首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of the charged lidocaine on the structure and dynamics of DMPC/DMPG (mass fraction of 95/5) unilamellar vesicles has been investigated. Changes in membrane organization caused by the presence of lidocaine were detected through small angle neutron scattering experiments. Our results suggest that the presence of lidocaine in the vicinity of the headgroups of lipid membranes leads to an increase of the area per lipid molecule and to a decrease of membrane thickness. Such changes in membrane structure may induce disordering of the tail group. This scenario explains the reduction of the main transition temperature of lipid membranes, as the fraction of lidocaine per lipid molecules increases, which was evident from differential scanning calorimetry results. Furthermore neutron spin echo spectroscopy was used for the dynamics measurements and the results reveal that presence of charged lidocaine increases the bending elasticity of the lipid membranes in the fluid phase and slows the temperature-dependent change of bending elasticity across the main transition temperature.  相似文献   

2.
The interactions of the assembly factor P17 of bacteriophage PRD1 with liposomes were investigated by static light scattering, fluorescence spectroscopy, and differential scanning calorimetry. Our data show that P17 binds to positively charged large unilamellar vesicles composed of the zwitterionic 1-palmitoyl-2-oleoyl-phosphatidylcholine and sphingosine, whereas only a weak interaction is evident for 1-palmitoyl-2-oleoyl-phosphatidylcholine vesicles. P17 does not bind to negatively charged membranes composed of 1-palmitoyl-2-oleoyl-phosphatidylglycerol and 1-palmitoyl-2-oleoyl-phosphatidylcholine. Our differential scanning calorimetry results reveal that P17 slightly perturbs the phase behaviour of neutral phosphatidylcholine and negatively charged multilamellar vesicles. In contrast, the phase transition temperature of positively charged dimyristoylphosphatidylcholine/sphingosine multilamellar vesicles (molar ratio 9 : 1, respectively) is increased by approximately 2.4 degrees C and the half width of the enthalpy peak broadened from 1.9 to 5.6 degrees C in the presence of P17 (protein : lipid molar ratio 1 : 47). Moreover, the enthalpy peak is asymmetrical, suggesting that lipid phase separation is induced by P17. Based on the far-UV CD spectra, the alpha-helicity of P17 increases upon binding to positively charged micelles composed of Triton X-100 and sphingosine. We propose that P17 can interact with positively charged lipid membranes and that this binding induces a structural change on P17 to a more tightly packed and ordered structure.  相似文献   

3.
We determined changes in the volume and adiabatic compressibility of large multi- and unilamellar vesicles composed of dimyristoylphosphatidylcholine containing various concentrations of the antimicrobial peptide gramicidin S (GS) by applying densitometry and sound velocimetry. Gramicidin S incorporation was found to progressively decrease the phase transition temperature of DMPC vesicles as well as to decrease the degree of cooperativity of the main phase transition and to increase the volume compressibility of the vesicles. GS probably enhanced thermal fluctuations at the region of main phase transition and provide more freedom of rotational movement for the phospholipid hydrocarbon chains. The ability of GS to increase the membrane compressibility and to decrease the phase transition temperature is evidence for regions of distorted membrane structure around incorporated gramicidin S molecules. At relatively high GS concentration (10 mol%), more significant changes of specific volume and compressibility appear. This might suggest changes in the integrity of the lipid bilayer upon interaction with high concentrations of GS.  相似文献   

4.
We determined changes in the volume and adiabatic compressibility of large multi- and unilamellar vesicles composed of dimyristoylphosphatidylcholine containing various concentrations of the antimicrobial peptide gramicidin S (GS) by applying densitometry and sound velocimetry. Gramicidin S incorporation was found to progressively decrease the phase transition temperature of DMPC vesicles as well as to decrease the degree of cooperativity of the main phase transition and to increase the volume compressibility of the vesicles. GS probably enhanced thermal fluctuations at the region of main phase transition and provide more freedom of rotational movement for the phospholipid hydrocarbon chains. The ability of GS to increase the membrane compressibility and to decrease the phase transition temperature is evidence for regions of distorted membrane structure around incorporated gramicidin S molecules. At relatively high GS concentration (10 mol%), more significant changes of specific volume and compressibility appear. This might suggest changes in the integrity of the lipid bilayer upon interaction with high concentrations of GS.  相似文献   

5.
The membrane-buffer partition coefficient of tetracaine was measured by direct ultraviolet spectrophotometry in dimyristoylphosphatidylcholine unilamellar liposomes at temperatures above and below the main phase transition. The partition coefficients of uncharged tetracaine to solid-gel (18 degrees C) and liquid-crystal (30 degrees C) membranes were 6.9 x 10(4) and 1.2 x 10(5), respectively. Despite the general assumption that local anesthetic binding to the solid membrane is negligible, this study showed that the solid membrane binding amounts to 57.5% of the liquid membrane binding. Binding of the charged form to the liquid or solid membrane was not detectable under the present experimental condition of 0.03 mM tetracaine bulk concentration. The present method measures metachromasia of local anesthetics when bound to lipid membranes. Its advantage is that the separation of the vesicles from the solution is not required. A linearized equation is presented that estimates the partition coefficient or binding constant graphically from a linear plot of the absorbance data. The method is applicable for estimation of drug partition when a measurable spectral change occurs due to complex formation.  相似文献   

6.
To investigate the role of peptide-membrane interactions in the biological activity of cyclic cationic peptides, the conformations and interactions of four membrane-active antimicrobial peptides [based on Gramicidin S (GS)] were examined in neutral and negatively charged micelles and phospholipid vesicles, using CD and fluorescence spectroscopy and ultracentrifugation techniques. Moreover, the effects of these peptides on the release of entrapped fluorescent dye from unilamellar vesicles of phosphatidylcholine (PC) and phosphatidylethanolamine/phosphatidylglycerol (PE/PG) were studied. The cyclic peptides include GS10 [Cyclo(VKLdYP)2], GS12 [Cyclo(VKLKdYPKVKLdYP)], GS14 [Cyclo(VKLKVdYPLKVKLdYP)] and [d-Lys]4GS14 [Cyclo(VKLdKVdYPLKVKLdYP)] (underlined residues are d-amino acids), were different in their ring size, structure and amphipathicity, and covered a broad spectrum of hemolytic and antimicrobial activities. Interaction of the peptides with the zwitterionic PC and negatively charged PE/PG vesicles were distinct from each other. The hydrophobic interaction seems to be the dominant factor in the hemolytic activity of the peptides, as well as their interaction with the PC vesicles. A combination of electrostatic and hydrophobic interactions of the peptides induces aggregation and fusion in PE/PG vesicles with different propensities in the order: [d-Lys]4GS14 > GS14 > GS12 > GS10. GS10 and GS14 are apparently located in the deeper levels of the membrane interfaces and closer to the hydrophobic core of the bilayers, whereas GS12 and [d-Lys]4GS14 reside closer to the outer boundary of the interface. Because of differing modes of interaction of the cyclic cationic peptides with lipid bilayers, the mechanism of their biological activity (and its relation to peptide-lipid interaction) proved to be versatile and complex, and dependent on the biophysical properties of both the peptides and membranes.  相似文献   

7.
In this paper, we report on the effect of short segments of type I antifreeze protein (AFP I) on the thermotropic properties of a model membrane. Two different types of dimyristoylphosphatidylcholine model membranes were used, multilamellar vesicles and small unilamellar vesicles. The membrane properties were studied by differential scanning calorimetry (DSC) and fluorescence anisotropy. With the incorporation of AFP I and its short segments, the order of the model membrane increased both in the gel state and in the liquid crystalline state. The interaction of AFPs with the model membrane caused a shift in the phase transition to lower temperatures, which is accompanied by a broadening of the DSC thermogram. This preferential stabilization to a more ordered phase by the AFPs could be due to ordering the hydrophobic membrane core and separation into domains. Overall, this approach of employing short segments of AFP I simplifies the correlation between antifreeze protein characteristics and the effect of these parameters on the interaction mechanism of AFP with cell membranes. The success of this approach can lead to the identification of short peptides with high antifreeze activity.  相似文献   

8.
We have determined zeta-potentials for dimyristoylphosphatidylcholine (DMPC) and dipalmitoylphosphatidylcholine (DPPC) membranes by measuring the electrophoretic mobility of multilayered vesicles and the temperatures of the gel-to-ripple-to-fluid phase transitions of sonicated vesicles by a photometric method. Some conclusions are: (1) The zeta-potentials of DMPC and DPPC vesicles become negative due to adsorption of ionized pentachlorophenol (PCP), (2) their magnitude changes, step-like, on gel-to-fluid transition and (3) the temperature of the step-like change in zeta-potential decreases with an increase in PCP concentration. (4) PCP exhibits a large effect on membrane structure: It induces an isothermal phase change from the ordered to disordered state, which is enhanced by monovalent salt in the aqueous phase. (5) Both ionized and unionized PCP decrease the melting phase transition temperature and abolish the pretransition, (6) the unionized species increases the melting transition width and (7) the ionized species is more potent in abolishing the pretransition. (8) The shorter chain lipid (DMPC) is more sensitive to the presence of PCP; the maximum decrease in delta Tt is 13 K (DMPC) and 7 K (DPPC) in the presence of ionized PCP. We have shown experimentally, by comparing the delta Tt from photometric studies with the density of adsorbed PCP derived from zeta-potential isotherms, that (9) the shift of the melting phase transition temperature increases linearly with the density of adsorbed PCP. (10) In contrast to membranes made of negatively charged lipids, the transition temperature of DMPC and DPPC membranes in the presence of PCP further decreases in the presence of monovalent salt. The salt effect is due to screening of the membrane surface leading to enhanced adsorption of ionized PCP and a depression in transition temperature. (11) It is shown that both the adsorption and the changes of gel-to-fluid phase transition temperature can be described in terms of the Langmuir-Stern-Grahame model and (12) proposed that future studies of membrane toxicity of PCP should be focused on its pH dependence.  相似文献   

9.
M Myers  E Freire 《Biochemistry》1985,24(15):4076-4082
The interactions of the opioid peptide [D-Ala2]methionine-enkephalinamide with dipalmitoylphosphatidylcholine (DPPC) large unilamellar vesicles containing gangliosides GM1, Gd1a, and Gt1b and synaptic plasma membranes selectively enriched with dimyristoylphosphatidylcholine (DMPC) and ganglioside Gd1a have been investigated by using high-sensitivity differential scanning calorimetry. In the absence of gangliosides, the addition of enkephalinamide in concentrations of up to 10(-3) M does not induce any appreciable change in the heat capacity function of DPPC. In the presence of gangliosides, however, changes in the heat capacity function were observed with as little as micromolar concentrations of the enkephalinamide; the same is true for DMPC-Gd1a-enriched synaptic membranes. The magnitude and the nature of the enkephalinamide effect depend on the type of ganglioside studied. For DPPC vesicles containing ganglioside GM1 only a slight broadening in the heat capacity function and a small upward shift in the transition temperature were observed. For DPPC vesicles containing ganglioside Gd1a the effect was more dramatic; enkephalinamide concentrations as low as 10(-5) M caused the appearance of two well-defined peaks in the heat capacity function in contrast to the one peak observed in the absence of enkephalinamide. In the case of DPPC vesicles containing ganglioside Gt1b the enkephalinamide effect was seen at concentrations of 10(-4) M or higher. Synaptic plasma membranes were isolated from bovine brain, selectively enriched with exogenous lipid, and their thermotropic behavior was characterized by steady-state fluorescence spectroscopy and differential scanning calorimetry. This lipid enrichment results in the appearance of a membrane phase transition otherwise absent in the intact membrane preparation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
K M Eum  G Riedy  K H Langley  M F Roberts 《Biochemistry》1989,28(20):8206-8213
Small unilamellar vesicles which form when gel-state long-chain phosphatidylcholines are mixed with micellar short-chain lecithins undergo an increase in size as the long-chain species melts to its liquid-crystalline form. Analysis of the vesicle population with quasi-elastic light scattering shows that the particle size increases from 90-A radius to greater than 5000-A radius. Resonance energy transfer experiments show total mixing of lipid probes with unlabeled vesicles only when the Tm of the long-chain phosphatidylcholine is exceeded. This implies that the large size change represents a fusion process. Aqueous compartments are also mixed during this transition. 31P NMR analysis of the vesicle mixtures above the phase transition shows a great degree of heterogeneity with large unilamellar particles coexisting with oligo- and multilamellar structures. Upon cooling the vesicles below the Tm, the original size distribution (e.g., small unilamellar vesicles) is obtained, as monitored by both quasi-elastic light scattering and 31P NMR spectroscopy. This temperature-induced fusion of unilamellar vesicles is concentration dependent and can be abolished at lower total phospholipid concentrations. It occurs over a wide range of long-chain to short-chain ratios and occurs with 1-palmitoyl-2-stearoylphosphatidylcholine and dimyristoylphosphatidylcholine as well. Characterization of this fusion event is used to understand the anomalous kinetics of water-soluble phospholipases toward these unusual vesicles.  相似文献   

11.
The 13-residue cathelicidins indolicidin and tritrpticin are part of a group of relatively short tryptophan-rich antimicrobial peptides that hold potential as future substitutes for antibiotics. Differential scanning calorimetry (DSC) has been applied here to study the effect of indolicidin and tritrpticin as well as five tritrpticin analogs on the phase transition behaviour of model membranes made up of zwitterionic dimyristoylphosphatidylcholine (DMPC, DMPC/cholesterol) and anionic dimyristoylphosphatidyl glycerol (DMPG) phospholipids. Most of the peptides studied significantly modified the phase transition profile, suggesting the importance of hydrophobic forces for the peptide interactions with the lipid bilayers and their insertion into the bilayer. Indolicidin and tritrpticin are both known to be flexible in aqueous solution, but they adopt turn-turn structures when they bind to and insert in a membrane surface. Pro-to-Ala substitutions in tritrpticin, which result in the formation of a stable α-helix in this peptide, lead to a substantial increase in the peptide interactions with both zwitterionic and anionic phospholipid vesicles. In contrast, the substitution of the three Trp residues by Tyr or Phe resulted in a significant decrease of the peptide's interaction with anionic vesicles and virtually eliminated binding of these peptides to the zwitterionic vesicles. An increase of the cationic charge of the peptide induced much smaller changes to the peptide interaction with all lipid systems than substitution of particular amino acids or modification of the peptide conformation. The presence of multiple lipid domains with a non-uniform peptide distribution was noticed. Slow equilibration of the lipid-peptide systems due to peptide redistribution was observed in some cases. Generally good agreement between the present DSC data and peptide antimicrobial activity data was obtained.  相似文献   

12.
The 13-residue cathelicidins indolicidin and tritrpticin are part of a group of relatively short tryptophan-rich antimicrobial peptides that hold potential as future substitutes for antibiotics. Differential scanning calorimetry (DSC) has been applied here to study the effect of indolicidin and tritrpticin as well as five tritrpticin analogs on the phase transition behaviour of model membranes made up of zwitterionic dimyristoylphosphatidylcholine (DMPC, DMPC/cholesterol) and anionic dimyristoylphosphatidyl glycerol (DMPG) phospholipids. Most of the peptides studied significantly modified the phase transition profile, suggesting the importance of hydrophobic forces for the peptide interactions with the lipid bilayers and their insertion into the bilayer. Indolicidin and tritrpticin are both known to be flexible in aqueous solution, but they adopt turn-turn structures when they bind to and insert in a membrane surface. Pro-to-Ala substitutions in tritrpticin, which result in the formation of a stable alpha-helix in this peptide, lead to a substantial increase in the peptide interactions with both zwitterionic and anionic phospholipid vesicles. In contrast, the substitution of the three Trp residues by Tyr or Phe resulted in a significant decrease of the peptide's interaction with anionic vesicles and virtually eliminated binding of these peptides to the zwitterionic vesicles. An increase of the cationic charge of the peptide induced much smaller changes to the peptide interaction with all lipid systems than substitution of particular amino acids or modification of the peptide conformation. The presence of multiple lipid domains with a non-uniform peptide distribution was noticed. Slow equilibration of the lipid-peptide systems due to peptide redistribution was observed in some cases. Generally good agreement between the present DSC data and peptide antimicrobial activity data was obtained.  相似文献   

13.
Bcl-2 is a protein which inhibits programmed cell death. It is associated to many cell membranes such as mitochondrial outer membrane, endoplasmic reticulum, and nuclear envelope, apparently through a C-terminal hydrophobic domain. We have used infrared spectroscopy to study the secondary structure of a synthetic peptide (a 23mer) with the same sequence as this C-terminal domain (residues 217-239) of Bcl-2. The spectrum of this peptide in D(2)O buffer shows an amide I' band with a maximum at 1622 cm(-1), which clearly indicates its tendency to aggregate in aqueous solvent. However, the peptide incorporated in multilamellar phosphatidylcholine membranes shows a totally different spectrum of the amide I' band, with a maximum at 1655 cm(-)(1), indicating a predominantly alpha-helical structure. Addition of the peptide to unilamellar vesicles destabilized them and released encapsulated carboxyfluorescein. Differential scanning calorimetry of dimyristoylphosphatidylcholine multilamellar vesicles in which the peptide was incorporated revealed that increasing concentrations of the peptide progressively broadened the pretransition and the main transition, as is to be expected for a membrane integral molecule. Fluorescence polarization of 1,6-diphenyl-1,3,5-hexatriene in fluid phosphatidylcholine vesicles showed that increasing concentrations of the peptide produced increased polarization values, pointing to an increase in the apparent order of the membrane and indicating that high concentrations of the peptide considerably broaden the phase transition of dimyristoylphosphatidylcholine multilamellar vesicles. Quenching the intrinsic fluorescence of the Tyr-235 of the peptide, by KI, indicated that this aminoacyl residue is highly exposed to aqueous solvent when incorporated in phospholipid vesicles. The results are discussed in terms of their relevance to the proposed topology of insertion of Bcl-2 into biological membranes.  相似文献   

14.
J P Dufour  R Nunnally  L Buhle  T Y Tsong 《Biochemistry》1981,20(19):5576-5586
Several known forms of bilayer vesicles of dimyristoylphosphatidylcholine exhibit the gel to liquid-crystalline phase transition in the temperature range convenient for membrane enzyme reconstitution studies. This warrants a systematic investigation of their physical characteristics and their phase transition behaviors. We have employed electron microscopy, gel chromatography, 31P nuclear magnetic resonance, differential scanning microcalorimetry, and fluorescence spectroscopy to determine several physical parameters of the limiting size microvesicle (260 +/- 40 A), the larger vesicle form (900 +/- 100A) of Enoch and Strittmatter [Enoch, H. G., & Strittmatter, P. (1979) Proc. Natl. Acad. Sci. U.S.A. 76, 145], the multilamellar vesicle, and, in particular, an ATPase-trigger-fused macrovesicle (950 +/- 200 A). This latter vesicle form was produced by a spontaneous fusion of the complex of the plasma membrane ATPase of Schizosaccharomyces pombe and the lipid microvesicles at a low ratio of enzyme to vesicle concentrations, and at a low temperature (around 10 degrees C). The ATPase-trigger-fused vesicles are unilamellar and have an intact ionic permeation barrier at 30 degrees C and a gel to liquid-crystalline transition temperature at 24.4 degrees C with a transition heat of 5.64 kcal/mol. Thus, this vesicle form should be a valuable tool for studying possible proton-pumping activity of this ATPase. In contrast to data found in the literature, which show lack of the pretransition for unilamellar microvesicles, we have observed the pretransition around 15 degrees C for all the vesicle forms examined. Moreover, the transition widths of unilamellar vesicles are much broader than those of the multilamellar vesicles, suggesting that in the latter system interlayer interactions may contribute to the cooperativity of the transition.  相似文献   

15.
Small unilamellar vesicles of egg phosphatidylcholine (PC) or dimyristoylphosphatidylcholine, mixed with small unilamellar vesicles labelled with 2-(10-(1-pyrene)decanoyl)phosphatidylcholine, exhibit a constant average size and excimer to monomer (E/M) ratio for several hours when incubated at pH 3.6 at a temperature higher than the phase transition temperature (Tc) of the lipids. Addition of bovine serum albumin to this system produces a transient turbidity increase, a fast decrease in the E/M ratio, a partial loss of vesicle-entrapped [14C]sucrose and a measurable leak-in of externally added sucrose. Sepharose 4B filtration of the system demonstrates that the E/M ratio decrease is strictly paralleled by the formation of liposomes which exhibit a low E/M ratio and a hydrodynamic radius larger than that of small unilamellar vesicles. These data demonstrate that the E/M ratio decrease can be unequivocally ascribed to a vesicle-vesicle fusion process induced by serum albumin. The rate of serum-albumin induced fusion of small unilamellar vesicles is: (a) maximal at a stoichiometric ratio of approx. 2 albumins per vesicle: (b) sensitive to the nature of the lipid and; (c) not altered when human serum albumin replaces bovine serum albumin. The rate of albumin-induced fusion of dimyristoylphosphatidylcholine small unilamellar vesicles is higher below the Tc of the lipid and increases with temperature above the Tc. The formation of protein-bound aggregates with defined stoichiometries and a high local vesicle concentration, as well as changes in the local degree of hydration, are proposed to be the driving forces for the protein-induced vesicle fusion in this system.  相似文献   

16.
One of the major limitations in gene therapy is an inability of naked siRNA to passively diffuse through negatively charged cell membranes. Therefore, the siRNA transport into a cell requires efficient carriers. In this work we analyzed the charge-dependent interaction of the complexes of cationic carbosilane dendrimers (CBD) and anti-HIV siRNA (dendriplexes) with the model membranes - large unilamellar vesicles (LUV). We used the second generation of branched with CBD carbon-silicon bonds (CBD-CS) which are water-stable and that of oxygen-silicon bonds (CBD-OS) which are slowly hydrolyzed in aqueous solutions. The LUVs were composed of zwitterionic dimyristoylphosphatidylcholine (DMPC), negatively charged dipalmitoylphosphatidylglycerol (DPPG) and their mixture (DMPC/DPPG, molar ratio 7:3). The interaction of dendriplexes with LUVs affected both zeta potential and size of the vesicles. The changes of these values were larger for the negatively charged LUV. CBD-CS resulted in the decrease of zeta potential values to more negative ones, whereas an opposite effect took place for CBD-OS suggesting a different kind of interaction between LUVs and the dendriplexes. The results indicate that both CBD-CS and CBD-OS can be used for transport of siRNA into the cells. However, CBD-CS are preferred due to a better stability in water and improved bioavailability of siRNA on their surface.  相似文献   

17.
Lipophilic non-electrolyte spin labels greatly accelerate the fusion of unilamellar vesicles of dipalmitoylphosphatidylcholine when the system is maintained below the lipid phase transition. Differential scanning calorimetry and centrifugation measurements show that the transformed vesicles are large and probably unilamellar. Differential scanning calorimetry and fluorescence depolarization measurements were also carried out on mixtures of labeled dipalmitoylphosphatidylcholine vesicles and of vesicles composed of pure dimyristoylphosphatidylcholine. A mixing of the membrane components is observed when the vesicles are incubated above the transition temperature of the two constituent lipids. However, the process does not involve a real fusion of the entire vesicles. An exchange of lipid and label monomers between the two lipid phases seems to occur. These observations are discussed in view of the molecular organization of the spin label within the dipalmitoylphosphatidylcholine matrix below and above the lipid transition temperature.  相似文献   

18.
The effects of membrane composition on heme binding to large unilamellar vesicles were examined using 30 separate phospholipid mixtures. Although there was some variation, most lecithins with Tm values less than or equal to 20 degrees C showed overall equilibrium partition constants equal to approximately 5 x 10(5) and association and dissociation partition rate constants equal to approximately 3 x 10(6) s-1 and 7 s-1, respectively, for CO-heme binding at 30 degrees C. A sharp decrease in the association rate for CO-heme uptake was observed as the lipid vesicles changed from liquid-crystalline to the gel phase. The addition of dicetyl phosphate or dimyristoylphosphatidylglycerol, which are negatively charged at neutral pH, decreased the affinity of the vesicles for CO-heme. The association rate and equilibrium partition constants for CO-heme uptake in unsaturated lecithins were unaffected by cholesterol content at levels up to 40%/mol. The affinity of saturated dimyristoylphosphatidylcholine (DMPC) vesicles for CO-heme decreased with increasing cholesterol content at 30 degrees C. This effect appears to be related to the influence of cholesterol on the DMPC phase transition temperature (Tm) since at low temperatures (less than or equal to 20 degrees C) little CO-heme binds to vesicles composed of DMPC even in the absence of cholesterol.  相似文献   

19.
Interaction of the local anesthetic dibucaine with small unilamellar vesicles of dimyristoylphosphatidylcholine (DMPC) and dioleoyl phosphatidylcholine (DOPC) containing different mol percents of cholesterol has been studied by fluorescence spectroscopy. Fluorescence measurements on dibucaine in presence of phospholipid vesicles containing various amounts of cholesterol yielded a pattern of variation of wavelength at emission maximum and steady-state anisotropy which indicated that the microenvironment of dibucaine is more polar and flexible in membranes that contain cholesterol than in membranes without cholesterol. Experiments on quenching of fluorescence from membrane-associated dibucaine by potassium iodide showed a marked increase in quenching efficiency as the cholesterol content of the vesicles was increased, demonstrating increased accessibility of the iodide quenchers to dibucaine in the presence of cholesterol, when compared to that in its absence. Total emission intensity decay profiles of dibucaine yielded two lifetime components of approximately 1 ns and approximately 2.8--3.1 ns with mean relative contributions of approximately 25 and approximately 75%, respectively. The mean lifetime in vesicles was 20--30% smaller than in the aqueous medium and showed a moderate variation with cholesterol content. Fluorescence measurements at two different temperatures in DMPC SUVs, one at 33 degrees C, above the phase transition temperature and another at 25 degrees C, around the main phase transition, indicated two different mode of dibucaine localization. At 25 degrees C dibucaine partitioned differentially in presence and absence of cholesterol. However, at 33 degrees C the apparent partition coefficients remained unaltered indicating differences in the microenvironment of dibucaine in presence and absence of cholesterol in the phospholipid membranes.  相似文献   

20.
The influence of temperature and ionic strength on the vesiculation properties of large multilamellar vesicles containing various proportions of dimyristoylphosphatidylglycerol has been investigated. It is shown that at low ionic strengths preformed large multilamellar vesicles composed of dimyristoylphosphatidylcholine and dimyristoylphosphatidylglycerol (7:3) on incubation at the gel to liquid-crystalline transition temperature (Tc approximately 23 degrees C) spontaneously vesiculate to form predominantly unilamellar systems with a mean diameter of 120 nm. Such vesiculation is not observed for incubations at temperatures appreciably above or below Tc, and is also inhibited by higher ionic strengths. Stable large multilamellar vesicles are formed, however, in systems containing the dioleoyl species of phosphatidylcholine or phosphatidylglycerol and also for dimyristoylphosphatidylcholine/dimyristoylphosphatidylserine mixtures. The vesiculation properties of dimyristoylphosphatidylcholine/dimyristoylphosphatidylglycerol mixtures, therefore, appear to reflect an instability in the region of the Tc driven by surface potential effects which are specific for the glycerol headgroup.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号