首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of mixing on biogas production of a 1.5‐m3 pilot continuous stirred tank reactor (CSTR) processing screened dairy manure was evaluated. Mixing was carried out by recirculation of reactor content with a mono pump. The experiment was conducted at a controlled temperature of 37±1°C and hydraulic retention times (HRTs) of 20 and 10 days. The effect of continuous and intermittent operation of the recirculation pump on biogas production was studied. At 10 days of HRT, the results showed a minimal influence of recirculation rate on biogas production and that continuous recirculation did not improve reactor performance. At 20 days of HRT, the recirculation rate did not affect reactor performance. Combination of low solid content in feed animal slurry and long HRTs results in minimal mixing requirements for anaerobic digestion.  相似文献   

2.
Labat  M.  Garcia  J. L.  Meyer  F.  Deschamps  F. 《Biotechnology letters》1984,6(6):379-384
Summary Anaerobic digestion of sugar beet pulps was studied in a 70 l digestor with sequential feeding, after enzymatic hydrolysis by Trichoderma harzianum cellulases. During the 130 days feeding, 3.6 m3 of biogas were produced with an average content of 58% CH4 from 270 l of hydrolysed pulps at 20 g VS/l. Average yield and production rate were respectively 0.67 m3/kg VS and 0.4 m3/ kg VS and 0.4 m3/m3 of digestor per day.  相似文献   

3.
Summary A fixed film loop reactor was developed for the stabilization of undiluted sour whey. Porous clay beads were used to immobilize the population. The fermentation system was self-supporting with the aid of a pH-titrator. Within 2 months; the loading increased automatically to its maximum of 14 kg COD (chemical oxygen demand)/m3 per day. Parallel to this, the bacterial film was formed on the surface of the support material. For a pH of 6.7 the steady state was reached at a hydraulic retention time of 5 days equivalent to a loading of 14 kg COD/m3 per day. An amount of 5.6 m3 biogas was produced per m3 digester content and day and the COD-reduction was 95%. The pH-controlled whey addition led to only minor disturbances when overloading or oxygenation occured and a fast recovery of methanogenesis was observed. The economics of anaerobic whey digestion compared with conventional whey utilization is estimated by a simple cost/benefit calculation.  相似文献   

4.
A full-scale jet biogas internal loop anaerobic fluidized bed (JBILAFB) reactor, which requires low energy input and allows enhanced mass transfer, was constructed for the treatment of food processing wastewater. This reactor has an active volume of 798 m3 and can treat 33.3 m3 wastewater per hour. After pre-treating the raw wastewater by settling, oil separating and coagulation-air floating processes, the reactor was operated with a relatively shorter start-up time (55 days). Samples for the influent and effluent of the JBILAFB reactor were taken and analyzed daily for the whole process including both the start-up and stable running periods. When the volumetric COD loading fluctuated in the range of 1.6–5.6 kg COD m−3 day−1, the COD removal efficiency, the volatile fatty acid(VFA)/alkalinity ratio, the maximum biogas production and the content of CH4 in total biogas of the reactor were found to be 80.1 ± 5%, 0.2–0.5, 348.5 mday−1 and 94.5 ± 2.5%, respectively. Furthermore, the scanning electron microscope (SEM) results showed that anaerobic granular sludge and microorganism particles with biofilm coexisted in the reactor, and that the bacteria mainly in bacilli and cocci were observed as predominant species. All the data demonstrated that the enhanced mass transfer for gas, liquid and solid phases was achieved, and that the formation of microorganism granules and the removal of inhibitors increased the stability of the system.  相似文献   

5.

Objectives

To assess the combination of electrocoagulation and anaerobic co-digestion of olive mill wastewaters (OMWW) with other substrates, such as chicken manure, in a continuous stirred tank reactor for biogas production.

Results

Anaerobic digestion of OMWW treated by electrocoagulation allowed higher production of biogas, up to 0.74 l biogas g?1 COD introduced compared to untreated or diluted olive mill wastewaters (OMWW) (0.37 and 0.6 l biogas g?1 COD) respectively. Pretreated OMWW co-digested with chicken manure at different volumic ratios OMWW/manure in a continuous stirred tank reactor under mesophilic conditions revealed that OMWW/manure (7:3 v/v) was optimal for biogas production and process stability.

Conclusion

Anaerobic digestion could achieve promising results in depollution and valorization of OMWW under a continuous stirred tank reactor.
  相似文献   

6.
The anaerobic digestion technology is a biological treatment widely used to reduce the pollution load of wet waste biomass. In this work we present the results obtained by performing extensive experiments of anaerobic digestion of slaughterhouse waste, tomato industry waste and olive oil industry waste in continuous mode, which were designed to demonstrate that anaerobic digestion is an effective technology from an environmental and economic point of view.Biogas yields obtained are between 35.22 and 5.45 Nm3 biogas/m3 olive oil industry waste and tomato industry waste respectively and the slaughterhouse wastes achieve intermediate production, 30.86 Nm3 biogas/m3 municipal slaughterhouse waste and 22.53 Nm3 biogas/m3 Iberian pig slaughterhouse waste. Moreover, it possible to degrade between 63.46 and 75.3% of the initial organic matter.If these results are analyzed, the environmental, energetic economic benefits of anaerobic digestion can be quantified. Biomethanation of all these wastes generated annually in Extremadura could prevent the emission of 134,772 t of equivalent carbon dioxide, generate an energy similar to that provided by 2826 toe and reach payback times from 3.29 to 3.75 years for anaerobic digestion plant designed to treat the wastes generated by a medium-sized industry. So, we have fulfilled all the planned aims.  相似文献   

7.
The continuous operation of a newly developed methane fermentation reactor, which requires no electricity for the agitation of the fermentation liquid was investigated, and the extent of the biological desulfurization was monitored. Inside the reactor, the continual change in the liquid level and the self-agitation, occurring between 5 and 16 times every day, distributed the organic load near the inlet port of the reactor, as well as providing a nutrient supply to the hydrogen sulfide oxidizing bacteria. At different CODCr loading rates (5, 7, 10 kg m3 d−1), the reactor achieved a biogas production yield of 0.72-0.82 m3 g−1-TS, a CODCr reduction of 79.4-85.5% and an average of 99% hydrogen sulfide removal. This investigation demonstrated that the self-agitated reactor is comparable in digestion performance to the completely stirred tank reactor (CSTR) investigated in a previous study, and that the desulfurization performance was significantly enhanced compared to the CSTR.  相似文献   

8.
Summary A Packed-bubble tower was used as absorber to treat 1000m3 biogas per day. A Biofilm reactor was used as the regeneration equipment in whichThiobacillus ferrooxidans was employed to oxidize Fe(II) to Fe(III). More than 95% H2S removal could be obtained when the inlet H2S concentration of the biogas ranged from 1.0 to 2.5 g/m3 and the maximum Fe(II) oxidation rate of bioreactor was 1170.87mg/L.h.  相似文献   

9.
This is a scale-down study of a 500-m3 methane recovery test plant for anaerobic treatment of palm oil mill effluent (POME) where biomass washout has become one of the problems because of the continuous mixing of effluent during anaerobic treatment of POME. Therefore, in this study, anaerobic POME treatment using a scaled down 50-l bioreactor which mimicked the 500-m3 bioreactor was carried out to improve biogas production with and without biomass sedimentation. Three sets of experiments were conducted under different conditions in terms of biomass sedimentation applied to the system. The first experiment was operated under semi-continuous mode whereas the second and third experiments were operated based on mix and settle mode. As expected, biomass retention improved the anaerobic process as the POME treatment incorporated with mix and settle system were able to operate at an organic loading rate (OLR) of 3.5 and 6.0 kg COD/m3/day respectively, while the semi-continuous operated anaerobic treatment only achieved OLR of 3.0 kg COD/m3/day. The highest biogas and methane production rates achieved were 2.42 m3/m3 of reactor/day and 0.992 m3/m3 of reactor/day, respectively at OLR 6.0 kg COD/m3/day. The biomass or solids retention in the reactors was represented by the total solids measured in this study.  相似文献   

10.
The effect of three different types of glycerol on the performance of up-flow anaerobic sludge blanket (UASB) reactors treating potato processing wastewater was investigated. High COD removal efficiencies were obtained in both control and supplemented UASB reactors (around 85%). By adding 2 ml glycerol product per liter of raw wastewater, the biogas production could be increased by 0.74 l biogas ml−1 glycerol product, which leads to energy values in the range of 810–1270 kWhelectric per m3 product. Moreover, a better in-reactor biomass yield was observed for the supplemented UASB reactor (0.012 g VSS g−1 CODremoved) compared to the UASB control (0.002 g VSS g−1 CODremoved), which suggests a positive effect of glycerol on the sludge blanket growth.  相似文献   

11.
Methane production, electricity production, and wastewater transformations were quantified for a digestion system that combines biogas from a swine digester and dairy digester in Costa Rica. The low-cost, plug-flow digesters were not heated and were operated in the lower portion of the mesophilic range (25–27 °C).The dairy digester produced 27.5 m3/day of biogas with 62.6% methane and reduced organic matter (COD) by 86%. The swine digester produced 6.0 m3/day of biogas with 76.4% methane and reduced COD by 92%. Combining biogas from a swine and dairy digester, increased electricity production due to the higher biogas production rate of the dairy farm and the higher quality biogas obtained from the swine farm. The farm’s 2-h peak electricity demand (12.9 kW/day) was 81.8% met. The electricity was produced using manure equivalent to the quantity excreted by 5 dairy cows and 40 pigs remaining in corrals 100% of the time.The $21,000 capital cost of the digester project will be recovered in 10.1 years through electricity savings and reductions in wastewater fines. If the generator were more appropriately sized for the farm, the capital recovery time would have been 7.6 years.  相似文献   

12.

Background

Food waste is a large bio-resource that may be converted to biogas that can be used for heat and power production, or as transport fuel. We studied the anaerobic digestion of food waste in a staged digestion system consisting of separate acidogenic and methanogenic reactor vessels. Two anaerobic digestion parameters were investigated. First, we tested the effect of 55 vs. 65 °C acidogenic reactor temperature, and second, we examined the effect of reducing the hydraulic retention time (HRT) from 17 to 10 days in the methanogenic reactor. Process parameters including biogas production were monitored, and the microbial community composition was characterized by 16S amplicon sequencing.

Results

Neither organic matter removal nor methane production were significantly different for the 55 and 65 °C systems, despite the higher acetate and butyrate concentrations observed in the 65 °C acidogenic reactor. Ammonium levels in the methanogenic reactors were about 950 mg/L NH4 + when HRT was 17 days but were reduced to 550 mg/L NH4 + at 10 days HRT. Methane production increased from ~ 3600 mL/day to ~ 7800 when the HRT was decreased. Each reactor had unique environmental parameters and a correspondingly unique microbial community. In fact, the distinct values in each reactor for just two parameters, pH and ammonium concentration, recapitulate the separation seen in microbial community composition. The thermophilic and mesophilic digesters were particularly distinct from one another. The 55 °C acidogenic reactor was mainly dominated by Thermoanaerobacterium and Ruminococcus, whereas the 65 °C acidogenic reactor was initially dominated by Thermoanaerobacterium but later was overtaken by Coprothermobacter. The acidogenic reactors were lower in diversity (34–101 observed OTU0.97, 1.3–2.5 Shannon) compared to the methanogenic reactors (472–513 observed OTU0.97, 5.1–5.6 Shannon). The microbial communities in the acidogenic reactors were > 90% Firmicutes, and the Euryarchaeota were higher in relative abundance in the methanogenic reactors.

Conclusions

The digestion systems had similar biogas production and COD removal rates, and hence differences in temperature, NH4 + concentration, and pH in the reactors resulted in distinct but similarly functioning microbial communities over this range of operating parameters. Consequently, one could reduce operational costs by lowering both the hydrolysis temperature from 65 to 55 °C and the HRT from 17 to 10 days.
  相似文献   

13.
Biogas biorefineries have opened up new horizons beyond heat and electricity production in the anaerobic digestion sector. Added-value products such as polyhydroxyalkanoates (PHAs), which are environmentally benign and potential candidates to replace conventional plastics, can be generated from biogas. This work investigated the potential of an innovative two-stage growth-accumulation system for the continuous production of biogas-based polyhydroxybutyrate (PHB) using Methylocystis hirsuta CSC1 as cell factory. The system comprised two turbulent bioreactors in series to enhance methane and oxygen mass transfer: a continuous stirred tank reactor (CSTR) and a bubble column bioreactor (BCB) with internal gas recirculation. The CSTR was devoted to methanotrophic growth under nitrogen balanced growth conditions and the BCB targeted PHB production under nitrogen limiting conditions. Two different operational approaches under different nitrogen loading rates and dilution rates were investigated. A balanced nitrogen loading rate along with a dilution rate (D) of 0.3 day−1 resulted in the most stable operating conditions and a PHB productivity of ~53 g PHB m−3 day−1. However, higher PHB productivities (~127 g PHB m−3 day−1) were achieved using nitrogen excess at a D = 0.2 day−1. Overall, the high PHB contents (up to 48% w/w) obtained in the CSTR under theoretically nutrient balanced conditions and the poor process stability challenged the hypothetical advantages conferred by multistage vs single-stage process configurations for long-term PHB production.  相似文献   

14.
《Anaerobe》2001,7(1):25-35
This paper describes the thermophilic anaerobic biodegradation of wine distillery wastewater (vinasses) in a laboratory fluidised bed reactor (AFB) with a porous support medium. The experimental protocol was defined to examine the effect of increasing organic loading rate on the efficiency of AFB and to report on its steady-state performance. Moreover, in order to evaluate treatment efficiency and to investigate fermentation kinetics in an AFB reactor, experimental data were used to estimate the ‘active biomass’ concentration using an autocatalytic kinetic model proposed in this paper, since viable biomass in AFB reactors is very difficult to measure experimentally. The AFB reactor was subjected to a program of steady-state operation over a range of hydraulic retention time (HRTs) of 2.5–0.37 days and organic loading rate (OLRs) up to 5.88 kgCOD/m3/day in order to evaluate its treatment capacity. The AFB reactor was initially operated with organic loading rate of 5.88 kgCOD/m3/day and HRT of 2.5 days. The chemical oxygen demand (COD) removal efficiency was found to be 96.5% in the reactor while the methane content of biogas produced in the digester reached 1.08 m3/m3digester/day. Over 94 days operating period, an OLR of 32 kgCOD/m3/day at a food-to-micro-organisms (F:M) ratio of 0.55 kgCOD/kgVSatt/day was achieved with 81.5% COD removal efficiency in the experimental AFB reactor. At this moment, the methane content of biogas produced in the digester reached 9.0 m3/m3digester/day. The proposed kinetic model is able to estimate kinetic constants of the biodegradation process: non-biodegradable substrate (Snb) and active adhered biomass concentration (Xa). The parameters of the model were obtained by the curve-fitting method to the proposed kinetic model using the COD as substrate of the anaerobic process and assuming a maximum specific μmax: 0.72 per day. The comparison of the measured concentration of volatile attached solids (VSatt) with the estimated ‘active’ biomass concentration indicated that extremely high ‘active biomass’ concentrations can be maintained in the system because biofilm thickness is limited by the liquid flow rate applied. This is due to the fact that the anaerobic fluidised bed system retains the growth support medium in suspension by drag forces exerted by upflowing wastewater, and the distribution of biomass holdup (in the form of a biofilm) is thus relatively uniform.  相似文献   

15.
Summary The use of polyurethane foam sponges to colonize methanogenic associations for the digestion of piggery manure has been investigated. Fermentors containing polyurethane pads as colonization matrix reached a biogas production rate of ca. 2.0 litres per litre reactor per day (30–33°C), hydraulic retention time 7.5 daysl and a biogas yield of 16 litres per litre piggery manure (7–9% TS). Corresponding control fermentors containing no pads reached a gas production rate of 1.3 litres per litre reactor per day and only about 10 litres biogas per litre piggery manure.  相似文献   

16.
Sugar beet pulp is a by-product of sugar production and consists mainly of cellulose, hemicellulose and pectin. Its composition is suitable for biological degradation. A possible alternative for the utilization of this material (besides cattle feeding) can be anaerobic methanogenic degradation. It has an additional advantage – biogas production. Beet pulp was treated by a two-step anaerobic process. The first step consisted of hydrolysis andacidification. The second step was methanogenesis. In this paper, observation ofthe process of anaerobic degradation and determination of optimal parameters is discussed. A laboratory-scale model for sugar beet pulp anaerobic biodegradation was operated. Results of model performance have shown very good pulp digestion characteristics. In addition, high efficiency removal of organic matter was achieved. Methane yield was over 0.360 m3 kg-1 dried pulp and excess sludge production was 0.094 g per gram COD added.  相似文献   

17.
Summary More than 142 distilleries in India produce 12000 million litres of effljent per year with a biogas potential of 22 to 30 litres per litre of effluent. Only four distilleries already produce biogas from their effluent. In these distilleries the biogas replaces coal for the production of energy. Incentives for the development of biomethanation are provided in the form of ediction of pollution control laws, subsidies on incremental costs, special refinance and discounting schemes, etc. Ashok Organics Ltd. possesses the know-how and sells the technology.
Resumen Más de 142 destilerias en la India producen 12000 millones le litros de efluentes al año, con un potencial para la producción de biogas de 22 a 30 m3 por litro de effluente. Unicamente 4 destilerias producen biogas a partir de sus efluentes. En estas destilerias el biogas sustituye al carbón para la producción de energía. Se esta incentivando el desarrollo de sistemas de biometanación mediante la promulgación de leyes para el control de la polución, subsidios para los costes instrumentales y planes especiales de descuento y financiación. Mesas Ashok Organics Ltd. posee y vende la tecnología adecuada.

Résumé En Inde, plus de 142 distilleries produisent 12 millions de m3 d'effluents par an, avec un potentiel de production de biogaz de 22 à 30 m3 par m3 d'effluent. A l'heure actuelle quatre distilleries seulement produisent du biogaz à partir de leurs effluents. Dans ces distilleries le biogaz remplace le charbon pour la production d'énergie. Il existe pourtant des incitants au développement de la biométhanisation, sous la forme de subsides, de programmes spéciaux de financement, de taux d'intérêts avantageux et de lois pour le contrôle de la pollution. De plus une firme indienne, Ashok Organics, possède le know how et vend la technologie.
  相似文献   

18.
Summary Needle punched polyester material and red drain tile clay were most effective in developing an active biomass film. Maximum methane production rates (0.045–0.055 m3/m2/day, or 4.5–5.5 m3/m3/day for a reactor with 100 m2 film support area per m3) were achieved in 40–50 days.  相似文献   

19.
This study investigated the anaerobic digestion capability of five plants and the effects of copper (Cu) and S,S’-ethylenediaminedisuccinic acid (EDDS, a chelator widely used in chelant-assisted phytoremediation) on biogas production to determine a feasible disposal method for plants used in remediation. The results showed that in addition to Phytolacca americana L., plants such as Zea mays L., Brassica napus L., Elsholtzia splendens Nakai ex F. Maekawa, and Oenothera biennis L. performed well in biogas production. Among these, O. biennis required the shortest period to finish anaerobic digestion. Compared to normal plants with low Cu content, the plants used in remediation with increased Cu levels (100 mg kg?1) not only promoted anaerobic digestion and required a shorter anaerobic digestion time, but also increased the methane content in biogas. When the Cu content in plants increased to 500, 1000, and 5000 mg kg?1, the cumulative biogas production decreased by 12.3%, 14.6%, and 41.2%, respectively. Studies also found that EDDS conspicuously restrained biogas production from anaerobic digestion. The results suggest that anaerobic digestion has great potential for the disposal of contaminated plants and may provide a solution for the resource utilization of plants used in remediation.  相似文献   

20.
Biogas plants continuously convert biological wastes mainly into a mixture of methane, CO2 and H2O—a conversion that is carried out by a consortium of bacteria and archaea. Especially in the municipal plants dedicated towards waste treatment, the reactor feed may vary considerably, exposing the resident microbiota to a changing variety of substrates. To evaluate how and if such changes influence the microbiology, an established biogas plant (6,600 m3, up to 600 m3 biogas per h) was followed over the course of more than 2 years via polymerase chain reaction–denaturing gradient gel electrophoresis of 16S rRNA genes and subsequent sequencing. Both the bacterial and the archaeal community remained stable over the investigation. Of the bacterial consortium, about half of the sequences were in decreasing order of occurrence: Thermoacetogenium sp., Anaerobaculum mobile, Clostridium ultunense, Petrotoga sp., Lactobacillus hammesii, Butyrivibrio sp., Syntrophococcus sucromutans, Olsenella sp., Tepidanaerobacter sp., Sporanaerobacter acetigenes, Pseudoramibacter alactolyticus, Lactobacillus fuchuensis or Lactobacillus sakei, Lactobacillus parabrevis or Lactobacillus spicheri and Enterococcus faecalis. The other half matched closely to ones from similar habitats (thermophilic anaerobic methanogenic digestion). The archaea consisted of Methanobrevibacter sp., Methanoculleus bourgensis, Methanosphaera stadtmanae, Methanimicrococcus blatticola and uncultured Methanomicrobiales. The role of these species in methane production is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号