首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
2.
The adenine nucleotide translocator (ANT) is an autoantigen in myocarditis and dilated cardiomyopathy. Carrier-specific antibodies impair myocardial energy metabolism and heart function. They cross-react with a myolemmal calcium channel and alter calcium fluxes in isolated myocytes. To test whether antibodies against the ANT can alter calcium homeostasis in intact hearts, guinea pigs were immunized with the carrier protein and their isolated hearts loaded with the intracellular calcium indicator INDO-1. The diastolic and systolic ratios of fluorescence signals at 410 nm and 510 nm (emission wavelengths of the calcium-bound and calcium-free indicator), 'd-s410/510', were measured by excitation at 364 nm. This index of the transient calcium concentration associated with the contraction cycle correlated with the external heart work (EHW) in non-immunized controls. EHW of immunized animals was lower (76 +/- 62 vs 153 +/- 47 mJ/g/min in controls, p < 0.005) and the amplitude of d-s410/510 was elevated (27.6 +/- 4.1% of the average ratio of the whole heart cycle vs 21.7 +/- 1.2% in controls, p < 0.005) and essentially independent of EHW. Isoproterenol stimulation increased EHW in all hearts but d-s410/510 was hightened in control hearts, only. Thus, a disorder between cytosolic calcium transients and work was recorded in hearts from guinea pigs immunized with the ANT. It may contribute to an immunopathic mechanism of heart failure subsequent to myocarditis.  相似文献   

3.
The adenine nucleotide translocator (ANT) is a mitochondrial bi-functional protein, which catalyzes the exchange of ADP and ATP between cytosol and mitochondria and participates in many models of mitochondrial apoptosis. The human adenine nucleotide translocator sub-family is composed of four isoforms, namely ANT1–4, encoded by four nuclear genes, whose expression is highly regulated. Previous studies have revealed that ANT1 and 3 induce mitochondrial apoptosis, whereas ANT2 is anti-apoptotic. However, the role of the recently identified isoform ANT4 in the apoptotic pathway has not yet been elucidated. Here, we investigated the effects of stable heterologous expression of the ANT4 on proliferation, mitochondrial respiration and cell death in human cancer cells, using ANT3 as a control of pro-apoptotic isoform. As expected, ANT3 enhanced mitochondria-mediated apoptosis in response to lonidamine, a mitochondriotoxic chemotherapeutic drug, and staurosporine, a protein kinase inhibitor. Our results also indicate that the pro-apoptotic effect of ANT3 was accompanied by decreased rate of cell proliferation, alteration in the mitochondrial network topology, and decreased reactive oxygen species production. Of note, we demonstrate for the first time that ANT4 enhanced cell growth without impacting mitochondrial network or respiration. Moreover, ANT4 differentially regulated the intracellular levels of hydrogen peroxide without affecting superoxide anion levels. Finally, stable ANT4 overexpression protected cancer cells from lonidamine and staurosporine apoptosis in a manner independent of Bcl-2 expression. These data highlight a hitherto undefined cytoprotective activity of ANT4, and provide a novel dichotomy in the human ANT isoform sub-family with ANT1 and 3 isoforms functioning as pro-apoptotic while ANT2 and 4 isoforms render cells resistant to death inducing stimuli.  相似文献   

4.
5.
Mitochondria from Zucker fatty (ZF) rats (a model for fatty liver disease) showed a delay in the repolarization after a phosphorylative cycle and a decrease on state 3 respiration, suggesting alterations at the phosphorylative system level. The ATPase activity showed no differences between control and ZF rats, implying alterations in other components of the phosphorylative system. A pronounced depletion in the content of the adenine nucleotide translocator (ANT) was observed by Western blotting, while no alterations were found in the mitochondrial voltage-dependent anion channel content. These data suggest that hepatic accumulation of fat impairs mitochondrial function, reflecting the loss of oxidative phosphorylation capacity caused by a decrease in the ANT content.  相似文献   

6.
Three adenine nucleotide translocator (ANT) genes were identified through in silico data mining of the Fugu genome database along with isolation of their corresponding cDNAs in vivo from the pufferfish (Takifugu rubripes). As a result of phylogenetic analysis, the ANT gene on scaffold_254 corresponded to mammalian ANT1, whereas both of those on scaffold_6 and scaffold_598 to mammalian ANT3. The ANT gene encoded by scaffold_6 was expressed ubiquitously in various tissues, whereas the ANT genes encoded by scaffold_254 and scaffold_598 were predominantly expressed in skeletal muscle and heart, respectively.  相似文献   

7.
Mitochondrial permeability transition (MPT) has been proposed to play a key role in cell death. Downstream MPT events include the release of apoptogenic factors that sets in motion the mitochondrial apoptosome leading to caspase activation. The current work examined the regulation of MPT by membrane fluidity modulated upon cholesterol enrichment. Mitochondria enriched in cholesterol displayed increased microviscosity resulting in impaired MPT induced by atractyloside, a c-conformation stabilizing ligand of the adenine nucleotide translocator (ANT). This effect was dependent on the dose of cholesterol loaded and reversed upon the fluidization of mitochondria by the fatty acid derivative A2C. Mitoplasts derived from cholesterol-enriched mitochondria responded to atractyloside in a similar fashion as intact mitochondria, indicating that a significant amount of cholesterol is still found in the inner membrane. The effects of cholesterol on MPT induced by atractyloside were mirrored by the release of intermembrane proteins, cytochrome c, Smac/Diablo, and apoptosis inducing factor. However, cholesterol loading did not affect the uptake rate of adenine nucleotide hence dissociating the function of ANT as a MPT-mediated protein from its adenine nucleotide exchange function. Thus, these findings indicate that the ability of atractyloside to induce MPT via ANT requires an appropriate membrane fluidity range.  相似文献   

8.
The composition of the mitochondrial inner membrane and uncoupling protein [such as adenine nucleotide translocator (ANT)] contents are the main factors involved in the energy-wasting proton leak. This leak is increased by glucocorticoid treatment under nonphosphorylating conditions. The aim of this study was to investigate mechanisms involved in glucocorticoid-induced proton leak and to evaluate the consequences in more physiological conditions (between states 4 and 3). Isolated liver mitochondria, obtained from dexamethasone-treated rats (1.5 mg.kg(-1).day(-1)), were studied by polarography, Western blotting, and high-performance thin-layer chromatography. We confirmed that dexamethasone treatment in rats induces a proton leak in state 4 that is associated with an increased ANT content, although without any change in membrane surface or lipid composition. Between states 4 and 3, dexamethasone stimulates ATP synthesis by increasing both the mitochondrial ANT and F1-F0 ATP synthase content. In conclusion, dexamethasone increases mitochondrial capacity to generate ATP by modifying ANT and ATP synthase. The side effect is an increased leak in nonphosphorylating conditions.  相似文献   

9.
10.
Neoplastic transformation was found to have a marked effect on the expression of nuclear DNA (nDNA)- and mitochondrial DNA (mtDNA)-encoded oxidative phosphorylation (OXPHOS) genes. Examining three pairs of human diploid fibroblasts and their SV 40-transformed counterparts revealed that mRNAs for the nuclear-encoded ATP synthase beta and the adenine nucleotide translocator (ANT) isoform 1 and 2 genes were markedly induced, whereas the mRNA for the ANT isoform 3 gene remained unchanged. The mRNA levels for the mtDNA-encoded 12 S rRNA, ND2, ATPase6+8, COIII, ND5+6, and Cytb genes were also increased, whereas the mtDNA number declined. Similar analysis of a cervical carcinoma (HeLa), fibrosarcoma (HT1080), and an Epstein-Barr virus (EBV)-transformed lymphoblastoid line (EBV-L) revealed that all three ANT isoforms were also expressed in these cells. Hence, changes in the expression of OXPHOS genes may be a common feature of transformed cells.  相似文献   

11.
Two maize genes and cDNAs encoding the mitochondrial adenine nucleotide translocator (ANT), a nuclear-encoded inner mitochondrial membrane carrier protein, have previously been isolated in this laboratory. Sequence analysis revealed the existence of much longer open reading frames than the corresponding fungal and mammalian ANT genes. Potato ANT cDNAs have subsequently been isolated and sequenced and alignment of the deduced plant amino acid sequences with the equivalent fungal and mammalian polypeptides indicated that the plant proteins contain N-terminal extensions. When the plant cDNA clones are expressed in vitro they direct the synthesis of precursor proteins that are specifically processed at the N-terminus upon import into isolated mitochondria. N-terminal amino acid sequence data obtained from the native proteins purified from both maize and potato mitochondria has allowed identification of the putative processing sites. Further import analysis has shown that two distinct regions of the maize precursor protein contain targeting information, the 97 amino acids at the N-terminus and the 267 C-terminal amino acids. This is the first report that provides experimental evidence that the adenine nucleotide translocator of higher plants is synthesized as a large precursor protein that is specifically cleaved upon import into mitochondria. Import of ANT into higher plant mitochondria therefore appears to be different to the corresponding process in fungal and mammalian systems where targeting of ANT to mitochondria is mediated by internal signals and there is no N-terminal processing.  相似文献   

12.
In brown-fat mitochondria, fatty acids induce thermogenic uncoupling through activation of UCP1 (uncoupling protein 1). However, even in brown-fat mitochondria from UCP1-/- mice, fatty-acid-induced uncoupling exists. In the present investigation, we used the inhibitor CAtr (carboxyatractyloside) to examine the involvement of the ANT (adenine nucleotide translocator) in the mediation of this UCP1-independent fatty-acid-induced uncoupling in brown-fat mitochondria. We found that the contribution of ANT to fatty-acid-induced uncoupling in UCP1-/- brown-fat mitochondria was minimal (whereas it was responsible for nearly half the fatty-acid-induced uncoupling in liver mitochondria). As compared with liver mitochondria, brown-fat mitochondria exhibit a relatively high (UCP1-independent) basal respiration ('proton leak'). Unexpectedly, a large fraction of this high basal respiration was sensitive to CAtr, whereas in liver mitochondria, basal respiration was CAtr-insensitive. Total ANT protein levels were similar in brown-fat mitochondria from wild-type mice and in liver mitochondria, but the level was increased in brown-fat mitochondria from UCP1-/- mice. However, in liver, only Ant2 mRNA was found, whereas in brown adipose tissue, Ant1 and Ant2 mRNA levels were equal. The data are therefore compatible with a tentative model in which the ANT2 isoform mediates fatty-acid-induced uncoupling, whereas the ANT1 isoform may mediate a significant part of the high basal proton leak in brown-fat mitochondria.  相似文献   

13.
14.
A regulatory role of adenine nucleotide translocator (ANT) was determined by titration of mitochondrial respiration (state 3) with carboxyatractyloside. It was shown that ANT regulates pyruvate oxidation: the control strength is more pronounced after depletion of endogenous substrates or after the increase in extramitochondrial ATP/ADP. The rate of succinate oxidation is controlled mainly by succinate dehydrogenase, while ANT does not participate in its regulation.  相似文献   

15.
The adenine nucleotide translocator in apoptosis   总被引:8,自引:0,他引:8  
Belzacq AS  Vieira HL  Kroemer G  Brenner C 《Biochimie》2002,84(2-3):167-176
Alteration of mitochondrial membrane permeability is a central mechanism leading invariably to cell death, which results, at least in part, from the opening of the permeability transition pore complex (PTPC). Indeed, extended PTPC opening is sufficient to trigger an increase in mitochondrial membrane permeability and apoptosis. Among the various PTPC components, the adenine nucleotide translocator (ANT) appears to act as a bi-functional protein which, on the one hand, contributes to a crucial step of aerobic energy metabolism, the ADP/ATP translocation, and on the other hand, can be converted into a pro-apoptotic pore under the control of onco- and anti-oncoproteins from the Bax/Bcl-2 family. In this review, we will discuss recent advances in the cooperation between ANT and Bax/Bcl-2 family members, the multiplicity of agents affecting ANT pore function and the putative role of ANT isoforms in apoptosis control.  相似文献   

16.
The mitochondrial ADP/ATP translocator, also called adenine nucleotide translocase (ANT), is synthesized in plants with an N-terminal extension which is cleaved upon import into mitochondria. In contrast, the homologous proteins of mammals or fungi do not contain such a transient amino terminal presequence. To investigate whether the N-terminal extension is needed for correct intracellular sorting in vivo , translational fusions were constructed of the translocator cDNA—with and without presequence—with the β-glucuronidase ( gus ) reporter gene. The distribution of reporter enzymatic activity in the subcellular compartments of transgenic plants and transformed yeast cells was subsequently analysed. The results show that: (i) the plant translocator presequence is not necessary for the correct localization of the ANT to the mitochondria; (ii) the mitochondrial targeting information contained in the mature part of the protein is sufficient to overcome, to some extent, the presence of plastid transit peptides; and (iii) the presequence alone is not able to target a passenger protein to mitochondria in vivo .  相似文献   

17.
18.
19.
The adenine nucleotide translocase (ANT) is a key component in maintaining cellular energy homeostasis, and has also been implicated in formation of the mitochondrial permeability transition pore. Human ANT-3 was cloned from a human heart cDNA library and expressed as a histidine-tagged fusion protein in the mitochondria of the Trichoplusia ni. cell line. Overexpression resulted in a concomitant decrease in the endogenous ANT content, allowing for the characterization of binding of known ANT ligands to the human protein. Binding affinities for bongkrekic acid (BKA), ADP, and atractyloside (ATR) were measured in mitochondria from the human ANT-3 expressing cell line, and compared to similar preparations from bovine heart mitochondria by use of a novel radioiodinated derivative of ATR. Binding to ANT-3 by the high affinity inhibitors BKA and ATR, as well as the lower affinity natural ligand ADP, was similar to that measured in bovine heart mitochondria, and to that previously reported for mammalian heart mitochondria. Characterizations such as these of human ANT isoforms may lead to drug development for enhanced mitochondrial function and cellular viability.  相似文献   

20.
The transport of inorganic pyrophosphate (PPi) by the adenine nucleotide translocator from beef heart mitochondria was studied in a reconstituted system. The transport of PPi is dependent on appropriate transmembrane substrates. The activity of PPi exchange is about one tenth as compared to the ADP/ATP exchange, whereas the transport affinity for PPi is very low (2-5 mM). The adenine nucleotide carrier catalyzes a strict counterexchange of PPi and nucleotides with an exchange stoichiometry close to 1. The inhibitor specificity of PPi exchange is comparable to that of ADP/ATP exchange.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号