首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The archaeal ATPase complex PAN, the homolog of the eukaryotic 26S proteasome-regulatory ATPases, was shown to associate transiently with the 20S proteasome upon binding of ATP or ATPgammaS, but not ADP. By electron microscopy (EM), PAN appears as a two-ring structure, capping the 20S, and resembles two densities in the 19S complex. The N termini of the archaeal 20S alpha subunits were found to function as a gate that prevents entry of seven-residue peptides but allows entry of tetrapeptides. Upon association with the 20S particle, PAN stimulates gate opening. Although degradation of globular proteins requires ATP hydrolysis, the PAN-20S complex with ATPgammaS translocates and degrades unfolded and denatured proteins. Rabbit 26S proteasomes also degrade these unfolded proteins upon ATP binding, without hydrolysis. Thus, although unfolding requires energy from ATP hydrolysis, ATP binding alone supports ATPase-20S association, gate opening, and translocation of unfolded substrates into the proteasome, which can occur by facilitated diffusion through the ATPase.  相似文献   

2.
To clarify the role of ATP in proteolysis, we studied archaeal 20S proteasomes and the PAN (proteasome-activating nucleotidase) regulatory complex, a homolog of the eukaryotic 19S ATPases. PAN's ATPase activity was stimulated similarly by globular (GFPssrA) and unfolded (casein) substrates, and by the ssrA recognition peptide. Denaturation of GFPssrA did not accelerate its degradation or eliminate the requirement for PAN and ATP. During degradation of one molecule of globular or unfolded substrates, 300-400 ATP molecules were hydrolyzed. An N-terminal deletion in the 20S alpha subunits caused opening of the substrate-entry channel and rapid degradation of unfolded proteins without PAN; however, degradation of globular GFPssrA still required PAN's ATPase activity, even after PAN-catalyzed unfolding. Thus, substrate binding activates ATP hydrolysis, which promotes three processes: substrate unfolding, gate opening in the 20S, and protein translocation.  相似文献   

3.
26S proteasomes are composed of a 20S proteolytic core and two ATPase-containing 19S regulatory particles. To clarify the role of these ATPases in proteolysis, we studied the PAN complex, the archaeal homolog of the 19S ATPases. When ATP is present, PAN stimulates protein degradation by archaeal 20S proteasomes. PAN is a molecular chaperone that catalyzes the ATP-dependent unfolding of globular proteins. If 20S proteasomes are present, this unfoldase activity is linked to degradation. Thus PAN, and presumably the 26S ATPases, unfold substrates and facilitate their entry into the 20S particle. 26S proteasomes preferentially degrade ubiquitinated proteins. However, we found that calmodulin (CaM) and troponin C are degraded by 26S proteasomes without ubiquitination. Ca(2+)-free native CaM and in vitro 'aged' CaM are degraded faster than the Ca(2+)-bound form. Ubiquitination of CaM does not enhance its degradation. Degradation of ovalbumin normally requires ubiquitination, but can occur without ubiquitination if ovalbumin is denatured. The degradation of these proteins still requires ATP and the 19S particle. Thus, ubiquitin-independent degradation by 26S proteasomes may be more important than generally assumed.  相似文献   

4.
Proteolysis by archaeal 20S proteasomes and the PAN (proteasome-activating nucleotidase) regulatory complex, a homolog of the eukaryotic 19S AAA ATPases, requires ATP hydrolysis through multiple steps. ATP hydrolysis, activated by binding of substrates to PAN, is utilized for substrate unfolding, gate opening of 20S proteasomes, and substrate translocation.  相似文献   

5.
The 20S proteasome is a self-compartmentalized protease which degrades unfolded polypeptides and has been purified from eucaryotes, gram-positive actinomycetes, and archaea. Energy-dependent complexes, such as the 19S cap of the eucaryal 26S proteasome, are assumed to be responsible for the recognition and/or unfolding of substrate proteins which are then translocated into the central chamber of the 20S proteasome and hydrolyzed to polypeptide products of 3 to 30 residues. All archaeal genomes which have been sequenced are predicted to encode proteins with up to approximately 50% identity to the six ATPase subunits of the 19S cap. In this study, one of these archaeal homologs which has been named PAN for proteasome-activating nucleotidase was characterized from the hyperthermophile Methanococcus jannaschii. In addition, the M. jannaschii 20S proteasome was purified as a 700-kDa complex by in vitro assembly of the alpha and beta subunits and has an unusually high rate of peptide and unfolded-polypeptide hydrolysis at 100 degrees C. The 550-kDa PAN complex was required for CTP- or ATP-dependent degradation of beta-casein by archaeal 20S proteasomes. A 500-kDa complex of PAN(Delta1-73), which has a deletion of residues 1 to 73 of the deduced protein and disrupts the predicted N-terminal coiled-coil, also facilitated this energy-dependent proteolysis. However, this deletion increased the types of nucleotides hydrolyzed to include not only ATP and CTP but also ITP, GTP, TTP, and UTP. The temperature optimum for nucleotide (ATP) hydrolysis was reduced from 80 degrees C for the full-length protein to 65 degrees C for PAN(Delta1-73). Both PAN protein complexes were stable in the absence of ATP and were inhibited by N-ethylmaleimide and p-chloromercuriphenyl-sulfonic acid. Kinetic analysis reveals that the PAN protein has a relatively high V(max) for ATP and CTP hydrolysis of 3.5 and 5.8 micromol of P(i) per min per mg of protein as well as a relatively low affinity for CTP and ATP with K(m) values of 307 and 497 microM compared to other proteins of the AAA family. Based on electron micrographs, PAN and PAN(Delta1-73) apparently associate with the ends of the 20S proteasome cylinder. These results suggest that the M. jannaschii as well as related archaeal 20S proteasomes require a nucleotidase complex such as PAN to mediate the energy-dependent hydrolysis of folded-substrate proteins and that the N-terminal 73 amino acid residues of PAN are not absolutely required for this reaction.  相似文献   

6.
Protein degradation by 20S proteasomes in vivo requires ATP hydrolysis by associated hexameric AAA ATPase complexes such as PAN in archaea and the homologous ATPases in the eukaryotic 26S proteasome. This review discusses recent insights into their multistep mechanisms and the roles of ATP. We have focused on the PAN complex, which offers many advantages for mechanistic and structural studies over the more complex 26S proteasome. By single-particle EM, PAN resembles a "top-hat" capping the ends of the 20S proteasome and resembles densities in the base of the 19S regulatory complex. The binding of ATP promotes formation of the PAN-20S complex, which induces opening of a gate for substrate entry into the 20S. PAN's C-termini, containing a conserved motif, docks into pockets in the 20S's alpha ring and causes gate opening. Surprisingly, once substrates are unfolded, their translocation into the 20S requires ATP-binding but not hydrolysis and can occur by facilitated diffusion through the ATPase in its ATP-bound form. ATP therefore serves multiple functions in proteolysis and the only step that absolutely requires ATP hydrolysis is the unfolding of globular proteins. The 26S proteasome appears to function by similar mechanisms.  相似文献   

7.
ATP binding to the PAN-ATPase complex in Archaea or the homologous 19 S protease-regulatory complex in eukaryotes induces association with the 20 S proteasome and opening of its substrate entry channel, whereas ATP hydrolysis allows unfolding of globular substrates. To clarify the conformational changes associated with ATP binding and hydrolysis, we used protease sensitivity to monitor the conformations of the PAN ATPase from Methanococcus jannischii. Exhaustive trypsin treatment of PAN generated five distinct fragments, two of which differed when a nucleotide (either ATP, ATP gamma S, or ADP) was bound. Surprisingly, the nucleotide concentrations altering protease sensitivity were much lower (K(a) 20-40 microm) than are required for ATP-dependent protein breakdown by the PAN-20S proteasome complex (K(m) approximately 300-500 microm). Unlike trypsin, proteinase K yielded several fragments that differed in the ATP gamma S and ADP-bound forms, and thus revealed conformational transitions associated with ATP hydrolysis. Mapping the fragments generated by each revealed that nucleotide binding and hydrolysis induce local conformational changes, affecting the Walker A and B nucleotide-binding motif, as well as global changes extending to its carboxyl terminus. The location and overlap of the fragments also suggest that the conformation of the six subunits is not identical, probably because they do not all bind ATP simultaneously. Partial nucleotide occupancy was supported by direct assays, which demonstrated that, at saturating conditions, only four nucleotides are bound to hexameric PAN. Using the protease protection maps, we modeled the conformational changes associated with ATP binding and hydrolysis in PAN based on the x-ray structures of the homologous AAA ATPase, HslU.  相似文献   

8.
The Thermoplasma VCP-like ATPase from Thermoplasma acidophilum (VAT) ATPase is a member of the two-domain AAA ATPases and homologous to the mammalian p97/VCP and NSF proteins. We show here that the VAT ATPase complex unfolds green fluorescent protein (GFP) labeled with the ssrA-degradation tag. Increasing the Mg2+ concentration derepresses the ATPase activity and concomitantly stimulates the unfolding activity of VAT. Similarly, the VATDeltaN complex, a mutant of VAT deleted for the N domain, displays up to 24-fold enhanced ATP hydrolysis and 250-fold enhanced GFP unfolding activity when compared with wild-type VAT. To determine the individual contribution of the two AAA domains to ATP hydrolysis and GFP unfolding we performed extensive site-directed mutagenesis of the Walker A, Walker B, sensor-1, and pore residues in both AAA domains. Analysis of the VAT mutant proteins, where ATP hydrolysis was confined to a single AAA domain, revealed that the first domain (D1) is sufficient to exert GFP unfolding indistinguishable from wild-type VAT, while the second AAA domain (D2), although active, is significantly less efficient than wild-type VAT. A single conserved aromatic residue in the D1 section of the pore was found to be essential for GFP unfolding. In contrast, two neighboring residues in the D2 section of the pore had to be exchanged simultaneously, to achieve a drastic inhibition of GFP unfolding.  相似文献   

9.
In the AAA+ ClpXP protease, ClpX uses the energy of ATP binding and hydrolysis to unfold proteins before translocating them into ClpP for degradation. For proteins with C-terminal ssrA tags, ClpXP pulls on the tag to initiate unfolding and subsequent degradation. Here, we demonstrate that an initial step in ClpXP unfolding of the 11-stranded β barrel of superfolder GFP-ssrA involves extraction of the C-terminal β strand. The resulting 10-stranded intermediate is populated at low ATP concentrations, which stall ClpXP unfolding, and at high ATP concentrations, which support robust degradation. To determine if stable unfolding intermediates cause low-ATP stalling, we designed and characterized circularly permuted GFP variants. Notably, stalling was observed for a variant that formed a stable 10-stranded intermediate but not for one in which this intermediate was unstable. A stepwise degradation model in which the rates of terminal-strand extraction, strand refolding or recapture, and unfolding of the 10-stranded intermediate all depend on the rate of ATP hydrolysis by ClpXP accounts for the observed changes in degradation kinetics over a broad range of ATP concentrations. Our results suggest that the presence or absence of unfolding intermediates will play important roles in determining whether forced enzymatic unfolding requires a minimum rate of ATP hydrolysis.  相似文献   

10.
ATPases associated with diverse cellular activities (AAA+) proteases utilize ATP hydrolysis to actively unfold native or misfolded proteins and translocate them into a protease chamber for degradation. This basic mechanism yields diverse cellular consequences, including the removal of misfolded proteins, control of regulatory circuits, and remodeling of protein conformation. Among various bacterial AAA+ proteases, FtsH is only membrane‐integrated and plays a key role in membrane protein quality control. Previously, we have shown that FtsH has substantial unfoldase activity for degrading membrane proteins overcoming a dual energetic burden of substrate unfolding and membrane dislocation. Here, we asked how efficiently FtsH utilizes ATP hydrolysis to degrade membrane proteins. To answer this question, we measured degradation rates of the model membrane substrate GlpG at various ATP hydrolysis rates in the lipid bilayers. We find that the dependence of degradation rates on ATP hydrolysis rates is highly nonlinear: (i) FtsH cannot degrade GlpG until it reaches a threshold ATP hydrolysis rate; (ii) after exceeding the threshold, the degradation rates steeply increase and saturate at the ATP hydrolysis rates far below the maxima. During the steep increase, FtsH efficiently utilizes ATP hydrolysis for degradation, consuming only 40–60% of the total ATP cost measured at the maximal ATP hydrolysis rates. This behavior does not fundamentally change against water‐soluble substrates as well as upon addition of the macromolecular crowding agent Ficoll 70. The Hill analysis shows that the nonlinearity stems from coupling of three to five ATP hydrolysis events to degradation, which represents unique cooperativity compared to other AAA+ proteases including ClpXP, HslUV, Lon, and proteasomes.  相似文献   

11.
The degradation of ubiquitinated proteins by 26 S proteasomes requires ATP hydrolysis. To investigate if the six proteasomal ATPases function independently or in a cyclic manner, as proposed recently, we used yeast mutants that prevent ATP binding to Rpt3, Rpt5, or Rpt6. Although proteasomes contain six ATPase subunits, each of these single mutations caused a 66% reduction in basal ATP hydrolysis, and each blocked completely the 2–3-fold stimulation of ATPase activity induced by ubiquitinated substrates. Therefore, the ATPase subunits must function in a ordered manner, in which each is required for the stimulation of ATPase activity by substrates. Although ATP is essential for multiple steps in proteasome function, when the rate of ATP hydrolysis was reduced incrementally, the degradation of Ub5-DHFR (where Ub is ubiquitin and DHFR is dihydrofolate reductase) decreased exactly in parallel. This direct proportionality implies that a specific number of ATPs is consumed in degrading a ubiquitinated protein. When the ubiquitinated DHFR was more tightly folded (upon addition of the ligand folate), the rate of ATP hydrolysis was unchanged, but the time to degrade a Ub5-DHFR molecule (∼13 s) and the energy expenditure (50–80 ATPs/Ub5-DHFR) both increased by 2-fold. With a mutation in the ATPase C terminus that reduced gate opening into the 20 S proteasome, the energy costs and time required for conjugate degradation also increased. Thus, different ubiquitin conjugates activate similarly the ATPase subunit cycle that drives proteolysis, but polypeptide structure determines the time required for degradation and thus the energy cost.  相似文献   

12.
The degradation of the majority of cellular proteins is mediated by the proteasomes. Ubiquitin-dependent proteasomal protein degradation is executed by a number of enzymes that interact to modify the substrates prior to their engagement with the 26S proteasomes. Alternatively, certain proteins are inherently unstable and undergo "default" degradation by the 20S proteasomes. Puzzlingly, proteins are by large subjected to both degradation pathways. Proteins with unstructured regions have been found to be substrates of the 20S proteasomes in vitro and, therefore, unstructured regions may serve as signals for protein degradation "by default" in the cell. The literature is loaded with examples where engagement of a protein into larger complexes increases protein stability, possibly by escaping degradation "by default". Our model suggests that formation of protein complexes masks the unstructured regions, making them inaccessible to the 20S proteasomes. This model not only provides molecular explanations for a recent theoretical "cooperative stability" principle, but also provokes new predictions and explanations in the field of protein regulation and functionality.  相似文献   

13.
Archaea are a valuable source of enzymes for industrial and scientific applications because of their ability to survive extreme conditions including high salt and temperature. Thanks to advances in molecular biology and genetics, archaea are also attractive hosts for metabolic engineering. Understanding how energy-dependent proteases and chaperones function to maintain protein quality control is key to high-level synthesis of recombinant products. In archaea, proteasomes are central players in energy-dependent proteolysis and form elaborate nanocompartments that degrade proteins into oligopeptides by processive hydrolysis. The catalytic core responsible for this proteolytic activity is the 20S proteasome, a barrel-shaped particle with a central channel and axial gates on each end that limit substrate access to a central proteolytic chamber. AAA proteins (ATPases associated with various cellular activities) are likely to play several roles in mediating energy-dependent proteolysis by the proteasome. These include ATP binding/hydrolysis, substrate binding/unfolding, opening of the axial gates, and translocation of substrate into the proteolytic chamber.  相似文献   

14.
The 20S proteasome functions in protein degradation in eukaryotes together with the 19S ATPases or in archaea with the homologous PAN ATPase complex. These ATPases contain a conserved C-terminal hydrophobic-tyrosine-X motif (HbYX). We show that these residues are essential for PAN to associate with the 20S and open its gated channel for substrate entry. Upon ATP binding, these C-terminal residues bind to pockets between the 20S's alpha subunits. Seven-residue or longer peptides from PAN's C terminus containing the HbYX motif also bind to these sites and induce gate opening in the 20S. Gate opening could be induced by C-terminal peptides from the 19S ATPase subunits, Rpt2, and Rpt5, but not by ones from PA28/26, which lack the HbYX motif and cause gate opening by distinct mechanisms. C-terminal residues in the 19S ATPases were also shown to be critical for gating and stability of 26S proteasomes. Thus, the C termini of the proteasomal ATPases function like a "key in a lock" to induce gate opening and allow substrate entry.  相似文献   

15.
Protein degradation by eukaryotic proteasomes is a multi-step process involving substrate recognition, ATP-dependent unfolding, translocation into the proteolytic core particle, and finally proteolysis. To date, most investigations of proteasome function have focused on the first and the last steps in this process. Here we examine the relationship between the stability of a folded protein domain and its degradation rate. Test proteins were targeted to the proteasome independently of ubiquitination by directly tethering them to the protease. Degradation kinetics were compared for test protein pairs whose stability was altered by either point mutation or ligand binding, but were otherwise identical. In both intact cells and in reactions using purified proteasomes and substrates, increased substrate stability led to an increase in substrate turnover time. The steady-state time for degradation ranged from ~5 min (dihydrofolate reductase) to 40 min (I27 domain of titin). ATP turnover was 110/min./proteasome, and was not markedly changed by substrate. Proteasomes engage tightly folded substrates in multiple iterative rounds of ATP hydrolysis, a process that can be rate-limiting for degradation.  相似文献   

16.
Cdc48 (also known as p97 or VCP) is an essential and highly abundant, double-ring AAA+ ATPase, which is ubiquitous in archaea and eukaryotes. In archaea, Cdc48 ring hexamers play a direct role in quality control by unfolding and translocating protein substrates into the degradation chamber of the 20S proteasome. Whether Cdc48 and 20S cooperate directly in protein degradation in eukaryotic cells is unclear. Two regions of Cdc48 are important for 20S binding, the pore-2 loop at the bottom of the D2 AAA+ ring and a C-terminal tripeptide. Here, we identify an aspartic acid in the pore-2 loop as an important element in 20S recognition. Importantly, mutation of this aspartate in human Cdc48 has been linked to familial amyotrophic lateral sclerosis (ALS). In archaeal or human Cdc48 variants, we find that mutation of this pore-2 residue impairs 20S binding and proteolytic communication but does not affect the stability of the hexamer or rates of ATP hydrolysis and protein unfolding. These results suggest that human Cdc48 interacts functionally with the 20S proteasome.  相似文献   

17.
The role of proteasomes in ubiquitin (Ub)-dependent protein degradation was studied by analyzing lysates of human promyelocytic leukemia HL-60 cells by glycerol density gradient centrifugation. High succinyl-Leu-Leu-Val-Tyr-4-methylcoumaryl-7-amide hydrolyzing activity was found in the 26S fraction, whereas the 20S fraction containing proteaomes had no activity. Addition of 0.05% sodium dodecylsulfate to the latter fraction, however, induced marked activity. The 26S, but not the 20S fraction catalyzed ATP-dependent degradation of [125I]lysozyme-Ub conjugate. Depletion from the lysate of ATP caused complete shift of the active 26S complex to the latent 20S form, whereas in the lysate prepared from ATP-depleted cells, ATP converted 20S proteasomes to 26S complexes. The immunoprecipitated 26S complexes were found to consist of proteasomes and 13-15 other proteins ranging in size from 35 to 110 kDa. We conclude that in the lysate, latent proteasomes undergo reversible, ATP-dependent association with multiple protein components to form 26S complexes that catalyze ATP-dependent degradation of Ub-protein conjugates.  相似文献   

18.
20S proteasomal degradation of ornithine decarboxylase is regulated by NQO1   总被引:6,自引:0,他引:6  
Ornithine decarboxylase (ODC), a key enzyme in the biosynthesis of polyamines, is a very labile protein. ODC is a homodimeric enzyme that undergoes ubiquitin-independent proteasomal degradation via direct interaction with antizyme, a polyamine-induced protein. Binding of antizyme promotes the dissociation of ODC homodimers and marks ODC for degradation by the 26S proteasomes. We describe here an alternative pathway for ODC degradation that is regulated by NAD(P)H quinone oxidoreductase 1 (NQO1). We show that NQO1 binds and stabilizes ODC. Dicoumarol, an inhibitor of NQO1, dissociates ODC-NQO1 interaction and enhances ubiquitin-independent ODC proteasomal degradation. We further show that dicoumarol sensitizes ODC monomers to proteasomal degradation in an antizyme-independent manner. This process of NQO1-regulated ODC degradation was recapitulated in vitro by using purified 20S proteasomes. Finally, we show that the regulation of ODC stability by NQO1 is especially prominent under oxidative stress. Our findings assign to NQO1 a role in regulating ubiquitin-independent degradation of ODC by the 20S proteasomes.  相似文献   

19.
In Archaea, an hexameric ATPase complex termed PAN promotes proteins unfolding and translocation into the 20 S proteasome. PAN is highly homologous to the six ATPases of the eukaryotic 19 S proteasome regulatory complex. Thus, insight into the mechanism of PAN function may reveal a general mode of action mutual to the eukaryotic 19 S proteasome regulatory complex. In this study we generated a three-dimensional model of PAN from tomographic reconstruction of negatively stained particles. Surprisingly, this reconstruction indicated that the hexameric complex assumes a two-ring structure enclosing a large cavity. Assessment of distinct three-dimensional functional states of PAN in the presence of adenosine 5′-O-(thiotriphosphate) and ADP and in the absence of nucleotides outlined a possible mechanism linking nucleotide binding and hydrolysis to substrate recognition, unfolding, and translocation. A novel feature of the ATPase complex revealed in this study is a gate controlling the “exit port” of the regulatory complex and, presumably, translocation into the 20 S proteasome. Based on our structural and biochemical findings, we propose a possible model in which substrate binding and unfolding are linked to structural transitions driven by nucleotide binding and hydrolysis, whereas translocation into the proteasome only depends upon the presence of an unfolded substrate and binding but not hydrolysis of nucleotide.In eukaryotic cells most protein breakdown in the cytosol and nucleus is catalyzed by the 26 S proteasome. This ∼2.5-MDa (1) complex degrades ubiquitin-conjugated and certain non-ubiquitinated proteins in an ATP-dependent manner (2, 3). The 26 S complex is composed of one or two 19 S regulatory particles situated at the ends of the cylindrical 20 S proteasome. Within the 26 S complex, proteins are hydrolyzed in the 20 S proteasome. Tagged substrates, however, first bind to the 19 S regulatory particle, which catalyzes their unfolding and translocation into the 20 S subcomplex (4, 5). The 19 S regulatory particle consists of at least 17 different subunits (1, 6). Nine of these subunits form a “lid,” whereas the other eight subunits, including six ATPases, comprise the base of the 19 S particle. Electron microscopy (710) as well as cross-linking experiments (11, 12) have demonstrated that the six homologous ATPases are associated with the α rings of the 20 S particle.Unlike eukaryotes, Archaea and certain eubacteria contain homologous 20 S particles but lack ubiquitin. Their proteasomes degrade proteins in association with a hexameric ATPase ring complex termed PAN (13). PAN appears to be the evolutionary precursor of the 19 S base, predating the coupling of ubiquitination and proteolysis in eukaryotes (14). In addition, PAN recognizes the bacterial targeting sequence ssrA (in analogy to the polyubiquitin conjugates in eukaryotes) and efficiently unfolds and translocates globular substrates, like green fluorescent protein, when tagged with ssrA (15). In both PAN and the 19 S proteasome regulatory complexes, ATP is essential for substrate unfolding and translocation and for opening of the gated channel in the α ring through which substrates enter the 20 S particle (1517). Because this portal is quite narrow (1820), only extended polypeptides can enter the 20 S proteasome. Consequently, a globular substrate must be unfolded by the associated ATPase complex to be translocated and digested within the 20 S particle.PAN and the six ATPases found at the base of the 19 S particle are members of the AAA+ superfamily of multimeric ATPases which also includes the ATP-dependent proteases Lon and FtsH and the regulatory components of the bacterial ATP-dependent proteases ClpAP, ClpXP, and HslUV (8, 21). For mechanistic studies of the roles of ATP, the simpler archaeal PAN-20 S system offers many technical advantages over the much more complex 26 S proteasome. For example, prior studies of PAN (17, 22) demonstrated that unfolding of globular substrates (e.g. green fluorescent protein-ssrA) requires ATP hydrolysis. The same was also shown for the Escherichia coli ATP-dependent proteases ClpXP (23) and ClpAP (24). We have also shown that unfolding by PAN can take place on the surface of the ATPase ring in the absence of translocation (15). Thus, unfolding seems to proceed independently from protein translocation into the 20 S proteolytic particle. It is noteworthy that other studies suggest that proteins are unfolded by energy-dependent translocation through the ATPase ring (25, 26). These studies have suggested that the translocation of an unfolded polypeptide from the ATPase into the 20 S core is an active process that is coupled to ATP hydrolysis. A key to underline a detailed molecular mechanism for substrate binding, unfolding, and translocation by the proteasome regulatory ATPase complex is improved understanding of its architecture and the nucleotide-dependent structural transitions that afford these functions.To date we and others have failed to generate micrographs suitable for three-dimensional reconstruction of PAN using single-particle EM analysis. Likewise, structural information regarding the three-dimensional architecture and subunit organization within the 19 S particle is very limited. In fact, high resolution three-dimensional information on the 19 S complex is not yet available. Most knowledge available is based on cross-linking experiments (11, 12) as well as EM structural analysis (710), which provided a three-dimensional model outline of the general architecture of the 26 S complex. Unlike the 19 S complex, the structure of the 20 S subcomplex was determined by x-ray crystallography (18, 19). In contrast to the highly homogenous structure of the 20 S complex, the structural heterogeneity and flexibility of the 19 S subcomplex is presumably reflected in multiple conformations, which in turn also contribute to the difficulty in generating a high resolution three-dimensional structural model of the 26 S proteasome. Accordingly, the initial goal of this study was to generate a three-dimensional model of PAN that will allow us to determine its general architecture and to correlate unique conformational transitions within this ATPase with the nucleotide state of the complex (i.e. in the presence of ATPγS, ADP, or in the absence of nucleotides).Smith et al. (27) suggested a general architecture for the PAN-20 S complex based on two-dimensional averaging of a Thermoplasma acidophilum (TA)3 20 S proteasome and Methanococcus jannaschii (MJ) PAN hybrid complex in the presence of ATPγS. Based on side-view projections of that complex, these authors proposed that PAN assumes an overall structure similar to E. coli HslU (2830).We realized that although PAN appears heterogeneous in electron micrographs, it does not occupy all possible orientations when adsorbed to carbon-coated electron microscopy (EM) grids, a prerequisite for single particle analysis. This problem was overcome by applying electron tomography in conjunction with a three-dimensional averaging procedure that accounts for the missing wedge in the Fourier space of electron tomograms (31, 32). The three-dimensional model generated revealed an unexpected architecture leading to a possible molecular mechanism describing the function of PAN and presumably the 19 S ATPases.  相似文献   

20.
Efficient elimination of misfolded proteins by the proteasome system is critical for proteostasis. Inadequate proteasome capacity can lead to aberrant aggregation of misfolded proteins and inclusion body formation, a hallmark of neurodegenerative disease. The proteasome system cannot degrade aggregated proteins; however, it stimulates autophagy-dependent aggregate clearance by producing unanchored lysine (K)63-linked ubiquitin chains via the proteasomal deubiquitinating enzyme Poh1. The canonical function of Poh1, which removes ubiquitin chains en bloc from proteasomal substrates prior to their degradation, requires intact 26S proteasomes. Here we present evidence that during aggresome clearance, 20S proteasomes dissociate from protein aggregates, while Poh1 and selective subunits of 19S proteasomes are retained. The dissociation of 20S proteasome components requires the molecular chaperone Hsp90. Hsp90 inhibition suppresses 26S proteasome remodeling, unanchored ubiquitin chain production, and aggresome clearance. Our results suggest that 26S proteasomes undergo active remodeling to generate a Poh1-dependent K63-deubiquitinating enzyme to facilitate protein aggregate clearance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号