首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The crystal structure of E. coli Fmu, determined at 1.65 A resolution for the apoenzyme and 2.1 A resolution in complex with AdoMet, is the first representative of the 5-methylcytosine RNA methyltransferase family that includes the human nucleolar proliferation-associated protein p120. Fmu contains three subdomains which share structural homology to DNA m(5)C methyltransferases and two RNA binding protein families. In the binary complex, the AdoMet cofactor is positioned within the active site near a novel arrangement of two conserved cysteines that function in cytosine methylation. The site is surrounded by a positively charged cleft large enough to bind its unique target stem loop within 16S rRNA. Docking of this stem loop RNA into the structure followed by molecular mechanics shows that the Fmu structure is consistent with binding to the folded RNA substrate.  相似文献   

2.
We have determined the structure of Pvu II methyltransferase (M. Pvu II) complexed with S -adenosyl-L-methionine (AdoMet) by multiwavelength anomalous diffraction, using a crystal of the selenomethionine-substituted protein. M. Pvu II catalyzes transfer of the methyl group from AdoMet to the exocyclic amino (N4) nitrogen of the central cytosine in its recognition sequence 5'-CAGCTG-3'. The protein is dominated by an open alpha/beta-sheet structure with a prominent V-shaped cleft: AdoMet and catalytic amino acids are located at the bottom of this cleft. The size and the basic nature of the cleft are consistent with duplex DNA binding. The target (methylatable) cytosine, if flipped out of the double helical DNA as seen for DNA methyltransferases that generate 5-methylcytosine, would fit into the concave active site next to the AdoMet. This M. Pvu IIalpha/beta-sheet structure is very similar to those of M. Hha I (a cytosine C5 methyltransferase) and M. Taq I (an adenine N6 methyltransferase), consistent with a model predicting that DNA methyltransferases share a common structural fold while having the major functional regions permuted into three distinct linear orders. The main feature of the common fold is a seven-stranded beta-sheet (6 7 5 4 1 2 3) formed by five parallel beta-strands and an antiparallel beta-hairpin. The beta-sheet is flanked by six parallel alpha-helices, three on each side. The AdoMet binding site is located at the C-terminal ends of strands beta1 and beta2 and the active site is at the C-terminal ends of strands beta4 and beta5 and the N-terminal end of strand beta7. The AdoMet-protein interactions are almost identical among M. Pvu II, M. Hha I and M. Taq I, as well as in an RNA methyltransferase and at least one small molecule methyltransferase. The structural similarity among the active sites of M. Pvu II, M. Taq I and M. Hha I reveals that catalytic amino acids essential for cytosine N4 and adenine N6 methylation coincide spatially with those for cytosine C5 methylation, suggesting a mechanism for amino methylation.  相似文献   

3.
DNA methyltransferases can be photolabeled with S-adenosyl-L-methionine (AdoMet). Specific incorporation of radioactivity has been demonstrated after photolabeling with either [methyl-3H]AdoMet or [35S]AdoMet (Som, S., and Friedman, S. (1990) J. Biol. Chem. 265, 4278-4283). The labeling is believed to occur at the AdoMet binding site. With the purpose of localizing the site responsible for [methyl-3H]AdoMet photolabeling, we cleaved the labeled EcoRII methyltransferase by chemical and enzymatic reactions and isolated the radiolabeled peptides by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and high pressure liquid chromatography. The labeled peptides were identified by amino-terminal sequencing. A common region was localized which accounted for 65-70% of the total label. This region includes a highly conserved core sequence present in all DNA (cytosine 5)-methyltransferases. One such fragment was digested further with chymotrypsin, and amino acid analysis of the resulting 3H-labeled peptide was consistent with the sequence Ala-Gly-Phe-Pro-(Cys)-Gln-Pro-Phe-Ser-Leu. However, the cysteine residue was not recovered as carboxymethylcysteine. The Pro-Cys bond was found to be protected from cleavage at cysteine residues after cyanylation. These results suggest that the cysteine residue is modified by the labeling reaction. The chymotryptic fragment was hydrolyzed enzymatically to single amino acids, and the labeled amino acid was identified as S-methylcysteine by thin layer chromatography. These results indicate that the cysteine residue is located at or close to the AdoMet binding site of EcoRII methyltransferase.  相似文献   

4.
On the evolutionary origin of eukaryotic DNA methyltransferases and Dnmt2   总被引:1,自引:0,他引:1  
Jurkowski TP  Jeltsch A 《PloS one》2011,6(11):e28104
The Dnmt2 enzymes show strong amino acid sequence similarity with eukaryotic and prokaryotic DNA-(cytosine C5)-methyltransferases. Yet, Dnmt2 enzymes from several species were shown to methylate tRNA-Asp and had been proposed that eukaryotic DNA methyltransferases evolved from a Dnmt2-like tRNA methyltransferase ancestor [Goll et al., 2006, Science, 311, 395-8]. It was the aim of this study to investigate if this hypothesis could be supported by evidence from sequence alignments. We present phylogenetic analyses based on sequence alignments of the methyltransferase catalytic domains of more than 2300 eukaryotic and prokaryotic DNA-(cytosine C5)-methyltransferases and analyzed the distribution of DNA methyltransferases in eukaryotic species. The Dnmt2 homologues were reliably identified by an additional conserved CFT motif next to motif IX. All DNA methyltransferases and Dnmt2 enzymes were clearly separated from other RNA-(cytosine-C5)-methyltransferases. Our sequence alignments and phylogenetic analyses indicate that the last universal eukaryotic ancestor contained at least one member of the Dnmt1, Dnmt2 and Dnmt3 families of enzymes and additional RNA methyltransferases. The similarity of Dnmt2 enzymes with DNA methyltransferases and absence of similarity with RNA methyltransferases combined with their strong RNA methylation activity suggest that the ancestor of Dnmt2 was a DNA methyltransferase and an early Dnmt2 enzyme changed its substrate preference to tRNA. There is no phylogenetic evidence that Dnmt2 was the precursor of eukaryotic Dnmts. Most likely, the eukaryotic Dnmt1 and Dnmt3 families of DNA methyltransferases had an independent origin in the prokaryotic DNA methyltransferase sequence space.  相似文献   

5.
King MY  Redman KL 《Biochemistry》2002,41(37):11218-11225
Proteins that have sequence homology with known RNA m(5)C methyltransferases contain two conserved cysteines, each of which lies within a sequence that bears similarity to a methyltransferase active site. Other enzymes that transfer a methyl group to carbon 5 of a pyrimidine nucleotide, such as the bacterial DNA m(5)C methyltransferases, utilize their single conserved cysteine residue to form a covalent Michael adduct with carbon 6 of the pyrimidine ring during catalysis. We present a model for the utilization of two cysteines in catalysis by RNA m(5)C methyltransferases. It is proposed that one thiol acts in a classical fashion by forming a covalent link to carbon 6 of the pyrimidine base, while the other cysteine assists breakdown of the covalent adduct. Therefore, alteration of the assisting cysteine is anticipated to stabilize the covalent enzyme-RNA intermediate. The model was conceived as a possible explanation for the effects of mutations that change the conserved cysteines in Nop2p, an apparent RNA m(5)C methyltransferase that is essential for ribosome assembly and yeast viability. Evidence for the predicted accumulation of protein-RNA complexes following mutation of the assisting cysteine has been obtained with Nop2p and a known tRNA m(5)C methyltransferase called Ncl1p (Trm4).  相似文献   

6.
Anamorsin is a recently identified molecule that inhibits apoptosis during hematopoiesis. It contains an N‐terminal methyltransferase‐like domain and a C‐terminal Fe‐S cluster motif. Not much is known about the function of the protein. To better understand the function of anamorsin, we have solved the crystal structure of the N‐terminal domain at 1.8 Å resolution. Although the overall structure resembles a typical S‐adenosylmethionine (SAM) dependent methyltransferase fold, it lacks one α‐helix and one β‐strand. As a result, the N‐terminal domain as well as the full‐length anamorsin did not show S‐adenosyl‐l ‐methionine (AdoMet) dependent methyltransferase activity. Structural comparisons with known AdoMet dependent methyltransferases reveals subtle differences in the SAM binding pocket that preclude the N‐terminal domain from binding to AdoMet. The N‐terminal methyltransferase‐like domain of anamorsin probably functions as a structural scaffold to inhibit methyl transfers by out‐competing other AdoMet dependant methyltransferases or acts as bait for protein–protein interactions.Proteins 2014; 82:1066–1071. © 2013 Wiley Periodicals, Inc.  相似文献   

7.
Transfer RNA (Gm18) methyltransferase (TrmH (SpoU)) catalyzes the transfer of a methyl group from S-adenosyl-l-methionine (AdoMet) to the 2'-OH of guanosine 18 in tRNA. This enzyme is a member of the SpoU family of RNA methyltransferases. Recent computational researches have shown that three amino acid sequence motifs are conserved among the SpoU members. Recently, we determined the crystal structures of the apoand AdoMet bound forms of TrmH (Nureki, O., Watanabe, K., Fukai, S., Ishii, R., Endo, Y., Hori, H., and Yokoyama, S. (2004) Structure 12, 593-602). Furthermore, we clarified the AdoMet binding site and proposed the catalytic mechanism. Since the functions of the conserved amino acid residues in the motifs remain unknown, here we have prepared 17 mutants of TrmH and carried out various biochemical studies, including determination of the kinetic parameters for both AdoMet and tRNA, S-adenosyl-l-homocysteine affinity chromatography, gel mobility shift assay, CD spectroscopy, and analytical gel filtration. Our results show that Asn(35), Arg(41), Glu(124), and Asn(152) are involved in binding tRNA and that the Asn(35) residue is involved in the release of S-adenosyl-l-homocysteine. Several residues of TrmH are important for stability of the enzyme. Taken together, our biochemical studies reinforce the previously proposed catalytic mechanism. We also discuss amino acid substitutions in general within the SPOUT superfamily of methyltransferases.  相似文献   

8.
The rRNAs in Escherichia coli contain methylations at 24 nucleotides, which collectively are important for ribosome function. Three of these methylations are m5C modifications located at nucleotides C967 and C1407 in 16S rRNA and at nucleotide C1962 in 23S rRNA. Bacterial rRNA modifications generally require specific enzymes, and only one m5C rRNA methyltransferase, RsmB (formerly Fmu) that methylates nucleotide C967, has previously been identified. BLAST searches of the E.coli genome revealed a single gene, yebU, with sufficient similarity to rsmB to encode a putative m5C RNA methyltransferase. This suggested that the yebU gene product modifies C1407 and/or C1962. Here, we analysed the E.coli rRNAs by matrix assisted laser desorption/ionization mass spectrometry and show that inactivation of the yebU gene leads to loss of methylation at C1407 in 16 S rRNA, but does not interfere with methylation at C1962 in 23 S rRNA. Purified recombinant YebU protein retains its specificity for C1407 in vitro, and methylates 30 S subunits (but not naked 16 S rRNA or 70 S ribosomes) isolated from yebU knockout strains. Nucleotide C1407 is located at a functionally active region of the 30 S subunit interface close to the P site, and YebU-directed methylation of this nucleotide seems to be conserved in bacteria. The yebU knockout strains display slower growth and reduced fitness in competition with wild-type cells. We suggest that a more appropriate designation for yebU would be the rRNA small subunit methyltransferase gene rsmF, and that the nomenclature system be extended to include the rRNA methyltransferases that still await identification.  相似文献   

9.
Although their amino acid sequences and structure closely resemble DNA methyltransferases, Dnmt2 proteins were recently shown by Goll and colleagues to function as RNA methyltransferases transferring a methyl group to the C5 position of C38 in tRNA(Asp). We observe that human DNMT2 methylates tRNA isolated from Dnmt2 knock-out Drosophila melanogaster and Dictyostelium discoideum. RNA extracted from wild type D. melanogaster was methylated to a lower degree, but in the case of Dictyostelium, there was no difference in the methylation of RNA isolated from wild-type and Dnmt2 knock-out strains. Methylation of in vitro transcribed tRNA(Asp) confirms it to be a target of DNMT2. Using site directed mutagenesis, we show here that the enzyme has a DNA methyltransferase-like mechanism, because similar residues from motifs IV, VI, and VIII are involved in catalysis as identified in DNA methyltransferases. In addition, exchange of C292, which is located in a CFT motif conserved among Dnmt2 proteins, strongly reduced the catalytic activity of DNMT2. Dnmt2 represents the first example of an RNA methyltransferase using a DNA methyltransferase type of mechanism.  相似文献   

10.
Sequence comparison of several RNA m(5)C methyltransferases identifies two conserved cysteine residues that belong to signature motifs IV and VI of RNA and DNA methyltransferases. While the cysteine of motif IV is used as the nucleophilic catalyst by DNA m(5)C methyltransferases, this role is fulfilled by the cysteine of motif VI in Escherichia coli 16S rRNA m(5)C967 methyltransferase, but whether this conclusion applies to other RNA m(5)C methyltransferases remains to be verified. Yeast tRNA m(5)C methyltransferase Trm4p is a multisite-specific S-adenosyl-L-methionine-dependent enzyme that catalyzes the methylation of cytosine at C5 in several positions of tRNA. Here, we confirm that Cys310 of motif VI in Trm4p is essential for nucleophilic catalysis, presumably by forming a covalent link with carbon 6 of cytosine. Indeed, the enzyme is able to form a stable covalent adduct with the 5-fluorocytosine-containing RNA substrate analog, whereas the C310A mutant protein is inactive and unable to form the covalent complex.  相似文献   

11.
On the basis of amino acid sequence alignments and structural data of related enzymes, we have performed a mutational analysis of 14 amino acid residues in the catalytic domain of the murine Dnmt3a DNA-(cytosine C5)-methyltransferase. The target residues are located within the ten conserved amino acid sequence motifs characteristic for cytosine-C5 methyltransferases and in the putative DNA recognition domain of the enzyme (TRD). Mutant proteins were purified and tested for their catalytic properties and their abilities to bind DNA and AdoMet. We prepared a structural model of Dnmt3a to interpret our results. We demonstrate that Phe50 (motif I) and Glu74 (motif II) are important for AdoMet binding and catalysis. D96A (motif III) showed reduced AdoMet binding but increased activity under conditions of saturation with S-adenosyl-L-methionine (AdoMet), indicating that the contact of Asp96 to AdoMet is not required for catalysis. R130A (following motif IV), R241A and R246A (in the TRD), R292A, and R297A (both located in front of motif X) showed reduced DNA binding. R130A displayed a strong reduction in catalytic activity and a complete change in flanking sequence preferences, indicating that Arg130 has an important role in the DNA interaction of Dnmt3a. R292A also displayed reduced activity and changes in the flanking sequence preferences, indicating a potential role in DNA contacts farther away from the CG target site. N167A (motif VI) and R202A (motif VIII) have normal AdoMet and DNA binding but reduced catalytic activity. While Asn167 might contribute to the positioning of residues from motif VI, according to structural data Arg202 has a role in catalysis of cytosine-C5 methyltransferases. The R295A variant was catalytically inactive most likely because of destabilization of the hinge sub-domain of the protein.  相似文献   

12.
The DNA methyltransferase of the AluI restriction-modification system, from Arthrobacter luteus, converts cytosine to 5-methylcytosine in the sequence AGCT. The gene for this methyltransferase, aluIM, was cloned into Escherichia coli and sequenced. A 525-codon open reading frame was found, consistent with deletion evidence, and the deduced amino acid sequence revealed all ten conserved regions common to 5-methylcytosine methyltransferases. The aluIM sequence predicts a protein of M(r) 59.0k, in agreement with the observed M(r), making M.AluI the largest known methyltransferase from a type II restriction-modification system. M.AluI also contains the largest known variable region of any monospecific DNA methyltransferase, larger than that of most multispecific methyltransferases. In other DNA methyltransferases the variable region has been implicated as the sequence-specific target recognition domain. An in-frame deletion that removes a third of this putative target-recognition region leaves the Alu I methyltransferase still fully active.  相似文献   

13.
A plant cytosine methyltransferase cDNA was isolated using degenerate oligonucleotides, based on homology between prokaryote and mouse methyltransferases, and PCR to amplify a short fragment of a methyltransferase gene. A fragment of the predicted size was amplified from genomic DNA from Arabidopsis thaliana. Overlapping cDNA clones, some with homology to the PCR amplified fragment, were identified and sequenced. The assembled nucleic acid sequence is 4720 bp and encodes a protein of 1534 amino acids which has significant homology to prokaryote and mammalian cytosine methyltransferases. Like mammalian methylases, this enzyme has a C terminal methyltransferase domain linked to a second larger domain. The Arabidopsis methylase has eight of the ten conserved sequence motifs found in prokaryote cytosine-5 methyltransferases and shows 50% homology to the murine enzyme in the methyltransferase domain. The amino terminal domain is only 24% homologous to the murine enzyme and lacks the zinc binding region that has been found in methyltransferases from both mouse and man. In contrast to mouse where a single methyltransferase gene has been identified, a small multigene family with homology to the region amplified in PCR has been identified in Arabidopsis thaliana.  相似文献   

14.
Predictive motifs derived from cytosine methyltransferases.   总被引:36,自引:51,他引:36       下载免费PDF全文
Thirteen bacterial DNA methyltransferases that catalyze the formation of 5-methylcytosine within specific DNA sequences possess related structures. Similar building blocks (motifs), containing invariant positions, can be found in the same order in all thirteen sequences. Five of these blocks are highly conserved while a further five contain weaker similarities. One block, which has the most invariant residues, contains the proline-cysteine dipeptide of the proposed catalytic site. A region in the second half of each sequence is unusually variable both in length and sequence composition. Those methyltransferases that exhibit significant homology in this region share common specificity in DNA recognition. The five highly conserved motifs can be used to discriminate the known 5-methylcytosine forming methyltransferases from all other methyltransferases of known sequence, and from all other identified proteins in the PIR, GenBank and EMBL databases. These five motifs occur in a mammalian methyltransferase responsible for the formation of 5-methylcytosine within CG dinucleotides. By searching the unidentified open reading frames present in the GenBank and EMBL databases, two potential 5-methylcytosine forming methyltransferases have been found.  相似文献   

15.
S Friedman  S Som    L F Yang 《Nucleic acids research》1991,19(19):5403-5408
Binding of the EcoRII DNA methyltransferase to azacytosine-containing DNA protects the enzyme from digestion by proteases. The limit digest yields a product having a Mr on SDS-PAGE 20% less than the intact protein. The N terminus of the tryptic digestion product was sequenced and found to be missing the N terminal 82 amino acids. Under the conditions used unbound enzyme was digested to small peptides. Protection of the enzyme from protease digestion implies that the enzyme undergoes major conformational changes when bound to DNA. The trypsin sensitive region of the EcoRII methyltransferase occurs prior to the first constant region shared with other procaryotic DNA(cytosine-5)methyltransferases. To determine if this region played a role in substrate binding or specificity, N-terminal deletion mutants were studied. Deletion of 97 amino acids resulted in a decrease of enzyme activity. Further deletions caused a complete loss of activity. Enzyme deleted through amino acid 85 was purified and found to have the same specificity as wild type however there was an increase in Km for both S-adenosylmethionine (AdoMet) and DNA of 27 and 18 fold respectively. The N-terminus of the EcoRII methylase, although a variable region present in many procaryotic DNA(cytosine-5)methylases, plays no role in determining enzyme specificity, although it does contribute to the interaction with both AdoMet and DNA.  相似文献   

16.
Redman KL 《Biomacromolecules》2006,7(12):3321-3326
This work reveals that mutant forms of RNA methyltransferases that form 5-methylcytosine (m5C) have characteristics that may make them useful for biomacromolecular assembly. The experiments utilized bacterially expressed Trm4p, a tRNA methyltransferase cloned from Saccharomyces cerevisiae. Like DNA m5C methyltransferases, Trm4p mediates methylation using a covalent intermediate, which would allow Trm4p to be trapped as a stable protein-RNA complex when the substrate RNA contains a modified cytosine base such as 5-fluorocytosine. However, mutant forms of Trm4p are identified that fail to release RNA resulting in the formation of denaturant stable methyltransferase-RNA complexes that contain only natural nucleotides. The ability to form stable complexes with natural RNA gives these mutant forms of Trm4p greater potential versatility for biomacromolecule construction applications than the wild-type Trm4p enzyme or DNA methyltransferases for which the trapping of the covalent intermediate requires the presence of a nucleotide analogue at the site of modification.  相似文献   

17.
The Dnmt3a DNA methyltransferase is responsible for establishing DNA methylation patterns during mammalian development. We show here that the mouse Dnmt3a DNA methyltransferase is able to transfer the methyl group from S-adenosyl-l-methionine (AdoMet) to a cysteine residue in its catalytic center. This reaction is irreversible and relatively slow. The yield of auto-methylation is increased by addition of Dnmt3L, which functions as a stimulator of Dnmt3a and enhances its AdoMet binding. Auto-methylation was observed in binary Dnmt3a AdoMet complexes. In the presence of CpG containing dsDNA, which is the natural substrate for Dnmt3a, the transfer of the methyl group from AdoMet to the flipped target base was preferred and auto-methylation was not detected. Therefore, this reaction might constitute a regulatory mechanism which could inactivate unused DNA methyltransferases in the cell, or it could simply be an aberrant side reaction caused by the high methyl group transfer potential of AdoMet. ENZYMES: Dnmt3a is a DNA-(cytosine C5)-methyltransferase, EC 2.1.1.37. STRUCTURED DIGITAL ABSTRACT: ? Dnmt3a methylates Dnmt3a by methyltransferase assay (View interaction) ? Dnmt3a and DNMT3L methylate Dnmt3a by methyltransferase assay (View interaction).  相似文献   

18.
HhaI DNA methyltransferase belongs to the C5-cytosine methyltransferase family, which is characterized by the presence of a set of highly conserved amino acids and motifs present in an invariant order. HhaI DNA methyltransferase has been subjected to a lot of biochemical and crystallographic studies. A number of issues, especially the role of the conserved amino acids in the methyltransferase activity, have not been addressed. Using sequence comparison and structural data, a structure-guided mutagenesis approach was undertaken, to assess the role of conserved amino acids in catalysis. Site-directed mutagenesis was performed on amino acids involved in cofactor S-adenosyl-L-methionine (AdoMet) binding (Phe18, Trp41, Asp60 and Leu100). Characterization of these mutants, by in vitro /in vivo restriction assays and DNA/AdoMet binding studies, indicated that most of the residues present in the AdoMet-binding pocket were not absolutely essential. This study implies plasticity in the recognition of cofactor by HhaI DNA methyltransferase.  相似文献   

19.
Ultraviolet irradiation of EcoRII methyltransferase in the presence of its substrate, S-adenosyl-L-methionine (AdoMet), results in the formation of a stable enzyme-substrate adduct. This adduct can be demonstrated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis after irradiation of the enzyme in the presence of either [methyl-3H]AdoMet or [35S]AdoMet. The extent of photolabeling is low. Under optimal conditions, 4.5 pmol of [3H]AdoMet is incorporated into 100 pmol of enzyme. Use of the 8-azido derivative of AdoMet as the photolabeling substrate increases the incorporation by approximately 2-fold. However, this adduct, unlike the one formed with AdoMet, is not stable when treated with thiol reagents or precipitated with trichloroacetic acid. A catalytically active conformation of the enzyme is needed for AdoMet photolabeling. Heat-inactivated enzyme or proteins for which AdoMet is not a substrate or cofactor do not undergo adduct formation. Two other methyltransferases, MspI and dam methylases are also shown to form adducts with AdoMet upon UV irradiation. The binding constant of the EcoRII methyltransferase for AdoMet determined with the photolabeling reaction is 11 microM, which is similar to the binding constant of 9 microM previously reported (Friedman, S. (1986) Nucleic Acids Res. 14, 4543-4556). The AdoMet analogs S-adenosyl-L-homocysteine (Ki = 0.83 microM) and sinefungin (Ki = 4.3 microM) are effective inhibitors of photolabeling, whereas S-adenosyl-D-homocysteine (Ki = 46 microM) is a poor inhibitor. These experiments indicate that AdoMet becomes covalently bound at the AdoMet-binding site on the enzyme molecule. The EcoRII methyltransferase-AdoMet adduct is very stable and could be used to identify the AdoMet-binding site on DNA methyltransferases.  相似文献   

20.
An Escherichia coli open reading frame, ygcA, was identified as a putative 23 S ribosomal RNA 5-methyluridine methyltransferase (Gustafsson, C., Reid, R., Greene, P. J., and Santi, D. V. (1996) Nucleic Acids Res. 24, 3756-3762). We have cloned, expressed, and purified the 50-kDa protein encoded by ygcA. The purified enzyme catalyzed the AdoMet-dependent methylation of 23 S rRNA but did not act upon 16 S rRNA or tRNA. A high performance liquid chromatography-based nucleoside analysis identified the reaction product as 5-methyluridine. The enzyme specifically methylated U1939 as determined by a nuclease protection assay and by methylation assays using site-specific mutants of 23 S rRNA. A 40-nucleotide 23 S rRNA fragment (nucleotide 1930--1969) also served as an efficient substrate for the enzyme. The apparent K(m) values for the 40-mer RNA oligonucleotide and AdoMet were 3 and 26 microm, respectively, and the apparent k(cat) was 0.06 s(-1). The enzyme contains two equivalents of iron/monomer and has a sequence motif similar to a motif found in iron-sulfur proteins. We propose to name this gene rumA and accordingly name the protein product as RumA for RNA uridine methyltransferase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号