift in voltage dependence of Ca2+ release in 1S- and R1086H-expressing myotubes. Compared with 1S-expressing myotubes, maximal L channel conductance (Gmax) was reduced in R1086H-expressing myotubes (1S 130 ± 10.2, R1086H 88 ± 6.8 nS/nF; P < 0.05). The decrease in Gmax did not result from a change in retrograde coupling with RyR1 as maximal conductance-charge movement ratio (Gmax/Qmax) was similar in 1S- and R1086H-expressing myotubes and a similar decrease in Gmax was observed for an analogous mutation engineered into the cardiac L channel (R1217H). In addition, both R1086H and R1217H DHPRs targeted normally and colocalized with RyR1 in sarcoplasmic reticulum (SR)-sarcolemmal junctions. These results indicate that the R1086H MH mutation in 1S enhances RyR1 sensitivity to activation by both endogenous (voltage sensor) and exogenous (caffeine) activators. excitation-contraction coupling; calcium channel; muscle disease  相似文献   

7.
Resting membrane potential (RMP) and whole cell currents wererecorded in human THP-1 monocytes adherent to polystyrene, unstimulated human umbilical vein endothelial cells (HUVECs),lipopolysaccharide (LPS)-treated HUVECs, immobilizedE-selectin, or vascular cell adhesion molecule 1 (VCAM-1)using the patch-clamp technique. RMP after 5 h on polystyrene was24.3 ± 1.7 mV (n = 42) with delayed rectifier K+(Idr) andCl currents(ICl) presentin >75% of the cells. Inwardly rectifying K+ currents(Iir) werepresent in only 14% of THP-1 cells. Adherence to unstimulated HUVECsor E-selectin for 5 h had no effect on Iir orICl but decreasedIdr. Five hoursafter adherence to LPS-treated HUVECs, outward currents were unchanged,but Iir waspresent in 81% of THP-1 cells. A twofold increase inIir and ahyperpolarization (41.3 ± 3.7 mV,n = 16) were abolished by pretreatmentof THP-1 cells with cycloheximide, a protein synthesis inhibitor, orherbimycin A, a tyrosine kinase inhibitor, or by pretreatment of theLPS-treated HUVECs with anti-VCAM-1. Only a brief (15-min) interactionbetween THP-1 cells and LPS-treated HUVECs was required toinduce Iir expression 5 h later. THP-1 cells adherent to VCAM-1 exhibited similarconductances to cells adherent to LPS-treated HUVECs. Thus engagementof specific integrins results in selective modulation of differentK+ conductances.

  相似文献   

8.
Thephosphorylation states of three proteins implicated in the action ofinsulin on translation were investigated, i.e., 70-kDa ribosomalprotein S6 kinase (p70S6k),eukaryotic initiation factor (eIF) 4E, and the eIF-4E binding protein4E-BP1. Addition of insulin caused a stimulation of protein synthesisin L6 myoblasts in culture, an effect that was blocked by inhibitors ofphosphatidylinositide-3-OH kinase (wortmannin), p70S6k (rapamycin), andmitogen-activated protein kinase (MAP kinase) kinase (PD-98059). Thestimulation of protein synthesis was accompanied by increasedphosphorylation of p70S6k, aneffect that was blocked by rapamycin and wortmannin but not PD-98059.Insulin caused dephosphorylation of eIF-4E, an effect that appeared tobe mediated by the p70S6kpathway. Insulin also stimulated phosphorylation of 4E-BP1 as well asdissociation of the 4E-BP1 · eIF-4E complex. Bothrapamycin and wortmannin completely blocked the insulin-induced changes in 4E-BP1 phosphorylation and association of 4E-BP1 and eIF-4E; PD-98059 had no effect on either parameter. Finally, insulin stimulated formation of the active eIF-4G · eIF-4E complex, aneffect that was not prevented by any of the inhibitors. Overall, theresults suggest that insulin stimulates protein synthesis in L6myoblasts in part through utilization of both thep70S6k and MAP kinase signaltransduction pathways.

  相似文献   

9.
In myogenic C2C12 cells, 5 mM creatine increased the incorporation of labeled [35S]methionine into sarcoplasmic (+20%, P < 0.05) and myofibrillar proteins (+50%, P < 0.01). Creatine also promoted the fusion of myoblasts assessed by an increased number of nuclei incorporated within myotubes (+40%, P < 0.001). Expression of myosin heavy chain type II (+1,300%, P < 0.001), troponin T (+65%, P < 0.01), and titin (+40%, P < 0.05) was enhanced by creatine. Mannitol, taurine, and -alanine did not mimic the effect of creatine, ruling out an osmolarity-dependent mechanism. The addition of rapamycin, the inhibitor of mammalian target of rapamycin/70-kDa ribosomal S6 protein kinase (mTOR/p70s6k) pathway, and SB 202190, the inhibitor of p38, completely blocked differentiation in control cells, and creatine did not reverse this inhibition, suggesting that the mTOR/p70s6k and p38 pathways could be potentially involved in the effect induced by creatine on differentiation. Creatine upregulated phosphorylation of protein kinase B (Akt/PKB; +60%, P < 0.001), glycogen synthase kinase-3 (+70%, P < 0.001), and p70s6k (+50%, P < 0.001). Creatine also affected the phosphorylation state of p38 (–50% at 24 h and +70% at 96 h, P < 0.05) as well as the nuclear content of its downstream targets myocyte enhancer factor-2 (–55% at 48 h and +170% at 96 h, P < 0.05) and MyoD (+60%, P < 0.01). In conclusion, this study points out the involvement of the p38 and the Akt/PKB-p70s6k pathways in the enhanced differentiation induced by creatine in C2C12 cells. protein synthesis; insulin-like growth factor; mitogen-activated protein kinase; extracellular signal-regulated kinase 1/2; 70-kDa ribosomal S6 protein kinase  相似文献   

10.
Protein kinase D inhibits plasma membrane Na+/H+ exchanger activity   总被引:3,自引:0,他引:3  
The regulation of plasma membraneNa+/H+exchanger (NHE) activity by protein kinase D (PKD), a novel proteinkinase C- and phorbol ester-regulated kinase, was investigated. Todetermine the effect of PKD on NHE activity in vivo, intracellular pH(pHi) measurements were made inCOS-7 cells by microepifluorescence using the pH indicator cSNARF-1.Cells were transfected with empty vector (control), wild-type PKD, orits kinase-deficient mutant PKD-K618M, together with green fluorescentprotein (GFP). NHE activity, as reflected by the rate of acid efflux(JH), wasdetermined in single GFP-positive cells following intracellularacidification. Overexpression of wild-type PKD had no significanteffect on JH(3.48 ± 0.25 vs. 3.78 ± 0.24 mM/min in control atpHi 7.0). In contrast,overexpression of PKD-K618M increasedJH (5.31 ± 0.57 mM/min at pHi 7.0;P < 0.05 vs. control). Transfectionwith these constructs produced similar effects also in A-10 cells,indicating that native PKD may have an inhibitory effect on NHE in bothcell types, which is relieved by a dominant-negative action ofPKD-K618M. Exposure of COS-7 cells to phorbol ester significantlyincreased JH in control cells but failed to do so in cells overexpressing either wild-type PKD (due to inhibition by the overexpressed PKD) or PKD-K618M(because basal JHwas already near maximal). A fusion protein containing the cytosolicregulatory domain (amino acids 637-815) of NHE1 (the ubiquitousNHE isoform) was phosphorylated in vitro by wild-type PKD, but with lowstoichiometry. These data suggest that PKD inhibits NHE activity,probably through an indirect mechanism, and represents a novel pathwayin the regulation of the exchanger.

  相似文献   

11.
Ca+-induced Ca2+ release (CICR) in the heart involves local Ca2+ signaling between sarcolemmal L-type Ca2+ channels (dihydropyridine receptors, DHPRs) and type 2 ryanodine receptors (RyR2s) in the sarcoplasmic reticulum (SR). We reconstituted cardiac-like CICR by expressing a cardiac dihydropyridine-insensitive (T1066Y/Q1070M) 1-subunit (1CYM) and RyR2 in myotubes derived from RyR1-knockout (dyspedic) mice. Myotubes expressing 1CYM and RyR2 were vesiculated and exhibited spontaneous Ca2+ oscillations that resulted in chaotic and uncontrolled contractions. Coexpression of FKBP12.6 (but not FKBP12.0) with 1CYM and RyR2 eliminated vesiculations and reduced the percentage of myotubes exhibiting uncontrolled global Ca2+ oscillations (63% and 13% of cells exhibited oscillations in the absence and presence of FKBP12.6, respectively). 1CYM/RyR2/FKBP12.6-expressing myotubes exhibited robust and rapid electrically evoked Ca2+ transients that required extracellular Ca2+. Depolarization-induced Ca2+ release in 1CYM/RyR2/FKBP12.6-expressing myotubes exhibited a bell-shaped voltage dependence that was fourfold larger than that of myotubes expressing 1CYM alone (maximal fluorescence change was 2.10 ± 0.39 and 0.54 ± 0.07, respectively), despite similar Ca2+ current densities. In addition, the gain of CICR in 1CYM/RyR2/FKBP12.6-expressing myotubes exhibited a nonlinear voltage dependence, being considerably larger at threshold potentials. We used this molecular model of local 1C-RyR2 signaling to assess the ability of FKBP12.6 to inhibit spontaneous Ca2+ release via a phosphomimetic mutation in RyR2 (S2808D). Electrically evoked Ca2+ release and the incidence of spontaneous Ca2+ oscillations did not differ in wild-type RyR2- and S2808D-expressing myotubes over a wide range of FKBP12.6 expression. Thus a negative charge at S2808 does not alter in situ regulation of RyR2 by FKBP12.6. heart failure; dihydropyridine receptor; excitation-contraction coupling  相似文献   

12.
The present studyexamined the intestinal uptake of thiamine (vitaminB1) using the human-derivedintestinal epithelial cells Caco-2 as an in vitro model system.Thiamine uptake was found to be 1)temperature and energy dependent and occurred with minimal metabolicalteration; 2) pH sensitive;3)Na+ independent;4) saturable as a function ofconcentration with an apparent Michaelis-Menten constant of 3.18 ± 0.56 µM and maximal velocity of 13.37 ± 0.94 pmol · mgprotein1 · 3 min1;5) inhibited by the thiaminestructural analogs amprolium and oxythiamine, but not by unrelatedorganic cations tetraethylammonium, N-methylnicotinamide, and choline; and6) inhibited in a competitive mannerby amiloride with an inhibition constant of 0.2 mM. The role ofspecific protein kinase-mediated pathways in the regulation of thiamineuptake by Caco-2 cells was also examined using specific modulators ofthese pathways. The results showed possible involvement of aCa2+/calmodulin (CaM)-mediatedpathway in the regulation of thiamine uptake. No role for proteinkinase C- and protein tyrosine kinase-mediated pathways in theregulation of thiamine uptake was evident. These results demonstratethe involvement of a carrier-mediated system for thiamine uptake byCaco-2 intestinal epithelial cells. This system isNa+ independent and is differentfrom the transport systems of organic cations. Furthermore, aCaM-mediated pathway appears to play a role in regulating thiamineuptake in these cells.

  相似文献   

13.
To better understand the role of the transient expression of ryanodine receptor (RyR) type 3 (RyR3) on Ca2+ homeostasis during the development of skeletal muscle, we have analyzed the effect of expression levels of RyR3 and RyR1 on the overall physiology of cultured myotubes and muscle fibers. Dyspedic myotubes were infected with RyR1 or RyR3 containing virions at 0.2, 0.4, 1.0, and 4.0 moieties of infection (MOI), and analysis of their pattern of expression, caffeine sensitivity, and resting free Ca2+ concentration ([Ca2+]r) was performed. Although increased MOI resulted in increased expression of each receptor isoform, it did not significantly affect the immunopattern of RyRs or the expression levels of calsequestrin, triadin, or FKBP-12. Interestingly, myotubes expressing RyR3 always had significantly higher [Ca2+]r and lower caffeine EC50 than did cells expressing RyR1. Although some of the increased sensitivity of RyR3 to caffeine could be attributed to the higher [Ca2+]r in RyR3-expressing cells, studies of [3H]ryanodine binding demonstrated intrinsic differences in caffeine sensitivity between RyR1 and RyR3. Tibialis anterior (TA) muscle fibers at different stages of postnatal development exhibited a transient increase in [Ca2+]r coordinately with their level of RyR3 expression. Similarly, adult soleus fibers, which also express RyR3, had higher [Ca2+]r than did adult TA fibers, which exclusively express RyR1. These data show that in skeletal muscle, RyR3 increases [Ca2+]r more than RyR1 does at any expression level. These data suggest that the coexpression of RyR1 and RyR3 at different levels may constitute a novel mechanism by which to regulate [Ca2+]r in skeletal muscle. ryanodine receptor; calcium release; ryanodine binding; muscle fibers  相似文献   

14.
Aldosterone induces ras methylation in A6 epithelia   总被引:1,自引:0,他引:1  
Aldosterone increases Na+ reabsorption by renalepithelial cells: the acute actions (<4 h) appear to be promoted byprotein methylation. This paper describes the relationship betweenprotein methylation and aldosterone's action and describesaldosterone-mediated targets for methylation in cultured renal cells(A6). Aldosterone increases protein methylation from 7.90 ± 0.60 to 20.1 ± 0.80 methyl ester cpm/µg protein. Aldosteronestimulates protein methylation by increasing methyltransferase activityfrom 14.0 ± 0.64 in aldosterone-depleted cells to 31.8 ± 2.60 methyl ester cpm/µg protein per hour in aldosterone-treated cells. Three known methyltransferase inhibitors reduce thealdosterone-induced increase in methyltransferase activity. One ofthese inhibitors, the isoprenyl-cysteine methyltransferase-specificinhibitor,S-trans,trans-farnesylthiosalicylic acid, completely blocks aldosterone-induced protein methylation and also aldosterone-induced short-circuit current. Aldosterone inducesprotein methylation in two molecular weight ranges: near 90 kDa andaround 20 kDa. The lower molecular weight range is the weight of smallG proteins, and aldosterone does increase both Ras protein 1.6-fold andRas methylation almost 12-fold. Also, Ras antisense oligonucleotidesreduce the activity of Na+ channels by about fivefold. Weconclude that 1) protein methylation is essential foraldosterone-induced increases in Na+ transport;2) one target for methylation is p21ras; and3) inhibition of Ras expression or Ras methylation inhibits Na+ channel activity.

  相似文献   

15.
This study presents evidence for a close relationship betweenthe oxidation state of the skeletal muscleCa2+ release channel (RyR1) andits ability to bind calmodulin (CaM). CaM enhances the activity of RyR1in low Ca2+ and inhibits itsactivity in high Ca2+. Oxidation,which activates the channel, blocks the binding of 125I-labeled CaM at bothmicromolar and nanomolar Ca2+concentrations. Conversely, bound CaM slows oxidation-induced cross-linking between subunits of the RyR1 tetramer. Alkylation ofhyperreactive sulfhydryls (<3% of the total sulfhydryls) on RyR1with N-ethylmaleimide completelyblocks oxidant-induced intersubunit cross-linking and inhibitsCa2+-free125I-CaM but notCa2+/125I-CaMbinding. These studies suggest that1) the sites on RyR1 for bindingapocalmodulin have features distinct from those of theCa2+/CaM site,2) oxidation may alter the activityof RyR1 in part by altering its interaction with CaM, and3) CaM may protect RyR1 fromoxidative modifications during periods of oxidative stress.

  相似文献   

16.
We investigatedthe role of intracellular calcium concentration([Ca2+]i) in endothelin-1 (ET-1) production,the effects of potential vasospastic agents on[Ca2+]i, and the presence of L-typevoltage-dependent Ca2+ channels in cerebral microvascularendothelial cells. Primary cultures of endothelial cells isolated frompiglet cerebral microvessels were used. Confluent cells were exposed toeither the thromboxane receptor agonist U-46619 (1 µM),5-hydroxytryptamine (5-HT; 0.1 mM), or lysophosphatidic acid (LPA; 1 µM) alone or after pretreatment with the Ca2+-chelatingagent EDTA (100 mM), the L-type Ca2+ channel blockerverapamil (10 µM), or the antagonist of receptor-operated Ca2+ channel SKF-96365 HCl (10 µM) for 15 min. ET-1production increased from 1.2 (control) to 8.2 (U-46619), 4.9 (5-HT),or 3.9 (LPA) fmol/µg protein, respectively. Such elevated ET-1biosynthesis was attenuated by verapamil, EDTA, or SKF-96365 HCl. Toinvestigate the presence of L-type voltage-dependent Ca2+channels in endothelial cells, the [Ca2+]isignal was determined fluorometrically by using fura 2-AM. Superfusionof confluent endothelial cells with U-46619, 5-HT, or LPA significantlyincreased [Ca2+]i. Pretreatment ofendothelial cells with high K+ (60 mM) or nifedipine (4 µM) diminished increases in [Ca2+]i inducedby the vasoactive agents. These results indicate that 1)elevated [Ca2+]i signals are involved in ET-1biosynthesis induced by specific spasmogenic agents, 2) theincreases in [Ca2+]i induced by thevasoactive agents tested involve receptor as well as L-typevoltage-dependent Ca2+ channels, and 3) primarycultures of cerebral microvascular endothelial cells express L-typevoltage-dependent Ca2+ channels.

  相似文献   

17.
It is generally believed thatcAMP-dependent phosphorylation is the principle mechanism foractivating cystic fibrosis transmembrane conductance regulator (CFTR)Cl channels. However, we showed that activating Gproteins in the sweat duct stimulated CFTR Cl conductance(GCl) in the presence of ATP alone without cAMP. The objective of this study was to test whether the G protein stimulation of CFTR GCl is independent ofprotein kinase A. We activated G proteins and monitored CFTRGCl in basolaterally permeabilized sweat duct.Activating G proteins with guanosine5'-O-(3-thiotriphosphate) (10-100 µM) stimulated CFTRGCl in the presence of 5 mM ATP alone withoutcAMP. G protein activation of CFTR GCl requiredMg2+ and ATP hydrolysis (5'-adenylylimidodiphosphate couldnot substitute for ATP). G protein activation of CFTRGCl was 1) sensitive to inhibition bythe kinase inhibitor staurosporine (1 µM), indicating that theactivation process requires phosphorylation; 2) insensitive to the adenylate cyclase (AC) inhibitors 2',5'-dideoxyadenosine (1 mM)and SQ-22536 (100 µM); and 3) independent ofCa2+, suggesting that Ca2+-dependent proteinkinase C and Ca2+/calmodulin-dependent kinase(s) are notinvolved in the activation process. Activating AC with106 M forskolin plus 106 M IBMX (in thepresence of 5 mM ATP) did not activate CFTR, indicating that cAMPcannot accumulate sufficiently to activate CFTR in permeabilized cells.We concluded that heterotrimeric G proteins activate CFTR GCl endogenously via a cAMP-independent pathwayin this native absorptive epithelium.

  相似文献   

18.
Maitotoxin (MTX),a potent cytolytic agent, activatesCa2+ entry via nonselective cationchannels in virtually all types of cells. The identity of the channelsinvolved and the biochemical events leading to cell lysis remainunknown. In the present study, the effect of MTX on plasmalemmalpermeability of human skin fibroblasts was examined. MTX produced atime- and concentration-dependent increase in cytosolic freeCa2+ concentration that dependedon extracellular Ca2+ and wasrelatively insensitive to blockade by extracellular lanthanides. MTXalso produced a time- and concentration-dependent increase inplasmalemma permeability to larger molecules as indicated by 1) uptake of ethidium (314 Da),2) uptake of YO-PRO-1 (375 Da), 3) release of intracellular fura 2 (636 Da), 4) uptake of POPO-3 (715 Da), and, ultimately,5) release of lactate dehydrogenase (relative molecular weight of 140,000). At the single cell level, uptake of YO-PRO-1 correlated in time with the appearance of large MTX-induced membrane currents carried by the organic cation,N-methyl-D-glucamine (167 Da). Thus MTX initially activatesCa2+-permeable cation channels andlater induces the formation of large pores. These effects of MTX onplasmalemmal permeability are similar to those seen on activation ofP2Z/P2X7 receptors ina variety of cell types, raising the intriguing possibility that MTXand P2Z/P2X7 receptor stimulationactivate a common cytolytic pore.

  相似文献   

19.
A permanent cell line with inducible expression of the humananion exchanger protein 1 (hAE1) was constructed in a derivative ofhuman embryonic kidney cells (HEK-293). In the absence of the inducer,muristerone A, the new cell line had no detectable hAE1 protein byWestern analysis or additional36Cl flux. Increasing dose andincubation time with muristerone A increased the amount of protein(both unglycosylated and glycosylated). The4,4'-dinitrostilbene-2,2'-disulfonate(DNDS)-inhibitable rapid Cl exchange flux was increased up to40-fold in induced cells compared with noninduced cells. There was noDNDS-inhibitable rapid flux component in noninduced cells. This resultdemonstrates inducible expression of a new rapid Cl transport pathwaythat is DNDS sensitive. The additional transport of36Cl and35SO4had the characteristics of hAE1-mediated transport in erythrocytes: 1) inhibition by 250 µM DNDS,2) activation of36Cl efflux by external Cl with aconcentration producing half-maximal effect of 4.8 mM,3) activation of36Cl efflux by external anionsthat was selective in the orderNO3 = Cl > Br > I, and4) activation of35SO4influx by external protons. Under the assumption that the turnovernumbers of hAE1 were the same as in erythrocytes, there was good agreement (±3-fold) between the number of copies ofglycosylated hAE1 and the induced tracer fluxes. This is the firstexpression of hAE1 in a mammalian system to track the kineticcharacteristics of the native protein.

  相似文献   

20.
"Spontaneous" Ca2+ sparks and ryanodine receptor type 3 (RyR3) expression are readily detected in embryonic mammalian skeletal muscle but not in adult mammalian muscle, which rarely exhibits Ca2+ sparks and expresses predominantly RyR1. We have used confocal fluorescence imaging and systematic sampling of enzymatically dissociated single striated muscle fibers containing the Ca2+ indicator dye fluo 4 to show that the frequency of spontaneous Ca2+ sparks decreases dramatically from embryonic day 18 (E18) to postnatal day 14 (P14) in mouse diaphragm and from P1 to P14 in mouse extensor digitorum longus fibers. In contrast, the relative levels of RyR3 to RyR1 protein remained constant in diaphragm muscles from E18 to P14, indicating that changes in relative levels of RyR isoform expression did not cause the decline in Ca2+ spark frequency. E18 diaphragm fibers were used to investigate possible mechanisms underlying spark initiation in embryonic fibers. Spark frequency increased or decreased, respectively, when E18 diaphragm fibers were exposed to 8 or 0 mM Ca2+ in the extracellular Ringer solution, with no change in either the average resting fiber fluo 4 fluorescence or the average properties of the sparks. Either CoCl2 (5 mM) or nifedipine (30 µM) markedly decreased spark frequency in E18 diaphragm fibers. These results indicate that Ca2+ sparks may be triggered by locally elevated [Ca2+] due to Ca2+ influx via dihydropyridine receptor L-type Ca2+ channels in embryonic mammalian skeletal muscle. calcium; ryanodine receptor; dihydropyridine receptor; muscle development  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号