首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Rat liver glycine methyltransferase is inactivated by 5'-p-fluorosulfonylbenzoyladenosine (FSBA) in a pseudo-first order fashion at pH 7.5. The addition of dithiothreitol (20 mM) to the reaction mixture results in partial restoration of enzyme activity. A semilog plot of residual activity after dithiothreitol reactivation versus time is also linear, indicating that at least two essential residues are present on the enzyme and the modification of either of which causes total loss of activity. The inactivation is accompanied by incorporation of the radiolabel from adenine-labeled FSBA, but the amount of radioactivity fixed is not altered upon treatment with dithiothreitol. From this fact and the stoichiometry between the loss of dithiothreitol-sensitive activity and the number of sulfhydryl groups disappeared, it is suggested that the dithiothreitol-sensitive inactivation is the consequence of the FSBA-mediated formation of a disulfide between two sulfhydryl groups in close proximity. Although 4 mol of reagent are covalently bound per enzyme subunit, the kinetics of modification and inactivation show that the reaction at 1 residue, which is identified as tyrosine, is responsible for the dithiothreitol-insensitive inactivation. The substrate S-adenosylmethionine provides complete protection against both types of inactivation, but the dithiothreitol-insensitive inactivation is protected much more effectively with a Kd value comparable to the Km value. This suggests that the tyrosine is located at or near the active site of the methyltransferase.  相似文献   

2.
The inactivation of rabbit muscle pyruvate kinase by 0.3 mM 5'-p-fluorosulfonylbenzoyl-1,N6-ethenoadenosine at pH 7.8 is biphasic. The first phase proceeds rapidly to yield a partially active enzyme (46% residual activity) followed by a slower rate which leads to total inactivation. The inactivation of the first phase can be reversed by addition of 20 mM dithiothreitol, whereas the second phase is unaffected. These two phases have second-order rate constants of 250 M-1 X min-1 (dithiothreitol-sensitive reaction) and 52 M-1 X min-1 (dithiothreitol-insensitive reaction), respectively. Marked protection against inactivation is afforded by phosphoenolpyruvate and by metal-nucleotide complexes in the presence of free metal, indicating that reaction occurs in the region of the active site. Loss of approximately two sulfhydryls per enzyme subunit correlates well with the dithiothreitol-sensitive inactivation, suggesting that this phase of the inactivation may be attributable to disulfide formation. Incorporation of about one mole of fluorescent reagent per enzyme subunit correlates closely with the dithiothreitol-insensitive phase of inactivation, yielding a modified histidine residue. The quantum yield of the fluorescent sulfonylbenzoyl-1,N6-ethenoadenosine-pyruvate kinase is only 0.007, as compared to 0.54 for the parent nucleoside 1,N6-ethenoadenosine. The quenched fluorescence is consistent with stacking of the sulfonylbenzoyl moiety on the purine ring in the modified enzyme, which suggests that the altered histidine may be located in the adenine region of the metal-nucleotide binding site.  相似文献   

3.
The glutamine-dependent activity of Serratia marcescens anthranilate synthase was inactivated by pyridoxal 5′-phosphate and sodium cyanide. The reaction was specific in that the ammonia-dependent activity of the enzyme was unaffected. The inactivation was stable to dilution or dialysis but was reversed by dithiothreitol. The enzyme contains dissimilar subunits designated anthranilate synthase components I (AS I) and II (AS II). Incorporation of [14C]NaCN demonstrates that modification was limited to one to two residues per AS I · AS II protomer. An active site cysteine is involved in the glutamine-dependent activity. Modification by pyridoxal 5′-phosphate and NaCN blocked affinity labeling of the active site cysteine by the glutamine analog 6-diazo-5-oxo-l-norleucine and reduced alkylation of the active site cysteine by iodoacetamide. These results suggest modification is at the glutamine active site. Initial modification by iodoacetamide did not prevent pyridoxal 5′-phosphate-dependent incorporation of 14CN showing that the pyridoxal 5′-phosphate modification did not involve the essential cysteinyl residue. These results suggest that modification of a lysyl residue in the glutamine active site of anthranilate synthase reduces the reactivity of the essential cysteinyl residue resulting in the loss of the amidotransferase activity.  相似文献   

4.
The inactivation of Lactobacillus casei thymidylate synthetase by phenylglyoxal occurs by a pseudo-first-order, pH-dependent process which is 100-fold faster at pH 8.4 than at pH 7.4. The second-order rate constant for inactivation at pH 7.4 is 32 m?1 min?1. Although four or more arginyl residues of the 24 arginines per enzyme dimer can be modified, as determined by amino acid analysis or [2-14C]phenylglyoxal incorporation, only one arginine appears to be essential for activity. The association of this arginine with the catalytic process is supported by the finding that 2′-deoxyuridylate not only protects it from modification by phenylglyoxal, but in so doing prevents the enzyme from losing activity. Additional support is derived from the fact that the product of the reaction, 2′-deoxythymidylate, a competitive inhibitor of 2′-deoxyuridylate, also protects the enzyme, but 2′-deoxycytidylate and uridylate do not. Neither the enzyme's second substrate, 5,10-CH2H4folate nor the folylpolyglutamates protect the enzyme from inactivation by phenyglyoxal. These findings contrast with those recently reported by Cipollo and Dunlap (Biochemistry18, 5537, 1979), which indicate that the inactivation is associated with the modification of 4 arginines per mole of enzyme, 2 of which are protected by 2′-deoxyuridylate. The requirement for a single arginine in the catalytic process is consistent with the involvement of one essential cysteine (Noonan et al., Arch. Biochem. Biophys.184, 336, 1977, both amino acids apparently participating in the binding of 1 mol of 2′-deoxyuridylate per enzyme dimer. These findings suggest that the synthetase's two identical subunits function asymmetrically and that 2′-deoxyuridylate binds as a dianion.  相似文献   

5.
Chemical modification of purified d-glucosaminate dehydratase (GADH) apoenzyme by N-ethyl-maleimide (NEM) and by 7-chloro-4-aminobenzo-2-oxa-1,3-diazole (NBDC1) resulted in the time- and concentration-dependent inactivation of the enzyme in each case. The inactivation followed pseudo-first-order kinetics and a double-logarithmic plot of the observed pseudo-first-order rate constant against reagent concentration proved evidence for an approximately first-order reaction, suggesting that the modification of a single cysteine residue per mole of enzyme resulted in inactivation. Amino acid analysis of the NEM-inactivated enzyme showed that three moles of cysteine residues among six moles per mole of subunit were modified under these conditions, therefore one of the three cysteine residues modified by NEM may be essential for activity. Pyridoxal 5′-phosphate (PLP) and D-glucosaminate (GlcNA) protected the enzyme against inactivation by NEM and NBDCI. The apoenzyme was inactivated by EDTA and activity of enzyme was restored by incubation with Mn2+ in the presence of PLP. Incubation of the EDTA-treated enzyme with NEM inhibited the restoration of activity. These results suggest that one of the cysteine residues of GADH may be chelated to a Mn2+ at or near the active site of GADH, contributing to formation of the active enzyme.  相似文献   

6.
A simple procedure, involving heat treatment, gel filtration on Sephadex G-100 followed by chromatography on anti-S1 nuclease antibodies bound to Sepharose, was developed for purification of S1 nuclease to homogeneity with an overall yield of 72%. S1 nuclease was rapidly inactivated, at pH 6.0 and 37°C, in presence of o-phthalaldehyde. Kinetic analysis of o-phthalaldehyde mediated inactivation showed that the reaction followed pseudo-first-order kinetics and the loss of enzyme activity was due to the formation of a single isoindole derivative per molecule of the enzyme. Absorbance and fluorescence spectrophotometric data also gave similar results. The isoindole derivative formation, as a result of o-phthalaldehyde treatment is known to occur through crosslinking of the thiol group of cysteine and the ε-amino group of lysine, situated in close proximity in the native enzyme. Since, modification of only available cysteine residue (Cys 25) did not affect the catalytic activity of the enzyme, the o-phthalaldehyde mediated inactivation of S1 nuclease is due to the modification of lysine. Substrates of S1 nuclease, namely ssDNA, RNA and 3′ AMP, could protect the enzyme against o-phthalaldehyde mediated inactivation. Moreover, the modified enzyme (having very little catalytic activity) showed a significant decrease in its ability to bind 5′ AMP, a competitive inhibitor of S1 nuclease, suggesting that the modification has occurred at the substrate binding site. The above results point towards the presence of cysteine 25 in close proximity to the substrate binding site.  相似文献   

7.
Depolarization of sodium channels initiates at least three gating pathways: activation, fast inactivation, and slow inactivation. Little is known about the voltage sensors for slow inactivation, a process believed to be separate from fast inactivation. Covalent modification of a cysteine substituted for the third arginine (R1454) in the S4 segment of the fourth domain (R3C) with negatively charged methanethiosulfonate-ethylsulfonate (MTSES) or with positively charged methanethiosulfonate-ethyltrimethylammonium (MTSET) produces a marked slowing of the rate of fast inactivation. However, only MTSES modification produces substantial effects on the kinetics of slow inactivation. Rapid trains of depolarizations (2-20 Hz) cause a reduction of the peak current of mutant channels modified by MTSES, an effect not observed for wild-type or unmodified R3C channels, or for mutant channels modified by MTSET. The data suggest that MTSES modification of R3C enhances entry into a slow-inactivated state, and also that the effects on slow inactivation are independent of alterations of either activation or fast inactivation. This effect of MTSES is observed only for cysteine mutants within the middle of this S4 segment, and the data support a helical secondary structure of S4 in this region. Mutation of R1454 to the negatively charged residues aspartate or glutamate cannot reproduce the effects of MTSES modification, indicating that charge alone cannot account for these results. A long-chained derivative of MTSES has similar effects as MTSES, and can produce these effects on a residue that does not show use-dependent current reduction after modification by MTSES, suggesting that the sulfonate moiety can reach a critical site affecting slow inactivation. The effects of MTSES on R3C are partially counteracted by a point mutation (W408A) that inhibits slow inactivation. Our data suggest that a region near the midpoint of the S4 segment of domain 4 plays an important role in slow inactivation.  相似文献   

8.
The photodynamic, i.e., the light-induced, inactivation of the Na,K-ATPase in the presence of the sensitizer rose bengal was studied under different conditions. The shape of inactivation curves of the enzyme activity was analyzed as well as partial reactions of the pump cycle. Both experimental approaches showed the existence of two different time constants of inactivation of the ion pump, which reflect two pathways of a photodynamic modification. This is supported by the following observations: (1) The amplitude of the initial fast decay of enzyme activity was enhanced in the presence of D2O and reduced in the presence of the singlet oxygen scavenger imidazole. (Similar results were found for the SR Ca-ATPase.) (2) Contrary to the fast enzyme inactivation the slow process shows an inverse dose-rate behavior. (3) Inactivation of the partial reactions of Na+-binding and of K+-binding to the membrane domain of the Na,K-ATPase showed only a single time constant, which corresponded to the slower time constant of enzyme inactivation. In the presence of high concentrations of singlet oxygen the fast time constant dominated the inactivation of the ATP-induced partial reaction for which the cytoplasmic domains of the enzyme play an important role. The data support the conclusion that fast inactivation is due to modification of the cytoplasmic domains and slow inactivation due to modifications of the membrane domain of the ion pumps.This revised version was published online in June 2005 with a corrected cover date.  相似文献   

9.
The kinetics of the hydrogen-deuterium exchange reactions of double-helical poly (rI) · poly (rC), single-stranded poly(rC) and poly(rI), inosine, and cytosine- 5′-phosphoric acid have been examined, at various temperatures in the range 20 °C to 52 °C, by stopped-flow ultraviolet spectrophotometry, in the region 270 to 300 nm. For the solution of double-helical poly(rI) · poly(rC), two first-order deuteration reactions were found: a fast one and a slow one. At 25 °C and at pH 7.0, the rate constant was 12.3 s?1 for the fast reaction, and 0.13 s?1 for the slow reaction. The rate constant of the fast reaction is nearly equal to that of the single-stranded poly(rC) (12.6 s?1), and is assigned to the deuteration at the amino hydrogen (that is, free from the C · I hydrogen bond) of the cytosine residue. The slow reaction is attributable to the deuteration of the two hydrogens: the amino hydrogen of rC and imide hydrogen of rI, which are rapidly exchanging with each other within every rC · rI base-pair. From the observed temperature effect on this slow reaction rate, it has been concluded that there are two types of “opening process” that are relevant to the hydrogen exchange reaction; one of them is predominent in the range 47 °C to 52 °C and the other in the temperature region lower than 47 °C. The enthalpy (H) and entropy (S) differences of the “open” and “closed” forms in the former type process are ΔH = 167 kcal per mole and ΔS = 507 e.u., while in the latter ΔH = 8.1 kcal per mole and ΔS = 10 e.u..  相似文献   

10.
The treatment of 6-phosphogluconate dehydrogenase from Candida utilis with dansyl chloride causes the modification of one amino acid residue per enzyme subunit and the inactivation of the enzyme. Either a cysteine or a tyrosine residue can be modified, depending on the pH of the reaction mixture. The dansyl residue can be transferred from one residue to the other suggesting that the two amino acid residues are close in the tridimensional structure of the active site of the enzyme.  相似文献   

11.
Mutations in segment IVS6 of voltage-gated Na(+) channels affect fast-inactivation, slow-inactivation, local anesthetic action, and batrachotoxin (BTX) action. To detect conformational changes associated with these processes, we substituted a cysteine for a valine at position 1583 in the rat adult skeletal muscle sodium channel alpha-subunit, and examined the accessibility of the substituted cysteine to modification by 2-aminoethyl methanethiosulfonate (MTS-EA) in excised macropatches. MTS-EA causes an irreversible reduction in the peak current when applied both internally and externally, with a reaction rate that is strongly voltage-dependent. The rate increased when exposures to MTS-EA occurred during brief conditioning pulses to progressively more depolarized voltages, but decreased when exposures occurred at the end of prolonged depolarizations, revealing two conformational changes near site 1583, one coupled to fast inactivation, and one tightly associated with slow inactivation. Tetraethylammonium, a pore blocker, did not affect the reaction rate from either direction, while BTX, a lipophilic activator of sodium channels, completely prevented the modification reaction from occurring from either direction. We conclude that there are two inactivation-associated conformational changes in the vicinity of site 1583, that the reactive site most likely faces away from the pore, and that site 1583 comprises part of the BTX receptor.  相似文献   

12.
The reduction kinetics of the photooxidized photosystem I reaction center (P-700+) by plastocyanin was studied in the stroma thylakoids prepared by the Yeda press treatment. The kinetics of the P-700+ reduction after flash excitation were biphasic and separated into two independent first-order reactions, the fast phase with a half-time of about 4 ms and the slow phase with a half-time of about 18 ms. Only the fast phase of the P-700+ reduction was sensitive to KCN and glutaraldehyde treatments of the thylakoids which block the plastocyanin site in the photosynthetic electron flow indicating that the fast phase is mediated by plastocyanin. However, the content of plastocyanin in the stroma thylakoids used was greatly decreased by the Yeda press treatment to only half that of P-700+ reduced in the fast phase. This indicates that one plastocyanin molecule turns over more than once in the single turnover of P-700+ rather than forming a fixed complex with P-700. On the other hand, the slow phase was not affected by KCN or glutaraldehyde treatment and its apparent rate constant linearly depended on the concentration of reduced dichlorophenolindophenol. These results indicate that the slow phase shows direct reduction of P-700+ by dichlorophenolindophenol. A second-order rate constant of 3.96 × 105m?1 s?1 was obtained for the slow phase at pH 7.6, 25 °C. Analysis of reaction kinetics in the initial portion of the fast phase indicated initial interaction between P-700+ and the reduced plastocyanin and gave a half-time of 0.53 ms for the bimolecular reaction. We assumed the lateral diffusion of plastocyanin on the thylakoid membrane and calculated the two-dimensional diffusion coefficient for plastocyanin from the half-time of the initial reduction of P-700+ as about 2 × 10?9 cm2 s?1.  相似文献   

13.
Aspartate-β-semialdehyde dehydrogenase (ASADH) from Escherichia coli is inhibited by l- and d-cystine, and by other cystine derivatives. Enzyme inhibition is quantitatively reversed by addition of dithiothreitol (DTT), dithioerythrytol, β-mercaptoethanol, di-mercaptopropanol or glutathione to the cystine-inactivated enzyme. Cystine labeling of the enzyme is a pH dependent process and is optimal at pH values ranging from 7.0 to 7.5. Both the cysteine incorporation profile and the inactivation curve of the enzyme as a function of pH suggest that a group(s) with pKa of 8.5 could be involved in cystine binding. Stoichiometry of the inactivation reaction indicates that one cysteine residue from the enzyme subunit is reactive against cystine, as found by direct incorporation of radioactive cystine into the enzyme and by free-thiol titration of the enzyme with 5,5′-dithiobis-2-nitrobenzoic acid (DTNB) before and after the cystine treatment. One mole of cysteine is released from each mol of cystine after reaction with the enzyme. ASA, NADP and NADPH did not prevent cystine inhibition. The [35S]cysteine-labelled enzyme can be visualized after electrophoresis in polyacrylamide gels and further detection by autoradiography. After pepsin treatment of the [35S]cysteine-inactivated enzyme, a main radioactive peptide was isolated by HPLC. The amino acid sequence of this peptide was determined as FVGGN(Cys)2TVSL, thus demonstrating that the essential 135Cys is the amino acid residue modified by the treatment with cystine.  相似文献   

14.
After the inactivation of yeast hexokinase with (R,S)2′,3′-epoxypropyl β-d-[U-14C]glucopyranoside (50 mM), four moles of this inhibitor were found to be bound per mole of hexokinase monomer (mol.wt., 50 000). The hexokinase inactivated in this way did not show any reaction with 5,5′-dithiobis-(2-nitrobenzoic acid) (DTNB) in 8 M urea; this is consistent with the alkylation of four cysteine residues per monomer by (R,S)2′,3′-epoxypropyl β-d-glucopyranoside.Amino acid analyses of hexokinase which had been alkylated with (R,S)2′,3′-epoxypropyl β-d-glucopyranoside and then oxidised with performic acid gave evidence for the alkylation of two types of cysteine residue, one type reactive towards DTNB and not essential for enzyme activity, the other type less reactive towards DTNB and essential for enzyme activity.The presence of a cysteine residue in the binding site of d-glucose is proposed and a mechanism for the binding of d-glucose involving an intermediate covalent, d-glucose enzyme complex is suggested.  相似文献   

15.
Lowering external pH reduces peak current and enhances current decay in Kv and Shaker-IR channels. Using voltage-clamp fluorimetry we directly determined the fate of Shaker-IR channels at low pH by measuring fluorescence emission from tetramethylrhodamine-5-maleimide attached to substituted cysteine residues in the voltage sensor domain (M356C to R362C) or S5-P linker (S424C). One aspect of the distal S3-S4 linker α-helix (A359C and R362C) reported a pH-induced acceleration of the slow phase of fluorescence quenching that represents P/C-type inactivation, but neither site reported a change in the total charge movement at low pH. Shaker S424C fluorescence demonstrated slow unquenching that also reflects channel inactivation and this too was accelerated at low pH. In addition, however, acidic pH caused a reversible loss of the fluorescence signal (pKa = 5.1) that paralleled the reduction of peak current amplitude (pKa = 5.2). Protons decreased single channel open probability, suggesting that the loss of fluorescence at low pH reflects a decreased channel availability that is responsible for the reduced macroscopic conductance. Inhibition of inactivation in Shaker S424C (by raising external K+ or the mutation T449V) prevented fluorescence loss at low pH, and the fluorescence report from closed Shaker ILT S424C channels implied that protons stabilized a W434F-like inactivated state. Furthermore, acidic pH changed the fluorescence amplitude (pKa = 5.9) in channels held continuously at −80 mV. This suggests that low pH stabilizes closed-inactivated states. Thus, fluorescence experiments suggest the major mechanism of pH-induced peak current reduction is inactivation of channels from closed states from which they can activate, but not open; this occurs in addition to acceleration of P/C-type inactivation from the open state.  相似文献   

16.
Lysosome-solubilized pig liver NADH-cytochrome b5 reductase is inactivated by 5′-p-fluorosulfonylbenzoyladenosine (5′-FSBA) following pseudo-first-order kinetics. A double reciprocal plot of 1/K obs versus 1/[5′-FSBA] yields a straight line with a positiveY intercept, indicative of reversible binding of the analogue prior to an irreversible incorporation.K d or the initial reversible enzyme-analogue complex is estimated at 185 µM withK 2=0.22 min?1 (atpH 8.0 and 25°C). A stoichiometry of 1.2 moles of analogue bound/mole of enzyme at 100% inactivation has been determined from incorporation studies using 5′-p-fluorosulfonylbenzoyl-[14C]adenosine. The irreversible inactivation as well as the covalent incorporation could be completely prevented by the presence of NADH, the substrate of enzyme, during the incubation. Four 5′-FSBA-labeled peptides were isolated by reverse-phase high-performance liquid chromatography of tryptic digest of the modified NADH-cytochrome b5 reductase and their amino acid sequences were determined. These peptides appear to be related to the NADH binding site of the enzyme.  相似文献   

17.
A new column chromatographic method is presented for the purification of peptides which are covalently bound to nucleoside analogs (nucleosidyl peptides). The procedure involves complex formation between the cis-diol moiety of the nucleosidyl peptide and the dihydroxyborylphenyl group which is linked either to polyacrylamide or to cellulose as a support; thus, the nucleosidyl peptides can be reversibly bound to the column while all other peptides are eluted in the void volume. This approach is exemplified by the purification of two peptides of rabbit muscle pyruvate kinase labeled with 5′-p-fluorosulfonylbenzoyl adenosine and one peptide of bovine liver glutamate dehydrogenase modified with 5′-p-fluorosulfonylbenzoyl guanosine. The method may be generally applicable to the purification of peptides resulting from the affinity labeling of nucleotide sites in proteins.  相似文献   

18.
Philip G. Koga  Richard L. Cross 《BBA》1982,679(2):269-278
1. Soluble beef-heart mitochondrial ATPase (F1) was incubated with [3H]pyridoxal 5′-phosphate and the Schiffbase complex formed was reduced with sodium borohydride. Spectral measurements indicate that lysine residues are modified and gel electrophoresis in the presence of detergent shows the tritium label to be associated with the two largest subunits, α and β. 2. In the absence of protecting ligands, the loss of ATP hydrolysis activity is linearly dependent on the level of pyridoxylation with complete inactivation correlating to 10 mol pyridoxamine phosphate incorporated per mol enzyme. Partial inactivation of F1 with pyridoxal phosphate has no effect on either the Km for ATP or the ability of bicarbonate to stimulate residual hydrolysis activity, suggesting a mixed population of fully active and fully inactive enzyme. 3. In the presence of excess magnesium, the addition of ADP or ATP, but not AMP, decreases the rate and extent of modification of F1 by pyridoxal phosphate. The non-hydrolyzable ATP analog, 5′-adenylyl-β, γ-imidodiphosphate, is particularly effective in protecting F1 against both modification and inactivation. Efrapeptin and Pi have no effect on the modification reaction. 4. Prior modification of F1 with pyridoxal phosphate decreases the number of exchangeable nucleotide binding sites by one. However, pyridoxylation of F1 is ineffective in displacing endogenous nucleotides bound at non-catalytic sites and does not affect the stoichiometry of Pi binding. 5. The ability of nucleotides to protect against modification and inactivation by pyridoxal phosphate and the loss of one exchangeable nucleotide site with the pyridoxylation of F1 suggest the presence of a positively charged lysine residue at the catalytic site of an enzyme that binds two negatively charged substrates.  相似文献   

19.
The pig heart TPN-speciftc isocitrate dehydrogenase was reacted successively with 5,5′-dithiobis(2-nitrobenzoic acid) and K14CN in the presence of various combinations of substrates and/or inhibitors to produce thiocyano derivatives of the reactive cysteine residues. The thiocyano-enzyme preparations, after cyclization and cleavage to yield iminothiazolidine derivatives, were digested with trypsin and the resultant tryptic digests were fractionated by two-dimensional paper chromatography and high-voltage electrophoresis. The 14C-labeled peptides were located by a two-dimensional radioscanner. The distribution of radioactivity in the tryptic digests of inactive enzyme, obtained by reaction with 5,5′-dithiobis(2-nitrobenzoate) and K14CN in the absence of ligands, was compared with that of enzyme obtained by reaction in the presence of ligands such as Mn2+ and isocitrate or Ca2+ and isocitrate which protect against inactivation. The results suggest that modification of one cysteine-containing peptide, termed Peptide 2, leads to inactivation. Peptide 2 has been purified and its amino acid composition determined. Evidence from this and the preceding paper indicates that this peptide participates in the metal-isocitrate binding site. The amino acid composition of the intact pig heart TPN-specific isocitrate dehydrogenase is also presented.  相似文献   

20.
The reaction between 6-phosphogluconate dehydrogenase from Candida utilis and 5,5′-dithiobis(2-nitrobenzoate) results in the inactivation of the enzyme. At pH 6.0 the inactivation can be correlated with the modification of only one SH group per enzyme subunit. The modified SH group can react with another SH group forming an intramolecular disulfide bridge. Since the modified enzymes, either with an SH group modified or with a cystine disulfide bridge, are still able to bind the substrate and the coenzyme, gross conformational changes seem unlikely to have occurred. The results obtained suggest that the SH groups of two cysteine residues are located close to each other in the three-dimensional structure of the active site of the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号