首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Membrane cofactor protein (MCP) (CD46), a complement-regulatory protein, serves as a cellular receptor for measles virus. Its amino-terminal portion is composed of four short consensus repeats (SCR), three of which (SCR1, SCR2, and SCR4) carry an N-linked oligosaccharide. In order to determine the importance of the three N-glycans for the function of MCP as a measles virus receptor, we established Chinese hamster ovary (CHO) cell lines that stably express mutant MCPs lacking one of the three motifs for N glycosylation (NQ1, NQ2, and NQ4). In an additional mutant (NQ1-2), two glycosylation motifs were altered, allowing the addition of an N-linked oligosaccharide only in SCR4. The abilities of the mutant MCPs to function as measles virus receptors were analyzed with three different assays: (i) binding of measles virus hemagglutinin to MCP immobilized on nitrocellulose; (ii) binding of measles virus to CHO cells expressing wild-type or mutant MCP; and (iii) infection of the transfected CHO cells by measles virus. In all three assays, the abilities of the NQ2 and NQ1-2 mutants to serve as measles virus receptors were drastically impaired. The NQ1 and NQ4 mutants were recognized by measles virus almost as efficiently as the wild-type protein. These results indicate that the N-glycan attached to SCR2 is essential for MCP to serve as a measles virus receptor, while the oligosaccharides attached to SCR1 and SCR4 are of only minor importance.  相似文献   

2.
Recently, two cellular membrane proteins, the membrane cofactor protein CD46 and the membrane-organizing external spike protein, moesin, have been identified to be functionally associated with measles virus (MV) infectivity of cells. We investigated the functional consequences of binding of monoclonal antibodies to both molecules individually and combined on MV attachment, fusion, and plaque formation and the putative direct physical interaction of moesin and CD46. We found that antibodies to moesin or CD46 separately inhibited MV-cell interactions to a high percentage in the plaque test, by approximately 85 and 75%, respectively. The inhibition by combinations of antibodies was additive at low concentrations and complete at high concentrations. This indicates that similar sites of interaction were blocked by steric hindrance. Furthermore, antimoesin antibodies blocked the infection of CD46-negative mouse cell lines with MV. Chemical cross-linking of cell surface proteins indicated the close proximity of CD46 and moesin in the membrane of human cells, and coimmunoprecipitation of moesin with CD46 suggested their physical interaction. Immunohistochemically by electron microscopy, CD46 and moesin were found to be localized at sites of the cellular membrane where MV particles adsorbed. These data support a model of direct interaction of CD46 and moesin in the cellular membrane and suggest that this complex is functionally involved in the uptake of MV into cells.  相似文献   

3.
4.
5.
Membrane cofactor protein (MCP; CD46) is a widely expressed type 1 transmembrane glycoprotein that inhibits complement activation on host cells. It also is a receptor for several pathogens including measles virus, Streptococcus pyogenes, Neisseria gonorrhea, and Neisseria meningitidis. That MCP may have signaling capability was suggested by its microbial interactions. That is, binding of MCP on human monocytes by measles virus hemagglutinin or cross-linking by an anti-MCP Ab resulted in IL-12 down-regulation, while binding to MCP by Neisseria on epithelial cells produced a calcium flux. Through alternative splicing, MCP is expressed on most cells with two distinct cytoplasmic tails of 16 (CYT-1) or 23 (CYT-2) amino acids. These play pivotal roles in intracellular precursor processing and basolateral localization. We investigated the putative signal transduction pathway mediated by MCP and demonstrate that CYT-2, but not CYT-1, is phosphorylated on tyrosine. We examined MCP tail peptides and performed Ab cross-linking experiments on several human cell lines and MCP isoform transfectants. We found an MCP peptide of CYT-2 was phosphorylated by a src kinase system. Western blots of the cells lines demonstrated that cells bearing CYT-2 were also phosphorylated on tyrosine. Additionally, we provide genetic and biochemical evidence that the src family of kinases is responsible for the latter phosphorylation events. In particular, the src kinase, Lck, is required for phosphorylation of MCP in the Jurkat T cell line. Taken together, these studies suggest a src family-dependent pathway for signaling through MCP.  相似文献   

6.
The limitations of high-level expression of virus surface proteins in yeast are not well understood. The inefficiency of yeast to produce active human virus surface glycoproteins, as well as other mammalian glycoproteins, is usually explained by the inefficient folding of the glycoprotein into its characteristic and functional three-dimensional structure from a random coil. The endoplasmic reticulum (ER) is a highly versatile protein factory that is equipped with chaperones and folding enzymes essential for protein folding. To improve folding and solubility of viral surface glycoprotein, the genes encoding human ER resident chaperones calnexin, calreticulin, immunoglobin binding protein (BiP), protein disulfide isomerase (PDI) and foldase (ERp57) were coexpressed together with hemagglutinin gene from measles virus in the yeast Saccharomyces cerevisiae. The effect of coexpressing chaperones on the total yield of measles virus hemagglutinin (MeH) as well as the intracellular fate of the glycoprotein was determined. Our results demonstrated that coexpression of human calnexin noticeably enhanced the quantity of the soluble glycosylated form of MeH in yeast. The coexpression of human calreticulin-, PDI-, ERp57- and BiP-encoding genes did not improve the quality of recombinant MeH.  相似文献   

7.
8.
The involvement of moesin in measles virus (MV) entry was investigated with moesin-positive and -negative mouse embryonic stem (ES) cells. MV infection of these cells was very ineffective and was independent of moesin expression. Furthermore, when these cells were transfected to express human CD46, a 100-fold increase in syncytium formation was observed with these cells and was independent of the expression of moesin. The only obvious difference between moesin-positive and -negative ES cells was the shape of the syncytia formed. Moesin-negative ES cells expressing or not expressing human CD46 formed separate pieces of fragmented syncytia which were torn apart during spreading, whereas ES cells expressing moesin exhibited typical syncytia. In addition, moesin was not detected on the surface of any murine cells or cell lines that we have tested by a flow cytometric assay with moesin-specific antibodies. These findings indicate that murine moesin is neither a receptor nor a CD46 coreceptor for MV entry into mouse ES cells. Moesin is involved in actin filament-plasma membrane interactions as a cross-linker, and it affects only the spreading and shape of MV-mediated syncytia.  相似文献   

9.
Tatsuo H  Ono N  Yanagi Y 《Journal of virology》2001,75(13):5842-5850
Morbilliviruses comprise measles virus, canine distemper virus, rinderpest virus, and several other viruses that cause devastating human and animal diseases accompanied by severe immunosuppression and lymphopenia. Recently, we have shown that human signaling lymphocyte activation molecule (SLAM) is a cellular receptor for measles virus. In this study, we examined whether canine distemper and rinderpest viruses also use canine and bovine SLAMs, respectively, as cellular receptors. The Onderstepoort vaccine strain and two B95a (marmoset B cell line)-isolated strains of canine distemper virus caused extensive cytopathic effects in normally resistant CHO (Chinese hamster ovary) cells after expression of canine SLAM. The Ako vaccine strain of rinderpest virus produced strong cytopathic effects in bovine SLAM-expressing CHO cells. The data on entry with vesicular stomatitis virus pseudotypes bearing measles, canine distemper, or rinderpest virus envelope proteins were consistent with development of cytopathic effects in SLAM-expressing CHO cell clones after infection with the respective viruses, confirming that SLAM acts at the virus entry step (as a cellular receptor). Furthermore, most measles, canine distemper, and rinderpest virus strains examined could any use of the human, canine, and bovine SLAMs to infect cells. Our findings suggest that the use of SLAM as a cellular receptor may be a property common to most, if not all, morbilliviruses and explain the lymphotropism and immunosuppressive nature of morbilliviruses.  相似文献   

10.
11.
Newcastle disease virus (NDV), an avian paramyxovirus, initiates infection with attachment of the viral hemagglutinin-neuraminidase (HN) protein to sialic acid-containing receptors, followed by fusion of viral and cell membranes, which is mediated by the fusion (F) protein. Like all class 1 viral fusion proteins, the paramyxovirus F protein is thought to undergo dramatic conformational changes upon activation. How the F protein accomplishes extensive conformational rearrangements is unclear. Since several viral fusion proteins undergo disulfide bond rearrangement during entry, we asked if similar rearrangements occur in NDV proteins during entry. We found that inhibitors of cell surface thiol/disulfide isomerase activity--5'5-dithio-bis(2-nitrobenzoic acid) (DTNB), bacitracin, and anti-protein disulfide isomerase antibody--inhibited cell-cell fusion and virus entry but had no effect on cell viability, glycoprotein surface expression, or HN protein attachment or neuraminidase activities. These inhibitors altered the conformation of surface-expressed F protein, as detected by conformation-sensitive antibodies. Using biotin maleimide (MPB), a reagent that binds to free thiols, free thiols were detected on surface-expressed F protein, but not HN protein. The inhibitors DTNB and bacitracin blocked the detection of these free thiols. Furthermore, MPB binding inhibited cell-cell fusion. Taken together, our results suggest that one or several disulfide bonds in cell surface F protein are reduced by the protein disulfide isomerase family of isomerases and that F protein exists as a mixture of oxidized and reduced forms. In the presence of HN protein, only the reduced form may proceed to refold into additional intermediates, leading to the fusion of membranes.  相似文献   

12.
We have demonstrated previously that the cellular HuR protein binds U-rich elements in the 3′ untranslated region (UTR) of Sindbis virus RNA and relocalizes from the nucleus to the cytoplasm upon Sindbis virus infection in 293T cells. In this study, we show that two alphaviruses, Ross River virus and Chikungunya virus, lack the conserved high-affinity U-rich HuR binding element in their 3′ UTRs but still maintain the ability to interact with HuR with nanomolar affinities through alternative binding elements. The relocalization of HuR protein occurs during Sindbis infection of multiple mammalian cell types as well as during infections with three other alphaviruses. Interestingly, the relocalization of HuR is not a general cellular reaction to viral infection, as HuR protein remained largely nuclear during infections with dengue and measles virus. Relocalization of HuR in a Sindbis infection required viral gene expression, was independent of the presence of a high-affinity U-rich HuR binding site in the 3′ UTR of the virus, and was associated with an alteration in the phosphorylation state of HuR. Sindbis virus-induced HuR relocalization was mechanistically distinct from the movement of HuR observed during a cellular stress response, as there was no accumulation of caspase-mediated HuR cleavage products. Collectively, these data indicate that virus-induced HuR relocalization to the cytoplasm is specific to alphavirus infections and is associated with distinct posttranslational modifications of this RNA-binding protein.  相似文献   

13.
Protein folding in the endoplasmic reticulum goes hand in hand with disulfide bond formation, and disulfide bonds are considered key structural elements for a protein's folding and function. We used the HIV-1 Envelope glycoprotein to examine in detail the importance of its 10 completely conserved disulfide bonds. We systematically mutated the cysteines in its ectodomain, assayed the mutants for oxidative folding, transport, and incorporation into the virus, and tested fitness of mutant viruses. We found that the protein was remarkably tolerant toward manipulation of its disulfide-bonded structure. Five of 10 disulfide bonds were dispensable for folding. Two of these were even expendable for viral replication in cell culture, indicating that the relevance of these disulfide bonds becomes manifest only during natural infection. Our findings refine old paradigms on the importance of disulfide bonds for proteins.  相似文献   

14.
Human membrane cofactor protein (MCP, CD46) is a 45-70 kDa protein with genetic and tissue-specific heterogeneity, and is expressed on all nucleated cells. MCP consists from N-terminus of 4 short consensus repeats (SCRs), 1-3 serine/threonine-rich (ST) domains, a transmembrane domain (TM) and a cytoplasmic tail (CYT). More than 8 isoforms are generated secondary to alternative splicing due to combinations of various exons encoding the ST, TM and CYT domains. It serves as a cofactor of serine protease factor I for inactivation of complement C3b and C4b. Its primary role is to protect host cells from homologous complement attack by inactivating C3b/C4b deposited on the membrane. It also acts as receptors for measles virus (MV), some kinds of bacteria and for a putative ligand on oocytes. MV infection causes temporal host immune suppression, which may appear secondary to signaling events through MCP on macrophages and dendritic cells. These functional properties of human MCP may facilitate xenotransplantation and may be useful in the generation of animal models of measles by creating human MCP-expressing animals.  相似文献   

15.
Immune precipitation was used to study the humoral immune response of patients with subacute sclerosing panencephalitis (SSPE). Patients with SSPE have a progressive infection of the CNS by measles or a measles variant despite high serum antibody levels to measles virus as measured by standard serologic techniques. However, when the antibody response to individual measles virus proteins was measured, we found a striking reduction in the ability of sera from patients with SSPE to precipitate the matrix (M) protein as compared to the precipitation of the M protein by sera from normal adults who had natural measles infection in childhood, or by convalescent sera obtained 3 to 5 weeks after a naturally occurring measles infection. The decreased antibody response to the M protein in sera from patients with SSPE occurred despite a vigorous antibody response to the other viral proteins, suggesting a selective defect in the production of antibody to a single viral protein. The reduced anti-M antibody in sera from patients with SSPE was demonstrated whether immune precipitation was performed with wild-type measles virus or SSPE virus proteins. These results suggest that in SSPE only small amounts of the M protein are produced. This result may help explain how measles virus persists in the central nervous system of patients with SSPE.  相似文献   

16.
The nature of the interaction between the enveloped DNA-containing poxviruses and the surfaces of host cells as a first step in virus infection is not known. In this investigation we have identified and defined structural and functional properties of a 32-kDa protein of vaccinia virus. This protein is part of the virus envelope and binds to the cell surface of various cultured cells. The gene encoding the 32-kDa viral protein was mapped and sequenced. It was found to code a 35,426-Da protein with a large N-terminal domain with sequence homology to carbonic anhydrases and a C-terminal domain with sequences similar to those of the attachment glycoprotein VP7 of rotavirus and to transmembrane proteins. A potential cell surface binding domain was within the last 50 amino acid residues of the C terminus. The 32-kDa protein is basic, predicted pI 8.67, is synthesized at late times post-infection, may form dimers held by disulfide bonds at the single cysteine 262, and is apparently non-glycosylated. The 32-kDa protein is a vaccinia virus antigen, with predicted antigenic sites located near amino acids 108-110 (carbonic anhydrase domain) and 298-299 (transmembrane domain). Several lines of evidence suggest that the 32-kDa protein is needed for efficient virus replication in cultured cells but that in addition to this protein other viral proteins are involved in the process of virus entry into cells.  相似文献   

17.
The binding of antimoesin antibodies from ascites fluids to the surfaces of human and rodent cells was found to parallel the level of CD46 expression. No such reactivity was detected with a purified antimoesin antibody which recognized intracellular moesin. In Western blots, antimoesin antibodies were found to react with solubilized CD46 and a recombinant soluble form of CD46. Antimoesin antibodies also reacted with CD46/CD4 molecules containing only the SCR I and II domains required for measles virus (MV) hemagglutinin binding onto CD46. We suggest that the weak cross-reactivity of antimoesin antibodies with CD46 explains the inhibitory effect of these antibodies on MV entry and that moesin is not directly involved in MV binding.  相似文献   

18.
A variety of pathogens use CD46, a ubiquitously expressed membrane protein that regulates complement activation, as a cellular attachment receptor. While the CD46 binding sites of several pathogens, including measles virus, Neisseria gonorrhea, and human herpesvirus 6, have been described, the region of CD46 responsible for adenovirus binding has not been determined. In this study, we used competition experiments with known CD46 ligands, CD46-specific antibodies, and a set of CD46 mutants to localize the binding domain for the group B adenovirus serotype 35 (Ad35). Our results show that Ad35 competes with measles virus for binding to CD46 but not with complement protein C3b. We further show that this interaction is a protein-protein interaction and that N glycosylations do not critically contribute to infection with Ad35 fiber-containing Ad vectors. Our data demonstrate that the native conformation of the CCP2 domain is crucial for Ad35 binding and that the substitution of amino acids at positions 130 to 135 or 152 to 156 completely abolishes the receptor function of CD46. These regions localize to the same planar face of CD46 and likely form an extended adenovirus binding surface, since no single amino acid substitution within these areas eliminates virus binding. Finally, we demonstrate that the infection with a virus possessing human group B serotype Ad11 fibers is also mediated by the CCP2 domain. This information is important to better characterize the mechanisms of the receptor recognition by adenovirus relative to other pathogens that interact with CD46, and it may help in the design of antiviral therapeutics against adenovirus serotypes that use CD46 as a primary cellular attachment receptor.  相似文献   

19.
Measles virus has been reported to enter host cells via either of two cellular receptors, CD46 and CD150 (SLAM). CD46 is found on most cells of higher primates, while SLAM is expressed on activated B, T, and dendritic cells and is an important regulatory molecule of the immune system. Previous reports have shown that measles virus can down regulate expression of its two cellular receptors on the host cell surface during infection. In this study, the process of down regulation of SLAM by measles virus was investigated. We demonstrated that expression of the hemagglutinin (H) protein of measles virus was sufficient for down regulation. Our studies provided evidence that interactions between H and SLAM in the endoplasmic reticulum (ER) can promote the down regulation of SLAM but not CD46. In addition, we demonstrated that interactions between H and SLAM at the host cell surface can also contribute to SLAM down regulation. These results indicate that two mechanisms involving either intracellular interactions between H and SLAM in the ER or receptor-mediated binding to H at the surfaces of host cells can lead to the down regulation of SLAM during measles virus infection.  相似文献   

20.
Absorption of a pooled human gamma globulin preparation with acetone-treated measles virus-infected cells removed all antibodies to measles virus antigens except a portion of the antibody to the fusion (F) protein. The residual anti-F antibody had hemolysis-inhibiting and virus-neutralizing activities, inhibited spread of infection through cell fusion, and was effective in protection of passively immunized mice from fatal measles encephalitis, providing evidence for the protective role of human antibody to the F protein of measles virus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号