首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In vitro synthesized precursors of several mitochondrial proteins, including P-450(SCC), adrenodoxin, and malate dehydrogenase, bound to liposomes prepared from mitochondrial phospholipids, but not to those from microsomal phospholipids. When liposomes were prepared from various pure phospholipids, adrenodoxin precursor was bound only to the liposomes that contained cardiolipin. The liposomes containing other phospholipids did not show the binding affinity for the precursor. The binding was observed only with the precursor peptides of adrenodoxin and malate dehydrogenase, and their mature forms were not bound to the liposomes. The binding of the precursors was dependent on the concentration of cardiolipin in the liposomes. Liposomes containing various cardiolipin derivatives with modified polar head groups showed very different binding affinity for adrenodoxin precursor, suggesting the importance of the structure of the polar head of the cardiolipin molecule. Two or three positively charged amino acid residues in the extension peptide of P-450(SCC) precursor were replaced by neutral amino acid residues by site-directed mutagenesis. The mutated P-450(SCC) precursors did not bind to the liposomes containing cardiolipin. The results indicated that mitochondrial protein precursors have specific affinity for cardiolipin, and the affinity was due to the interaction between the extension peptides of the precursors and the polar head of the cardiolipin molecule.  相似文献   

2.
Various partial redox reactions involved in photosynthetic electron transport were studied in relation to the electron transport dependent incorporation of the water soluble chemical modifier, diazonium benzene sulfonic acid (DABS)* into chloroplast membranes. This electron transport dependent diazonium incorporation reflects a conformational change (unspecified at this time) in membrane components. The redox reaction(s) responsible for this conformational change was shown to be localized after the site of DCMU inhibition but before plastoquinone by the following evidence:
  1. Electron transport from water to lipophilic “Class III” electron acceptors such as dimethyl benzoquinone and high concentrations of dibromothymoquinone potentiate the extra DABS binding to the membranes. These compounds are reduced prior to or at the plastoquinone site.
  2. Electron transfer from water to silicomolybdate plus ferricyanide, a DCMU insensitive reaction, does not result in the incremental diazonium binding.
  3. Photosystem I cyclic electron flow mediated by menadione (anaerobic), which requires participation of plastoquinone does not give the extra diazonium binding.
The exact redox step responsible for the conformational change is not known for certain, but there is a possibility that cytochrome b-559 may be involved. This is suggested by the observation that diazonium treatment of chloroplasts during illumination but not in darkness, causes the conversion of cytochrome b-559 from the high potential form to the low potential form.  相似文献   

3.
Richard Malkin 《BBA》1984,764(1):63-69
Modification of chloroplast membranes with diazonium benzene sulfonate (DABS) leads to a loss of Photosystem I-dependent ferredoxin reduction but not methyl viologen reduction. EPR studies of DABS-modified membranes show no inhibition of P-700+ formation at cryogenic temperatures, but iron-sulfur Center A photoreduction is markedly inhibited. Iron-sulfur Center B photoreduction at physiological temperatures in DABS-modified membranes is also markedly inhibited and little Center B can be detected after dark chemical reduction. These results indicate DABS specifically modifies iron-sulfur Center B of the spinach chloroplast Photosystem I electron acceptor complex and that Center B is obligately required for the reduction of Center A at cryogenic temperatures. Possible electron transport pathways at physiological temperatures are also considered.  相似文献   

4.
Summary Spinach chloroplasts were exposed to35S-labeledp-(diazonium)-benzenesulfonic acid (DABS), a water soluble compound which does not penetrate lipophilie regions of membranes, and which is highly reactive toward amino acid functionagroups such as -amino, sulfhydryl, histidine, and tyrosine groups. Amino groups inl lipids can also form similar, stable covalent bonds by diazo coupling. Both chloroplast lipids and proteins were labeled with DABS, the total binding being about 1 DABS per 10 chlorophylls, depending on the reaction conditions.After diazo coupling and subsequent digitonin fractionation into photosystems I and II enriched fractions, it was observed that PS-I was more highly labeled than PS-III usually by a factor of 10 to 24 times (on a per chlorophyll basis). After digitonin isolation, however, the PS-II portion bound an amount of DABS similar to the PS-I binding, We interpret these data as consistent with the binary membrane hypothesis (Arntzen. Dilley and Crane (1969),J. Cell Biol. 43:16), which visualizes PS-I on the externa, half of a 90 Å grana membrane, and PS-II occurring on the interior half of thel membrane. The alternative explanation that PS-II and PS-I are arranged as a mosaic, and that the low DABS binding in PS-II is caused by burial of the diazo reactive groups in the interior of the proteins (and only exposed through the denaturing effect of digitonin) is not directly ruled out. However, this alternative is not consistent with the facts that: (a) most of the membrane proteins in PS-I and PS-II are identical in electrophoretic properties and therefore probably have similar overall structures; and (b) digitonin does not lead to appreciable denaturation of proteins, evidenced by the retention of PS-II electron transport activity.  相似文献   

5.
Intact grana and stroma membranes (outer membrane absent) and detergent or sonication disrupted thylakoid membranes were treated with the hydrophilic covalent chemical modifiers [35S]diazonium benzene sulfonic acid ([35S]DABS) and [14C]glycine ethylester plus 1-cyclohexyl-3-(2-morpholinoethyl)-carbodiimide metho-p-toluenesulfonate (CDIS). Plastocyanin was purified using column chromatography followed by polyacrylamide gel electrophoresis and the incorporation of [35S]DABS and [14C]glycine ethylester into plastocyanin was determined by slicing the gels and counting the radioactivity in the plastocyanin band. Plastocyanin isolated from thylakoids disrupted prior to chemical modification binds two to four times as much of either modifier than the plastocyanin isolated from intact chloroplasts. This ratio is five to ten times lower than the ratio expected for a component buried behind the permeability barrier of a membrane. The data suggest that plastocyanin is partially exposed at the external surface of the thylakoid membrane rather than being completely buried in, or behind, the lipo-protein membrane.  相似文献   

6.
An approach was developed to synthesize a new class of cationic cardiolipin analogues containing two quaternary ammonium groups with tetra alkyl groups retaining "glycerol" moiety, the central core of the molecule. Cationic cardiolipin analogues were modified via introduction of either two or four oxyethylene groups to enhance the solubility in polar solvents. These newly synthesized cationic cardiolipin analogues can be applied to a broad range of drug delivery systems such as transfection reagents.  相似文献   

7.
A glycerol-requiring auxotroph was isolated from mutagenized Escherichia coli K-12 UFAts cells. This auxotroph was used for the specific deuteration of E. coli phospholipids. The cells were grown under high osmotic pressure (in the presence of 2.0% KCl). The membrane had a highly saturated fatty acid composition (76% phosphatidylethanolamine, 20% cardiolipin and 4% phosphatidylglycerol). The deuterium magnetic resonance spectra of coarse liposomes of the extracted phospholipids with perdeuterated glycerol incorporated into them were measured. To obtain well characterized information, phospholipid mixtures reconstituted from the deuterated and nondeuterated components at the same ratios as in the case of the total extract were used. On the analysis of the spectra, the following conclusions were drawn. (1) The whole polar region of cardiolipin is dynamically symmetric and quite rigid in the presence of phosphatidylethanolamine. (2) Although the quadrupole splittings of the deuterons at the C-2 and C-3 positions of the glycerol backbone were similar to each other, those at the C-1 position for phosphatidylethanolamine and cardiolipin are different, even in the same bilayer. (3) Furthermore, each C-1 deuteron of phosphatidylethanolamine gave rise to a doublet, suggesting the presence of two backbone conformations, between which there is slow exchange. (4) The polar head group of phosphatidylethanolamine interacts with cardiolipin and phosphatidylglycerol in different ways, which could be responsible for the different osmotic properties of the vesicles composed of them.  相似文献   

8.
The polar lipids of Streptococcus pneumoniae wild type and aminopterin-resistant strains were analysed. The membrane contained only two acid phospholipids, phosphatidylglycerol and cardiolipin, and a large amount of two glycolipids, glucosyldiglyceride and galactosylglucosyldiglyceride. The unsaturated acyl chains ranged from 58 to 87% of total fatty acids, depending on the strain and on growth conditions. No relation could be established between aminopterin resistance and polar lipid or fatty acid compositions. However, in the presence of bacteriostatic concentrations of aminopterin, the wild type and the resistant mutant did not have the same behavior. The resistant strain maintained its fatty acid composition and a normal [32P]phosphate distribution among phospholipids while the wild type shifted to a higher content in unsaturated fatty acids and to a high relative cardiolipin labelling. Such a differencein [32P] distribution was not observed when bacteriostatic concentrations of chloramphenicol were used, or when growth was stopped after amino acid deprivation induced by high concentrations of isoleucine. The biochemical basis of the aminopterin resistant character of the amiA mutants are not yet well understood but the present study establishes that the mutation confers a certain insensitivity of the lipid metabolism to aminopterin.  相似文献   

9.
The topography of three pore-forming proteins from the outer membrane of Escherichia coli has been explored by using two labelling techniques. Firstly, the distribution of nucleophilic residues has been investigated by selective chemical modification using arylglyoxals (for arginine residues), isothiocyanates (for lysine residues), carbodi-imides (for carboxy residues) and diazonium salts. Secondly, the membrane-embedded domains have been investigated by labelling with photoactivatable phospholipid analogues and a reagent that partitions into the membrane. Few nucleophilic groups are found to be freely accessible to pore-impermeant probes reacting in the aqueous medium. More groups are accessible to small, pore-permeant probes, suggesting that several groups of each sort are contained within the pore. In addition, there appear to be a number of arginine, lysine, carboxyl and many tyrosine residues that are rather inaccessible and that react only with small, hydrophobic probes, if at all. Amongst these more deeply buried residues there are four arginine residues and an as-yet-undetermined number of carboxy residues that appear to be essential to the structural integrity of the oligomeric molecule.  相似文献   

10.
G L Powell  P F Knowles  D Marsh 《Biochemistry》1987,26(25):8138-8145
The selectivity of interaction of various cardiolipin analogues with beef heart cytochrome oxidase in reconstituted complexes with dimyristoylphosphatidylcholine has been studied by electron spin resonance spectroscopy, using lipids spin-labeled in the acyl chains. No difference in selectivity is observed between cardiolipin and its monolyso derivative, and similarly no selectivity is observed between phosphatidylcholine and lysophosphatidylcholine. Removal of the cardiolipin charge by methylation of the phosphate groups reduces but does not eliminate selectivity relative to phosphatidylcholine. The dependence of the lipid selectivity on head group and chain composition is in the order cardiolipin approximately equal to monolysocardiolipin greater than acylcardiolipin greater than dimethylcardiolipin greater than phosphatidylcholine approximately equal to lysophosphatidylcholine, where acylcardiolipin has the spin-label chain attached at the center -OH of the head group. The degree of association of the negatively charged cardiolipin derivatives with cytochrome oxidase decreases with increasing salt concentration, to a level comparable to that for dimethylcardiolipin. At high ionic strength there is still a marked selectivity relative to phosphatidylcholine. Li+ ions are more effective in screening the interaction than are Na+ ions, and divalent ions are more effective than monovalent ions. The selectivity for cardiolipin is only slightly reduced on titrating the protein to high pH. Alkylation of the protein with N-ethylmaleimide has little effect on the titration behavior. Covalent modification of the protein by reaction with citraconic anhydride decreases the selectivity of interaction with cardiolipin. It is concluded that cardiolipin possesses an additional specificity of interaction with cytochrome oxidase other than that of purely electrostatic origin.  相似文献   

11.
As with adrenocorticotropin pretreatment in vivo, addition of cardiolipin in vitro enhances adrenal mitochondrial pregnenolone synthesis and apparent binding of cholesterol to cytochrome P-450scc. These effects are relatively specific for glycerolipids containing two or more phosphate radicals in the polar head group, and changes in such phospholipids or comparably acting substances may play a role in mediating adrenocorticotropin- or other hormone-induced effects on membrane-associated enzymes.  相似文献   

12.
Fourier transform infrared (FTIR) spectroscopy was used to investigate modifications of prostate cancer PC-3 cell lipidome after exposure to sub-lethal concentrations of ouabain. FTIR spectroscopy offered an overview of the lipid classes present in the whole sample. The method is simple, label free and some features can be detected on entire cells. We compared the achievements of FTIR spectroscopy with data obtained by mass spectrometry (MS) on the same samples. It appears that FTIR spectroscopy could identify content variations in some lipid classes, e.g., these containing choline head groups such as phosphatidylcholine and sphingomyelin. MS analysis could confirm this result as indicated by principal component analysis and 2D heterocorrelation maps. FTIR spectra were also able to report changes in ester/choline/phosphate ratios characterizing lipid changes induced by ouabain. Furthermore, quantization of major lipid classes (PC, PE, PG, SM) could be obtained by curve fitting of the FTIR spectra. Yet, FTIR failed to resolve lipid classes for which the polar heads do not display specific IR features such as phosphatidylglycerol and cardiolipin.  相似文献   

13.
Electron spin resonance measurements were performed in order to investigate the influence of anti-cardiolipin antibodies on cardiolipin-containing liposomes. The physical state of the lipid structures and the alterations caused by the interaction with specific antibody were determined by measuring the freedom of motion of spin-labeled stearic acid derivatives incorporated into the lipid structures. The interaction of the cardiolipin-containing liposomes with the anti-cardiolipin antibodies reduced the mobility of the spin-labeled stearic acid probe I (12, 3), whose nitroxide group is assumed to be located near the polar region of the lipid bilayer. The restricted mobility, which qualitatively resembles the interaction of cardiolipin liposomes with calcium ions, is probably the result of a tighter packing of the polar groups in their crystalline array. The binding sites of the cardiolipin structures for anti-cardiolipin antibodies and Ca2 ions seem to be identical. As indicated by the spin-labeled stearic acid probe I (1, 14), the apolar region of the lipid bilayer is not affected by the interaction of the cardiolipin-containing liposomes with the anti-cardiolipin antibodies.  相似文献   

14.
Efficient photolabelling of muscarinic acetylcholine receptors was obtained using either two aryldiazonium salts or an azido derivative. These probes did not discriminate between muscarinic binding subtypes or affinity states and became irreversibly bound to the receptor sites, in an entirely atropine-protectable manner, upon ultraviolet irradiation. The extent of labelling was dependent both on probe concentration and on time of irradiation and reached up to 80% of the receptor population, under optimal alkylating conditions. In contrast to the azido derivative, both diazonium salts behave as potent irreversible labels of muscarinic receptors, provided energy-transfer photolabelling conditions were followed. Such an indirect activation of diazonium ligands, through an energy transfer from photoexcited tryptophan residues, has been previously found to increase the site-specificity and the rate of labelling of other acetylcholine binding proteins. Analogies in the photolabelling process of acetylcholinesterase or of nicotinic and muscarinic receptors by the two diazonium salts are discussed. Altogether, these findings suggest that these new probes may be promising tools to investigate the location and the topography of the agonist-antagonist binding domain on purified muscarinic receptors, through amino acid and/or sequence analyses of radioactive, photolabelled residues.  相似文献   

15.
The financial investment grows exponentially as a new chemical entity advances through each stage of discovery and development. The opportunity exists for the modern toxicologist to significantly impact expenditures by the early prediction of potential toxicity/side effect barriers to development by aggressive evaluation of development-limiting liabilities early in drug discovery. Improved efficiency in pharmaceutical research and development lies both in leveraging "best in class" technology and integration with pharmacologic activities during hit-to-lead and early lead optimization stages. To meet this challenge, a discovery assay by stage (DABS) paradigm should be adopted. The DABS clearly delineates to discovery project teams the timing and type of assay required for advancement of compounds to each subsequent level of discovery and development. An integrative core pathology function unifying Drug Safety Evaluation, Molecular Technologies and Clinical Research groups that effectively spans all phases of drug discovery and development is encouraged to drive the DABS. The ultimate goal of such improved efficiency being the accurate prediction of toxicity and side effects that would occur in development before commitment of the large prerequisite resource. Good justification of this approach is that every reduction of development attrition by 10% results in an estimated increase in net present value by $100 million.  相似文献   

16.
As part of a study to identify novel lipids with immune adjuvant activity, a structural comparison was made between the polar lipids from two halophiles, an archaeon Haloferax volcanii and a eubacterium Planococcus H8. H. volcanii polar lipid extracts consisted of 44% archaetidylglycerol methylphosphate, 35% archaetidylglycerol, 4.7% of archaeal cardiolipin, 2.5% archaetidic acid, and 14% sulfated glycolipids 1 and 2. Nuclear magnetic resonance (NMR) and Fast atom bombardment mass spectrometry (FAB MS) data determined the glycolipids to be 6-HSO(3)-D-Man(p)-alpha1-2-D-Glc(p)-alpha1,1-[sn-2,3-di-O-phytanylglycerol] and a novel glycocardiolipin 6'-HSO(3)-D-Man(p)-alpha1-2-D-Glc(p)-alpha1,1-[sn-2,3-di-O-phytanylglycerol]-6-[phospho-sn-2,3-di-O-phytanylglycerol]. The polar lipids of Planococcus H8 consisted of 49% saturated phosphatidylglycerol and cardiolipin (9:1, w/w), and surprisingly 51% of the photosynthetic membrane lipid sulfoquinovosyldiacylglycerol (SQDG). This study documents archaeal cardiolipin and a novel glycocardiolipin in H. volcanii (lacking purple membrane), and is the first report of SQDG in a non-photosynthetic, halophilic bacterium.  相似文献   

17.
The carbonyl content of a pectic polysaccharide from Sphagnum papillosum (sphagnan) and periodate oxidised alginates was investigated using three different carbonyl labelling strategies combined with size-exclusion chromatography (SEC) with multi-angle laser light scattering (MALLS) and on-line fluorescence or off-line tritium detection. The labelling strategies were tritium incorporation via NaB3H4 reduction, and fluorescent labelling with carbazole carbonyl oxyamine (CCOA), or 2-aminobenzamide (2-AB), respectively. Carbonyl quantification was based on labelled pullulan, dextran and alginate standards possessing only the reducing end carbonyl group. As a result the carbonyl distribution in the polysaccharides could be determined. In sphagnan it was found that the carbonyl content increased with increasing molecular weight, whereas in periodate oxidised alginate the carbonyl content was as expected independent of the molecular weight. The methods proved useful for carbonyl detection in water soluble polysaccharides in general. The tritium incorporation method was preferred for alkali stable polysaccharides, while the CCOA method was most suitable for acid stable polysaccharides with low carbonyl content. The 2-AB method is applicable for all polysaccharides tested with varying carbonyl content; however, it lacks the ability to detect ketone functionalities.  相似文献   

18.
Protein kinase C‐related kinase 1 (PRK1) or PKN is a protease and lipid activated protein kinase that acted downstream of the RhoA or Rac1 pathway. PRK1 comprises a unique regulatory domain and a PKC homologous kinase domain. The regulatory domain of PRK1 consists of homologous region ?1 (HR1) and ?2 (HR2). PRK1‐(HR1) features a pseudosubstrate motif that overlapped with the putative cardiolipin and known RhoA binding sites. In fact, cardiolipin is the most potent lipid activator for PRK1 in respect of its either auto‐ or substrate phosphorylation activity. This study was thus aimed to characterize the binding region(s) of cardiolipin that was previously suggested for the regulatory domain of PRK1. The principal findings of this work established (i) PRK1‐(HR1) folded into an active conformation where high affinity binding sites (mainly located in HR1a subdomain) were accessible for cardiolipin binding to protect against limited Lys‐C digestion, (ii) the binding nature between acidic phospholipids and PRK1 (HR1) involved both polar and nonpolar components consistent with the amphipathic nature of the known cardiolipin‐binding motifs, (iii) identification of the molecule masses of the Lys‐C fragments of PRK1‐(HR1) complexed with cardiolipin molecule, and (iv) appreciable reductions in the secondary structural contents at 222 nm measured by circular dichroism analyses demonstrated the binding of cardiolipin elicited the disruptive effect that was most evident among all phospholipids tested, suggestive of a functional correlation between the extents of helical disruption and PRK1 activation.  相似文献   

19.
Beef (Bos taurus), dogfish (Squalus acanthias) and cod (Gadus morhua) heart submitochondrial particles and cytochrome c oxidase (EC 1.9.3.1) were prepared. The head groups and side chains of the phospholipids associated with these samples were analysed quantitatively. The fish phospholipids contained a higher proportion of long chain poly-unsaturated fatty acids than was found in the beef samples. The enzyme fraction showed no head group or fatty acyl chain preference when compared with the composition of the whole tissue, implying no special lipid requirement for enzyme activity other than membrane fluidity. No cardiolipin was associated with the dogfish oxidase. The cod oxidase was inseparable from a CO-binding "b-type" cytochrome.  相似文献   

20.
Formation of the unique molecular species of mitochondrial cardiolipin requires tafazzin, a transacylase that exchanges acyl groups between phospholipid molecular species without strict specificity for acyl groups, head groups, or carbon positions. However, it is not known whether phospholipid transacylations can cause the accumulation of specific fatty acids in cardiolipin. Here, a model is shown in linear algebra representation, in which acyl specificity emerges from the transacylation equilibrium of multiple molecular species, provided that different species have different free energies. The model defines the conditions and energy terms, under which transacylations may generate the characteristic composition of mitochondrial cardiolipin. It is concluded that acyl-specific cardiolipin patterns could arise from phospholipid transacylations in the tafazzin domain, even if tafazzin itself does not have substrate specificity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号