首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A coaxial cable can be used to reduce the magnetic and electric fields that extend into environments in the vicinity of transmission lines and distribution lines and in-house or building wiring for power distribution systems. The use of the coaxial geometry may prove useful in cases where there are environmental concerns with respect to health effects and in cases where there is a need to run high-speed data communications in close proximity to power distribution systems. © 1996 Wiley-Liss, Inc.  相似文献   

2.
Recent laboratory and epidemiological results have stimulated interest in the hypothesis that human beings may exhibit biological responses to magnetic and/or electric field transients with frequencies in the range between 100 Hz and 100 kHz. Much can be learned about the response of a system to a transient stimulation by understanding its response to sinusoidal disturbances over the entire frequency range of interest. Thus, the main effort of this paper was to compare the strengths of the electric fields induced in homogeneous ellipsoidal models by uniform 100 Hz through 100 kHz electric and magnetic fields. Over this frequency range, external electric fields of about 25–2000 V/m (depending primarily on the orientation of the body relative to the field) are required to induce electric fields inside models of adults and children that are similar in strength to those induced by an external 1 μT magnetic field. Additional analysis indicates that electric fields induced by uniform external electric and magnetic fields and by the nonuniform electric and magnetic fields produced by idealized point sources will not differ by more than a factor of two until the sources are brought close to the body. Published data on electric and magnetic field transients in residential environments indicate that, for most field orientations, the magnetic component will induce stronger electric fields inside adults and children than the electric component. This conclusion is also true for the currents induced in humans by typical levels of 60 Hz electric and magnetic fields in U.S. residences. Bioelectromagnetics 18:67–76, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

3.
物理环境是影响蛋白质晶体形核的重要因素。文中回顾了各种物理环境如光、电场、超声波、磁场、微重力、温度、机械振动、异相形核界面对蛋白质晶体形核的影响,并对各物理环境下蛋白质晶体形核的可能机制进行探讨,展望了利用物理环境影响蛋白质晶体形核的研究前景。  相似文献   

4.
A study is made of the generation of strong quasistatic magnetic fields by counterpropagating moderate-intensity laser pulses of different frequencies in a low-density plasma. Strong magnetic fields are generated by small-scale large-amplitude plasma waves excited at different frequencies by ponderomotive forces in the interaction region of laser pulses. It is shown that magnetic fields are generated most efficiently under resonance conditions such that the frequency difference between laser pulses coincides with the plasma frequency. The spatial distribution of quasistatic magnetic fields is investigated, and the pattern of the contour lines of the electric current is calculated.  相似文献   

5.
Asymmetry of the magnetic field density along the arm perimeter under electric pulse with the usage of various electrodes was investigated. This research helped to prove the existence of special passageways in the human body (besides the nervous ones) which transmit the electric pulse. It was revealed that induction of electrodes into acupuncture points determined the distribution of power density along the arm section. In this case it depends upon the points used.  相似文献   

6.
From 2013 to 2018, in‐situ measurements of radiofrequency (RF) electromagnetic fields (EMF) and extremely low‐frequency (ELF) electric and magnetic fields in 317 existing and under‐construction children's playground facilities, in 16 municipalities all over Greece, were carried out by the Greek Atomic Energy Commission (EEAE). These measurements were conducted following legislative framework established in 2009, which requires that compliance with the established exposure limits for EMFs should be verified in playground areas. The results are presented by the value of the electric field (E) and exposure ratio (Λ) for the RF EMF, as well as the value of the electric field (E) and magnetic flux density (B) for the ELF electric and magnetic fields. Statistical analysis tools were applied on measurement data and conclusions have been made, taking into consideration: (i) environment type (urban/suburban), and (ii) vicinity to any transmitting installations. Measurement results correspond to the typical EMF background levels for each environment type. Concerning the environment type, RF EMF, and ELF electric/magnetic field measurements reveal no differentiation between urban and suburban environments. Bioelectromagnetics. 2019;40:602–605. © 2019 Bioelectromagnetics Society.  相似文献   

7.
There is public health concern raised by epidemiological studies indicating that extremely low frequency electric and magnetic fields generated by electric power distribution systems in the environment may be hazardous. Possible carcinogenic effects of magnetic field in combination with suggested oncostatic action of melatonin lead to the hypothesis that the primary effects of electric and magnetic fields exposure is a reduction of melatonin synthesis which, in turn, may promote cancer growth. In this review the data on the influence of magnetic fields on melatonin synthesis, both in the animals and humans, are briefly presented and discussed.  相似文献   

8.
Electroreception in marine fishes occurs across a variety of taxa and is best understood in the chondrichthyans (sharks, skates, rays, and chimaeras). Here, we present an up-to-date review of what is known about the biology of passive electroreception and we consider how electroreceptive fishes might respond to electric and magnetic stimuli in a changing marine environment. We briefly describe the history and discovery of electroreception in marine Chondrichthyes, the current understanding of the passive mode, the morphological adaptations of receptors across phylogeny and habitat, the physiological function of the peripheral and central nervous system components, and the behaviours mediated by electroreception. Additionally, whole genome sequencing, genetic screening and molecular studies promise to yield new insights into the evolution, distribution, and function of electroreceptors across different environments. This review complements that of electroreception in freshwater fishes in this special issue, which provides a comprehensive state of knowledge regarding the evolution of electroreception. We conclude that despite our improved understanding of passive electroreception, several outstanding gaps remain which limits our full comprehension of this sensory modality. Of particular concern is how electroreceptive fishes will respond and adapt to a marine environment that is being increasingly altered by anthropogenic electric and magnetic fields.  相似文献   

9.
The excitation of quasistatic magnetic fields by a circularly polarized laser pulse in a plasma channel is considered. It is shown that, to second order in the amplitude of the electric field of the laser pulse, circular rotation of the plane of polarization of the laser radiation in a radially nonuniform plasma gives rise to a nonlinear azimuthal current and leads to the excitation of the radial and axial components of the magnetic field. The dependence of the magnetic field distribution over the plasma channel on the spatial dimensions of the pulse and on the channel width is investigated for a moderate-power laser pulse. The structure of the magnetic fields excited by a relativistic laser pulse in a wide plasma channel is analyzed.  相似文献   

10.
In this work, we conceive and demonstrate the magneto-electric double Fano resonances of a hetero-cavity composed of Si disk and Au split ring, where Si disk can provide additional magnetic responses besides electric responses. The interference between electric and magnetic responses in proposed hetero-cavity gives rise to magneto-electric double Fano resonances with magnetic and electric near-field enhancements. Dipole radiative enhancement is used to analyze magnetic and electric responses of hetero-cavity and the spectral features of hetero-cavity can be used to quantitatively characterize by coupled oscillator model. And the spectral tunability of magneto-electric double Fano resonances is investigated, highlighting a potential for applications in low-loss sensing and nanophotonic devices.  相似文献   

11.
An energy-efficient lighting retrofit at the Food and Drug Administration (FDA) Winchester Engineering and Analytical Center (WEAC) presented the opportunity to measure the electromagnetic (EM) environments in several rooms before and after changing the fluorescent lighting systems and to compare the changes in EM fields with the proposed standard EM immunity levels. Three rooms, representing the types of work areas in the laboratory, were selected and measured before and after the lighting changeover. Electric and magnetic field measurements were taken in the extremely low frequency (ELF), very low frequency (VLF), and radio frequency (RF) ranges of the EM spectrum. In 2 rooms, ELF electric fields were reduced and VLF and RF electric fields were increased as a result of the changeover to high-frequency fixtures. A third room received low-frequency, energy-efficient fixtures during this changeover, and this change resulted in only a slight increase of the ELF electric fields. The ELF magnetic fields were greatly reduced in 2 but only slightly reduced in the third room. No significant change was seen in VLF or RF magnetic fields for any of these rooms. Some field-strength measurements exceeded the proposed immunity levels recommended in the draft International Electrotechnical Commission standard IEC 60601-1-2 (rev. 2). The data show that increasing the separation distance from the fluorescent light fixtures greatly reduces the field-strength levels, limiting the potential for EM interference.  相似文献   

12.
Limits on exposures to extremely low-frequency electric fields, magnetic fields and contact currents, designated as voluntary guidelines or standards by several organizations worldwide, are specified so as to minimize the possibility of neural stimulation. The limits, which we refer to as guidelines, derive from "basic restrictions" either on electric fields or current density within tissue, or on avoidance of annoying or startling interactions that may be experienced with spark discharge or contact current. Further, the guidelines specify more conservative permissible doses and exposure levels for the general public than for exposures in controlled environments, which most typically involve occupational settings. In 2001 we published an update on guideline science. This paper covers more recent developments that are relevant to the formulation and implementation of the next generation of guidelines. The paper deals with neurostimulation thresholds and the relevance of magnetophosphenes to setting guideline levels; dosimetry associated with contact current benchmarked against basic restrictions; tissue and cellular dosimetry from spark discharge; assessment of exposures to high electric fields in realistic situations (e.g., line worker in a transmission tower); a simplified approach to magnetic field assessment in non-uniform magnetic fields; and a quantitative approach to sampling workplace exposure for assessing compliance.  相似文献   

13.
Electric fields, which are ubiquitous in the context of neurons, are induced either by external electromagnetic fields or by endogenous electric activities. Clinical evidences point out that magnetic stimulation can induce an electric field that modulates rhythmic activity of special brain tissue, which are associated with most brain functions, including normal and pathological physiological mechanisms. Recently, the studies about the relationship between clinical treatment for psychiatric disorders and magnetic stimulation have been investigated extensively. However, further development of these techniques is limited due to the lack of understanding of the underlying mechanisms supporting the interaction between the electric field induced by magnetic stimulus and brain tissue. In this paper, the effects of steady DC electric field induced by magnetic stimulation on the coherence of an interneuronal network are investigated. Different behaviors have been observed in the network with different topologies (i.e., random and small-world network, modular network). It is found that the coherence displays a peak or a plateau when the induced electric field varies between the parameter range we defined. The coherence of the neuronal systems depends extensively on the network structure and parameters. All these parameters play a key role in determining the range for the induced electric field to synchronize network activities. The presented results could have important implications for the scientific theoretical studies regarding the effects of magnetic stimulation on human brain.  相似文献   

14.
Chronic exposure to ELF fields may induce depression   总被引:5,自引:0,他引:5  
Exposure to extremely-low-frequency (ELF) electric or magnetic fields has been postulated as a potentially contributing factor in depression. Epidemiologic studies have yielded positive correlations between magnetic- and/or electric-field strengths in local environments and the incidence of depression-related suicide. Chronic exposure to ELF electric or magnetic fields can disrupt normal circadian rhythms in rat pineal serotonin-N-acetyltransferase activity as well as in serotonin and melatonin concentrations. Such disruptions in the circadian rhythmicity of pineal melatonin secretion have been associated with certain depressive disorders in human beings. In the rat, ELF fields may interfere with tonic aspects of neuronal input to the pineal gland, giving rise to what may be termed "functional pinealectomy." If long-term exposure to ELF fields causes pineal dysfunction in human beings as it does in the rat, such dysfunction may contribute to the onset of depression or may exacerbate existing depressive disorders.  相似文献   

15.
Abstract

Measurements of extremely low frequency (ELF) magnetic fields were conducted in the environment of commercial laboratory equipment in order to evaluate the possible co-exposure during the experimental processes on cell cultures. Three types of device were evaluated: a cell culture CO2 incubator, a thermostatic water bath and a laboratory shaker table. These devices usually have electric motors, heating wires and electronic control systems, therefore may expose the cell cultures to undesirable ELF stray magnetic fields. Spatial distributions of magnetic field time domain signal waveform and frequency spectral analysis (FFT) were processed. Long- and short-term variation of stray magnetic field was also evaluated under normal use of investigated laboratory devices. The results show that the equipment under test may add a considerable ELF magnetic field to the ambient environmental magnetic field or to the intentional exposure to ELF, RF or other physical/chemical agents. The maximum stray magnetic fields were higher than 3?µT, 20?µT and 75?µT in the CO2 incubator, in water bath and on the laboratory shaker table, respectively, with high variation of spatial distribution and time domain. Our investigation emphasizes possible confounding factors conducting cell culture studies related to low-level ELF-EMF exposure due to the existing stray magnetic fields in the ambient environment of laboratory equipment.  相似文献   

16.
A computer model is devised for a Morozov plasma lens, in which the magnetic surfaces are equipotential surfaces of the electric field. Results are presented from numerical modeling of the focusing of ions with allowance for their longitudinal, radial, and azimuthal motions. The strengths and spatial distributions of the magnetic and electric fields are optimized. The methods for removing moment, geometric, and chromatic aberrations are analyzed. The effect of a discrete distribution of the potentials on ion focusing is modeled, and the related aberrations are examined. A computer model of an achromatic two-lens system is considered.  相似文献   

17.
Transcranial magnetic stimulation (TMS) is a stimulation method in which a magnetic coil generates a magnetic field in an area of interest in the brain. This magnetic field induces an electric field that modulates neuronal activity. The spatial distribution of the induced electric field is determined by the geometry and location of the coil relative to the brain. Although TMS has been used for several decades, the biophysical basis underlying the stimulation of neurons in the central nervous system (CNS) is still unknown. To address this problem we developed a numerical scheme enabling us to combine realistic magnetic stimulation (MS) with compartmental modeling of neurons with arbitrary morphology. The induced electric field for each location in space was combined with standard compartmental modeling software to calculate the membrane current generated by the electromagnetic field for each segment of the neuron. In agreement with previous studies, the simulations suggested that peripheral axons were excited by the spatial gradients of the induced electric field. In both peripheral and central neurons, MS amplitude required for action potential generation was inversely proportional to the square of the diameter of the stimulated compartment. Due to the importance of the fiber's diameter, magnetic stimulation of CNS neurons depolarized the soma followed by initiation of an action potential in the initial segment of the axon. Passive dendrites affect this process primarily as current sinks, not sources. The simulations predict that neurons with low current threshold are more susceptible to magnetic stimulation. Moreover, they suggest that MS does not directly trigger dendritic regenerative mechanisms. These insights into the mechanism of MS may be relevant for the design of multi-intensity TMS protocols, may facilitate the construction of magnetic stimulators, and may aid the interpretation of results of TMS of the CNS.  相似文献   

18.
A numerical model of a human body with an intramedullary nail in the femur was built to evaluate the effects of the implant on the current density distribution in extremely low frequency electric and magnetic fields. The intramedullary nail was chosen because it is one of the longest high conductive implants used in the human body. As such it is expected to alter the electric and magnetic fields significantly. The exposure was a simultaneous combination of inferior to superior electric field and posterior to anterior magnetic field both alternating at 50 Hz with the values corresponding to the ICNIRP reference levels: 5000 V m?1 for electric field and 100 µT for magnetic flux density. The calculated current density distribution inside the model was compared to the ICNIRP basic restrictions for general public (2 mA m?2). The results show that the implant significantly increases the current density up to 9.5 mA m?2 in the region where it is in contact with soft tissue in the model with the implant in comparison to 0.9 mA m?2 in the model without the implant. As demonstrated the ICNIRP basic restrictions are exceeded in a limited volume of the tissue in spite of the compliance with the ICNIRP reference levels for general public, meaning that the existing safety limits do not necessarily protect implanted persons to the same extent as they protect people without implants. Bioelectromagnetics 30:591–599, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

19.
The effect of the magnitude and direction of an external electric field on the plasma flowing through a magnetic barrier is studied by numerically solving two-fluid MHD equations. The drift velocity of the plasma flow and the distribution of the flow electrons over transverse velocities are found to depend on the magnitude and direction of the electric field. It is shown that the direction of the induced longitudinal electric field is determined by the direction of the external field and that the electric current generated by the plasma flow significantly disturbs the barrier field.  相似文献   

20.
The calculated distribution of electric fields induced in homogeneous human and rat models by a 60-Hz magnetic field is compared with values measured in instrumented mannequins. The calculated values agree well with measured values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号