首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Repetitive sequences are ubiquitous components of eukaryotic genomes affecting genome size and evolution as well as gene regulation. Among them, short interspersed nuclear elements (SINEs) are non‐coding retrotransposons usually shorter than 1000 bp. They contain only few short conserved structural motifs, in particular an internal promoter derived from cellular RNAs and a mostly AT‐rich 3′ tail, whereas the remaining regions are highly variable. SINEs emerge and vanish during evolution, and often diversify into numerous families and subfamilies that are usually specific for only a limited number of species. In contrast, at the 3′ end of multiple plant SINEs we detected the highly conserved ‘Angio‐domain’. This 37 bp segment defines the Angio‐SINE superfamily, which encompasses 24 plant SINE families widely distributed across 13 orders within the plant kingdom. We retrieved 28 433 full‐length Angio‐SINE copies from genome assemblies of 46 plant species, frequently located in genes. Compensatory mutations in and adjacent to the Angio‐domain imply selective restraints maintaining its RNA structure. Angio‐SINE families share segmental sequence similarities, indicating a modular evolution with strong Angio‐domain preservation. We suggest that the conserved domain contributes to the evolutionary success of Angio‐SINEs through either structural interactions between SINE RNA and proteins increasing their transpositional efficiency, or by enhancing their accumulation in genes.  相似文献   

2.
Short interspersed nuclear elements (SINEs) are non‐autonomous transposable elements which are propagated by retrotransposition and constitute an inherent part of the genome of most eukaryotic species. Knowledge of heterogeneous and highly abundant SINEs is crucial for de novo (or improvement of) annotation of whole genome sequences. We scanned Poaceae genome sequences of six important cereals (Oryza sativa, Triticum aestivum, Hordeum vulgare, Panicum virgatum, Sorghum bicolor, Zea mays) and Brachypodium distachyon to examine the diversity and evolution of SINE populations. We comparatively analyzed the structural features, distribution, evolutionary relation and abundance of 32 SINE families and subfamilies within grasses, comprising 11 052 individual copies. The investigation of activity profiles within the Poaceae provides insights into their species‐specific diversification and amplification. We found that Poaceae SINEs (PoaS) fall into two length categories: simple SINEs of up to 180 bp and dimeric SINEs larger than 240 bp. Detailed analysis at the nucleotide level revealed that multimerization of related and unrelated SINE copies is an important evolutionary mechanism of SINE formation. We conclude that PoaS families diversify by massive reshuffling between SINE families, likely caused by insertion of truncated copies, and provide a model for this evolutionary scenario. Twenty‐eight of 32 PoaS families and subfamilies show significant conservation, in particular either in the 5′ or 3′ regions, across Poaceae species and share large sequence stretches with one or more other PoaS families.  相似文献   

3.
Based on previous observations that newly inserted LINEs and SINEs have particularly long 3' A-tails, which shorten rapidly during evolutionary time, we have analyzed the rat and mouse genomes for evidence of recently inserted SINEs and LINEs. We find that the youngest predicted subfamilies of rodent identifier (ID) elements, a rodent-specific SINE derived from tRNA(Ala), are preferentially associated with A-tails over 50 bases in the rat genome, as predicted. Furthermore, these studies detected a subfamily of ID elements that has made over 15,000 copies that is younger than any previously reported ID subfamily. We use PCR analysis of genomic loci to demonstrate that all subfamily members tested inserted after the divergence of Rattus norvegicus from Rattus rattus. We also found evidence that the rodent B1 family of elements is much more active currently in mouse than in rat. These data provide useful estimates of recent activity from all of the mammalian retrotransposons, as well as allowing identification of the most recent insertions for use as population and speciation markers in those species. Both the current rat ID and mouse B1 elements that are active have small, specific interruptions in their 3' A-tail sequences. We suggest that these interruptions stabilize the length of the A-tails and contribute to the activity of these subfamilies. We present a model in which the dynamics of the 3' A-tail may be a central controlling factor in SINE activity.  相似文献   

4.
Short interspersed nuclear elements (SINEs) are highly abundant non‐autonomous retrotransposons that are widespread in plants. They are short in size, non‐coding, show high sequence diversity, and are therefore mostly not or not correctly annotated in plant genome sequences. Hence, comparative studies on genomic SINE populations are rare. To explore the structural organization and impact of SINEs, we comparatively investigated the genome sequences of the Solanaceae species potato (Solanum tuberosum), tomato (Solanum lycopersicum), wild tomato (Solanum pennellii), and two pepper cultivars (Capsicum annuum). Based on 8.5 Gbp sequence data, we annotated 82 983 SINE copies belonging to 10 families and subfamilies on a base pair level. Solanaceae SINEs are dispersed over all chromosomes with enrichments in distal regions. Depending on the genome assemblies and gene predictions, 30% of all SINE copies are associated with genes, particularly frequent in introns and untranslated regions (UTRs). The close association with genes is family specific. More than 10% of all genes annotated in the Solanaceae species investigated contain at least one SINE insertion, and we found genes harbouring up to 16 SINE copies. We demonstrate the involvement of SINEs in gene and genome evolution including the donation of splice sites, start and stop codons and exons to genes, enlargement of introns and UTRs, generation of tandem‐like duplications and transduction of adjacent sequence regions.  相似文献   

5.
A repetitive element of approximately 200 bp was cloned from harbour seal (Phoca vitulina concolour) genomic DNA. The sequence of the element revealed putative RNA polymerase III control boxes, a poly A tail and direct terminal repeats characteristic of SINEs. Sequence and secondary structural similarities suggest that the SINE is derived from a tRNA, possibly tRNA-alanine. Southern blot analysis indicated that the element is predominately dispersed in unique regions of the seal genome, but may also be present in other repetitive sequences, such as tandemly arrayed satellite DNA. Based on slot-blot hybridization analysis, we estimate that 1.3 x 10(6) copies of the SINE are present in the harbour seal genome; SINE copy number based on the number of clones isolated from a size-selected library, however, is an order of magnitude lower (1-3 x 10(5) copies), an estimate consistent with the abundance of SINEs in other mammalian genomes. Database searches found similar sequences have been isolated from dog (Canis familiaris) and mink (Mustela vison). These, and the seal SINE sequences are characterized by an internal CT dinucleotide microsatellite in the tRNA-unrelated region. Hybridization of genomic DNA from representative species of a wide range of mammalian orders to an oligonucleotide (30mer) probe complementary to a conserved region of the SINE confirmed that the element is unique to carnivores of the superfamily Canoidea.  相似文献   

6.
Short interspersed nuclear elements (SINEs) are non-long terminal repeat retrotransposons that are highly abundant, heterogeneous, and mostly not annotated in eukaryotic genomes. We developed a tool designated SINE-Finder for the targeted discovery of tRNA-derived SINEs. We analyzed sequence data of 16 plant genomes, including 13 angiosperms and three gymnosperms and identified 17,829 full-length and truncated SINEs falling into 31 families showing the widespread occurrence of SINEs in higher plants. The investigation focused on potato (Solanum tuberosum), resulting in the detection of seven different SolS SINE families consisting of 1489 full-length and 870 5' truncated copies. Consensus sequences of full-length members range in size from 106 to 244 bp depending on the SINE family. SolS SINEs populated related species and evolved separately, which led to some distinct subfamilies. Solanaceae SINEs are dispersed along chromosomes and distributed without clustering but with preferred integration into short A-rich motifs. They emerged more than 23 million years ago and were species specifically amplified during the radiation of potato, tomato (Solanum lycopersicum), and tobacco (Nicotiana tabacum). We show that tobacco TS retrotransposons are composite SINEs consisting of the 3' end of a long interspersed nuclear element integrated downstream of a nonhomologous SINE family followed by successfully colonization of the genome. We propose an evolutionary scenario for the formation of TS as a spontaneous event, which could be typical for the emergence of SINE families.  相似文献   

7.
We have characterized the two families of SINE retroposons present in Arabidopsis thaliana. The origin, distribution, organization, and evolutionary history of RAthE1 and RAthE2 elements were studied and compared to the well-characterized SINE S1 element from Brassica. Our studies show that RAthE1, RAthE2, and S1 retroposons were generated independently from three different tRNAs. The RAthE1 and RAthE2 families are older than the S1 family and are present in all tested Cruciferae species. The evolutionary history of the RAthE1 family is unusual for SINEs. The 144 RAthE1 elements of the Arabidopsis genome cannot be classified in distinct subfamilies of different evolutionary ages as is the case for S1, RAthE2, and mammalian SINEs. Instead, most RAthE1 elements were probably derived steadily from a single source gene that was maintained intact and active for at least 12-20 Myr, a result suggesting that the RAthE1 source gene was under selection. The distribution of RAthE1 and RAthE2 elements on the Arabidopsis physical map was studied. We observed that, in contrast to other Arabidopsis transposable elements, SINEs are not concentrated in the heterochromatic regions. Instead, SINEs are grouped in the euchromatic chromosome territories several hundred kilobase pairs long. In these territories, SINE elements are closely associated with genes. A retroposition partnership between Arabidopsis SINEs and LINEs is proposed.  相似文献   

8.
9.
10.
SINEs are short interspersed repeated DNA elements which are considered to spread throughout genomes via RNA intermediates. Polymorphisms with regard to the presence or absence of SINE are occasionally observed in a specific location of a genome. We modeled the evolution of SINEs with regard to this type of polymorphism. Because SINEs are rarely deleted, multiplication of elements is confined to a certain period, and a few master copies are considered to be responsible for their multiplication, the usual population genetic models of transposable elements assuming the equilibrium state are not applicable to describe the evolution of SINEs. Taking into account these properties and assuming selective neutrality, we computed conditional probabilities of finding a SINE at a specific site given that this site is first found because it is occupied by a SINE in an original sample. Using these probabilities, we investigated ways to estimate the multiplication period and infer relationships among populations. The latter inference procedures are shown to be strongly dependent on the multiplication period.  相似文献   

11.
Haas NB  Grabowski JM  North J  Moran JV  Kazazian HH  Burch JB 《Gene》2001,265(1-2):175-183
CR1 elements and CR1-related (CR1-like) elements are a novel family of non-LTR retrotransposons that are found in all vertebrates (reptilia, amphibia, fish, and mammals), whereas more distantly related elements are found in several invertebrate species. CR1 elements have several features that distinguish them from other non-LTR retrotransposons. Most notably, their 3' termini lack a polyadenylic acid (poly A) tail and instead contain 2-4 copies of a unique 8 bp repeat. CR1 elements are present at approximately 100,000 copies in the chicken genome. The vast majority of these elements are severely 5' truncated and mutated; however, six subfamilies (CR1-A through CR1-F) are resolved by sequence comparisons. One of these subfamilies (i.e. CR1-B) previously was analyzed in detail. In the present study, we identified several full-length elements from the CR1-F subfamily. Although regions within the open reading frames and 3' untranslated regions of CR1-F and CR1-B elements are well conserved, their respective 5' untranslated regions are unrelated. Thus, our results suggest that new CR1 subfamilies form when elements with intact open reading frames acquire new 5' UTRs, which could, in principle, function as promoters.  相似文献   

12.
Wide distribution of short interspersed elements among eukaryotic genomes.   总被引:7,自引:0,他引:7  
Most short interspersed elements (SINEs) in eukaryotic genomes originate from tRNA and have internal promoters for RNA polymerase III. The promoter contains two boxes (A and B) spaced by approximately 33 bp. We used oligonucleotide primers specific to these boxes to detect SINEs in the genomic DNA by polymerase chain reaction (PCR). Appropriate DNA fragments were revealed by PCR in 30 out of 35 eukaryotic species suggesting the wide distribution of SINEs. The PCR products were used for hybridization screening of genomic libraries which resulted in identification of four novel SINE families. The application of this approach is illustrated by discovery of a SINE family in the genome of the bat Myotis daubentoni. Members of this SINE family termed VES have an additional B-like box, a putative polyadenylation signal and RNA polymerase III terminator.  相似文献   

13.
14.
15.
16.
17.
Nishihara H  Kuno S  Nikaido M  Okada N 《Gene》2007,400(1-2):98-103
Recent rapid generation of genomic sequence data has allowed many researchers to perform comparative analyses in various mammalian species. However, characterization of transposable elements, such as short interspersed repetitive elements (SINEs), has not been reported for several mammalian groups. Because SINEs occupy a large portion of the mammalian genome, they are believed to have contributed to the constitution and diversification of the host genomes during evolution. In the present study, we characterized a novel SINE family in the anteater genomes and designated it the MyrSINE family. Typical SINEs consist of a tRNA-related, a tRNA-unrelated and an AT-rich (or poly-A) region. MyrSINEs have only tRNA-related and poly-A regions; they are included in a group called t-SINE. The tRNA-related regions of the MyrSINEs were found to be derived from tRNAGly. We demonstrate that the MyrSINE family can be classified into three subfamilies. Two of the MyrSINE subfamilies are distributed in the genomes of both giant anteater and tamandua, while the other is present only in the giant anteater. We discuss the evolutionary history of MyrSINEs and their relationship to the evolution of anteaters. We also speculate that the simple structure of t-SINEs may be a potential evolutionary source for the generation of the typical SINE structure.  相似文献   

18.
The Alu repetitive family of short interspersed elements (SINEs) in primates can be subdivided into distinct subfamilies by specific diagnostic nucleotide changes. The older subfamilies are generally very abundant, while the younger subfamilies have fewer copies. Some of the youngest Alu elements are absent in the orthologous loci of nonhuman primates, indicative of recent retroposition events, the primary mode of SINE evolution. PCR analysis of one young Alu subfamily (Sb2) member found in the low-density lipoprotein receptor gene apparently revealed the presence of this element in the green monkey, orangutan, gorilla, and chimpanzee genomes, as well as the human genome. However, sequence analysis of these genomes revealed a highly mutated, older, primate-specific Alu element was present at this position in the nonhuman primates. Comparison of the flanking DNA sequences upstream of this Alu insertion corresponded to evolution expected for standard primate phylogeny, but comparison of the Alu repeat sequences revealed that the human element departed from this phylogeny. The change in the human sequence apparently occurred by a gene conversion event only within the Alu element itself, converting it from one of the oldest to one of the youngest Alu subfamilies. Although gene conversions of Alu elements are clearly very rare, this finding shows that such events can occur and contribute to specific cases of SINE subfamily evolution.  相似文献   

19.
The PstI family of elements are short, highly repetitive DNA sequences interspersed throughout the genome of the Bovidae. We have cloned and sequenced some members of the PstI family from cattle, goat, and buffalo. These elements are approximately 500 bp, have a copy number of 2 x 10(5) - 4 x 10(5), and comprise about 4% of the haploid genome. Studies of nucleotide sequence homology indicate that the buffalo and goat PstI repeats (type II) are similar types of short interspersed nucleotide element (SINE) sequences, but the cattle PstI repeat (type I) is considerably more divergent. Additionally, the goat PstI sequence showed significant sequence homology with bovine serine tRNA, and is therefore likely derived from serine tRNA. Interestingly, Southern hybridization suggests that both types of SINEs (I and II) are present in all the species of Bovidae. Dendrogram analysis indicates that cattle PstI SINE is similar to bovine Alu-like SINEs. Goat and buffalo SINEs formed a separate cluster, suggesting that these two types of SINEs evolved separately in the genome of the Bovidae.  相似文献   

20.
Alu Elements and the Human Genome   总被引:13,自引:0,他引:13  
Rowold DJ  Herrera RJ 《Genetica》2000,108(1):57-72
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号