首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Enzymes involved in the metabolism of xenobiotic substances are often polymorphic in humans. Such genetic polymorphisms may result in inter-individual differences in detoxification of certain chemicals, and as a consequence, possibly affect health-risk assessments. This present work concerns studies of the influence of polymorphic enzymes in the detoxification of acrylamide and its metabolite glycidamide. Enzymes that enhance conjugation with glutathione (GSH), the glutathione transferases (GSTs), may influence the detoxification of both acrylamide and glycidamide, whereas the enzyme epoxide hydrolase (EH) should only catalyse the hydrolysis of glycidamide. In this study, the doses of acrylamide or glycidamide measured as specific adducts to hemoglobin (Hb) were analysed in blood samples after in vitro incubation with these compounds. Blood samples from individuals with different genotypes for GSTT1 and GSTM1 were studied. No significant differences in adduct levels depending on genotype were noted. In a parallel experiment, incubation with ethylene oxide was used as positive control. In this experiment individuals carrying GSTT1 showed lower adduct level increments from ethylene oxide than individuals lacking GSTT1. Furthermore, addition of ethacrynic acid or laurylamine, compounds which inhibit GST and EH, respectively, did not affect the adduct levels. These results suggest that neither GSTs nor EH have any significant effect on the blood dose, measured as Hb-adducts over time, after exposure to acrylamide or glycidamide.  相似文献   

2.
3.
4.
Genetic polymorphisms in glutathione S-transferases (GSTs) genes might influence the detoxification activities of the enzymes predisposing individuals to cancer risk. Owing to the presence of these genetic variants, inter-individual and ethnic differences in GSTs detoxification capacity have been observed in various populations. Therefore, the present study was performed to determine the prevalence GSTM1 0/0, GSTT1 0/0, GSTP1 Ile(105)Val, and GSTA1 A/B polymorphisms in 154 healthy individuals from South Tunisia, and to compare them with those observed in North and Centre Tunisian populations and other ethnic groups. GSTM1 and GSTT1 polymorphisms were analyzed by a Multiplex-PCR approach, whereas GSTP1 and GSTA1 polymorphisms were examined by PCR-RFLP. The frequencies of GSTM10/0 and GSTT1 0/0 genotypes were 53.9% and 27.9%, respectively. The genotype distribution of GSTP1 was 47.4% (Ile/Ile), 40.9% (Ile/Val), and 11.7% (Val/Val). For GSTA1, the genotype distribution was 24.7% (A/A), 53.9% (A/B), and 21.4% (B/B). The combined genotypes distribution of GSTM1, GSTT1, GSTP1 and GSTA1 polymorphisms showed that thirty one of the 36 possible genotypes were present in our population; eight of them have a frequency greater than 5%. To the best of our knowledge, this is the first report of GSTs polymorphisms in South Tunisian population. Our findings demonstrate the impact of ethnicity and reveal a characteristic pattern for Tunisian population. The molecular studies in these enzymes provide basis for further epidemiological investigations in the population where these functional polymorphisms alter therapeutic response and act as susceptibility markers for various clinical conditions.  相似文献   

5.
Styrene is one of the most important organic chemicals used worldwide. Its main metabolite, styrene-7,8-oxide (SO), is considered responsible for the genotoxic effects associated with exposure to styrene. SO is detoxified by hydrolysis catalyzed by epoxide hydrolase (EH), or, to a minor extent, by conjugation mediated by glutathione S-transferases (GSTs). The purpose of the present study was to investigate whether EH (exons 3 and 4), GSTP1 (exons 5 and 6), GSTM1 and GSTT1 polymorphisms have any influence on the genotoxicity of SO in human leukocytes. Peripheral leukocytes from 30 healthy donors were exposed to SO (50 and 200 micro M) and genotoxicity was evaluated by means of the micronucleus (MN) test and alkaline comet assay, using 1% DMSO as solvent control. When EH genotypes were classified in low, medium, and high with respect to the expected EH activity, an increase in induced comet tail length was observed with decreasing EH activity in SO-exposed cells. An increase was seen in induced MN frequency in EH low-activity donors. These findings are consistent with the detoxifying activity of this enzyme. In addition, increases in MN frequencies for GSTP1 *A/*B and *A/*C genotypes with regard to the wild-type homozygous *A/*A genotype were detected. This may be due to a low detoxifying activity as a consequence of altered SO affinity of the variant protein, but must be confirmed using homozygote variant individuals, not included in this study. No clear results were obtained for GSTM1 or GSTT1 genotypes, even when performing the analysis after grouping individuals with the same expected EH activity, probably due to the minor role that glutathione conjugation plays in styrene metabolism. The present in vitro findings using human leukocytes suggest that polymorphisms in EH, and, to a lesser extent, in GSTP1, may influence induction of cytogenetic and DNA damage by SO.  相似文献   

6.
A rapid and sensitive method using liquid chromatography–tandem mass spectrometry (LC–MS/MS) for simultaneous determination of adducts from acrylamide, glycidamide and ethylene oxide to N-terminal valines in hemoglobin (Hb) was developed. This new procedure is based on the same principles as the N-alkyl Edman procedure for analysis of adducts from electrophilic agents to N-terminal valines in Hb. The N-substituted valines can be detached, enriched and measured selectively as thiohydantoins by the use of an Edman reagent, in this case fluorescein isothiocyanate (FITC). This procedure is denoted as the “adduct FIRE procedure” as the FITC reagent is used for measurement of adducts (R) formed from electrophilic compounds with a modified Edman procedure. In this study, fluorescein thiohydantoin (FTH) analytes of N-substituted valines from acrylamide, glycidamide and ethylene oxide, as well as their corresponding hepta- and tri-deuterium-substituted analogues, were synthesized. These analytes (n = 8) were then characterized by LC–MS/MS (ESI, positive ion mode) and obtained product ions were interpreted. A considerable work with optimization of the FIRE procedure™, resulted in a procedure in which low background levels of the studied adducts could be measured from 250 μL lyzed whole blood samples (human non-smokers). The analytes were enriched and purified with solid phase extraction columns and analyzed by LC–MS/MS with LOQ down to 1 pmol adduct/g Hb. Compared to other procedures for determination of N-terminal Hb adducts, the introduction of FITC has led to a simplified procedure, where whole blood also can be used, giving new opportunities and reduced hand on time with increased sample throughput.  相似文献   

7.
Landi S 《Mutation research》2000,463(3):247-283
Glutathione S-transferases (GSTs) are an important part of the cellular detoxification system and, perhaps, evolved to protect cells against reactive oxygen metabolites. Theta is considered the most ancient among the GSTs and theta-like GSTs are found in mammals, fish, insects, plants, unicellular algae, and bacteria. It is thought that an ancestral theta-gene underwent an early duplication before the divergence of fungi and animals and further duplications generated the variety of the other classes of GSTs (alpha, mu, phi, etc.). The comparison of the aminoacidic homologies among mammals suggests that a duplication of an ancient GST theta occurred before the speciation of mammals and resulted in the subunits GSTT1 and GSTT2. The ancestral GST theta has a dehalogenase activity towards several halogenated compounds, such as the dichloromethane. In fact, some aerobic and anaerobic methylotrophic bacteria can use these molecules as the sole carbon and energy source. The mammalian GST theta cannot sustain the growth of bacteria but still retains the dehalogenating activity. Therefore, although mammalian GST theta behaves as a scavenger towards electrophiles, such as epoxides, it acts also as metabolic activator for halogenated compounds, producing a variety of intermediates potentially dangerous for DNA and cells. For example, mice exposed to dichloromethane show a dose-dependent incidence of cancer via the GSTT1-1 pathway. Because GSTT1-1 is polymorphic in humans, with about 20% of Caucasians and 80% of Asians lacking the enzyme, the relationship between the phenotype and the incidence of cancer has been investigated extensively in order to detect GSTT1-1-associated differential susceptibility towards endogenous or exogenous carcinogens. The lack of the enzyme is related to a slightly increased risk of cancer of the bladder, gastro-intestinal tract, and for tobacco-related tumors (lung or oral cavity). More pronounced risks were found in males with the GSTT1-null genotype for brain diseases and skin basal cell carcinomas not related to sunlight exposures. Moreover, there was an increased risk of kidney and liver tumors in humans with the GSTT1-1 positive genotype following exposures to halogenated solvents. Interestingly, the liver and kidney are two organs that express the highest level of GST theta in the human body. Thus, the GSTT1-1 genotype is suspected to confer decreased or increased risk of cancer in relation to the source of exposure; in vitro studies, mostly conducted on metabolites of butadiene, confirm the protective action of GSTT1-1, whereas, thus far, experimental studies prove that the increasing risk is limited.  相似文献   

8.
Several genes involved in the metabolism of carcinogens have been found to be polymorphic in the human population, and specific alleles are associated with increased risk of cancer at various sites. This study is focused on the polymorphic enzymes glutathione S-transferase M1 (GSTM1) and T1 (GSTT1) that are involved in the detoxification of many xenobiotics involved in the etiology of bladder cancer. To investigate the role of GSTM1 and GSTT1 in bladder carcinogenesis, the polymerase chain reaction was used to determine GSTM1 and GSTT1 genotypes of cancer patients (n = 76) and controls (n = 248). The proportion of putative risk GSTM1 null genotype in the case group was 52.6%, compared to 49.6% in the control group, but the GSTT1 0/0 frequency in the bladder cancer group was significantly higher (P = 0.04) in comparison with the control group (27.6 vs 16.9%). Individuals lacking the GSTT1 gene are at an approximately 1.9-fold higher risk (OR = 1.87, C.I. 95% = 1.03-3.42) of developing bladder cancer in comparison with individuals with at least one active allele in the GSTT1 locus. A significantly higher incidence of GSTM1 deletion genotype (P = 0.02) was found in smokers with bladder cancer compared to the controls (70.6 vs 49.6%). Smokers lacking the GSTM1 gene are at an approximately 2.4-fold higher risk of bladder cancer (OR = 2.44, C.I. 95% = 1.10-5.30). The effect of smoking associated with the GSTT1 0/0 genotype was not found to affect the risk of bladder cancer.  相似文献   

9.
In order to find the effect of genetic polymorphisms of glutathione S-transferase M1 (GSTM1) and GSTT1 on hematological changes of individuals chronically exposed to natural sour gas, the present study was done. Study subjects (59 males, 55 females) were residents of contaminated areas of Masjid-i-Sulaiman (southwest of Iran). The GSTM1 and GSTT1 genotypes were determined using a polymerase chain reaction-based method. The multiple linear regression method was applied. There is significant association between GSTs genotypes and either hemoglobin (t=2.185, P=0.031) or hematocrit (t=2.454, P=0.016). Also there is weak association between GSTs genotypes and WBC counts (t=1.802, P=0.074). The hemoglobin and hematocrit levels and WBC counts increased in individuals who had null genotypes of GSTM1 and GSTT1 compared to subjects with one or two active genes. Also the levels of hemoglobin and hematocrit and WBC counts increased in persons with one active genotype compared to subjects who had two active genes. There is no significant association between neither platelet nor WBC differential parameters and GSTs genotypes.  相似文献   

10.
Glutathione S-transferases (GSTs) carry out a wide range of functions in cells, such as detoxification of endogenous compounds, removal of reactive oxygen species, and even catalysis of reactions in metabolic pathways beyond detoxification. Based on previous research, GSTM1 and GSTT1 might modify the risk of atherosclerosis. The aim of our study was to analyze the possible association of GSTM1 and GSTT1 gene polymorphisms with the occurrence of carotid plaque (CP); and biochemical parameters of oxidative stress, lipid profile and inflammation, in 346 consecutive patients with advanced atherosclerosis that underwent endarterectomy. A multiplex polymerase chain reaction (PCR) method was used to detect the deletions in GSTM1 and GSTT1 genes in the genomic DNA in 346 patients and 330 controls. The adjusted OR for CP presence (adjusted for age, gender, smoking, hypertension, BMI, HDLC, TG) was 0.24, 95 %CI 0.08–0.7, p < 0.01 for GSTT1 null and 1.13, 95 %CI 0.62–2.07, p = 0.7 for GSTM1 null genotype. We found significantly lower plasma lipoprotein (a) (Lp(a)) levels in GSTT1 null compared to wild-type genotype carriers in patient group (20.68 ± 26.02 mg/dl vs. 40.66 ± 42.89 mg/dl, mean ± SD, p = 0.04). The serum interleukin-6 (IL-6) values were significantly influenced by both GST polymorphisms in patients with CP. Our results, showing the significant reduction of GSTT1 deletions in patients with CP, suggest involvement of GSTs in carotid atherosclerosis. This study shows additional view of the possible role of GSTs in advanced chronic inflammatory disease of vascular system, but the confirmation in a larger studies in different populations are needed.  相似文献   

11.
A cohort of 59 persons with industrial handling of low levels of acrylonitrile is being studied as part of a medical surveillance programme. Previously, an extended haemoglobin adduct monitoring (N-(cyanoethyl)valine and N-(hydroxyethyl)-valine) was performed regarding the glutathione transferases hGSTM1 and hGSTT1 polymorphisms but no influence of hGSTM1 or hGSTT1 polymorphisms on specific adduct levels was found. A compilation of case reports of human accidental poisonings had pointed to significant individual differences in human acrylonitrile metabolism and toxicity. Therefore, a re-evaluation of the industrial cohort included known polymorphisms of the glutathione transferases hGSTM3 and hGSTP1 as well as of the cytochrome P450 CYP2E1. A detailed statistical analysis revealed that exposed carriers of the allelic variants of hGSTP1, hGSTP1*B/hGSTP1*C, characterized by a single nucleotide polymorphism at nucleotide 313 which results in a change from Ile to Val at codon 104, had higher levels of the acrylonitrile-specific haemoglobin adduct N-(cyanoethyl)valine compared to the carriers of the codon 113 alleles hGSTP1*A and hGSTP1*D. The single nucleotide polymorphism at codon 113 of hGSTP1 (hGSTP1*A/hGSTP1*B versus hGSTP1*C/hGSTP1*D) did not show an effect, and also no influence was seen on specific haemoglobin adduct levels of the polymorphisms of hGSTM3 or CYP2E1. The data, therefore, point to a possible influence of a human enzyme polymorphism of the GSTP1 gene at codon 104 on the detoxication of acrylonitrile which calls for experimental toxicological investigation. The study also confirmed the impact of GSTT1 polymorphism on background N-(hydroxyethyl)-valine adduct levels in haemoglobin which are caused by endogenous ethylene oxide.  相似文献   

12.
Research on the effects of polychlorinated biphenyl (PCB) toxicity tends to focus on commercial PCB congeners and parent PCBs themselves. However, studies have suggested that PCB metabolites may be more interesting than the parent compounds because of their high reactivity. As a key metabolic enzyme, glutathione S-transferases (GSTs) are responsible for detoxification by catalyzing the conjugation reaction of glutathione (GSH) to xenobiotics. Inhibition of GST activity indicates reduced detoxification ability. We investigated the inhibition of chicken liver GSTs by parent PCBs and their metabolites and observed dose-dependent inhibition in vitro; inhibitory efficiency declined in the order GSH-conjugate > mono-hydroxyl ≈ quinone ≈ hydroquinone > parent PCB. Structure-inhibitory activity relationship studies indicated that with the inhibitory activity greatly increases with the number of GSH moieties or chlorine substituents on the quinone ring. However, no significant linear relationship was observed for chlorine pattern changes on the phenyl ring. The reversibility of PCB metabolite inhibition of GSTs is discussed. PCB mono-hydroxyl, hydroquinone and quinone forms showed irreversible inhibition of GSTs, which suggests a mechanism involving covalent binding to cysteine residues in the GST active site. PCB glutathionyl conjugates showed reversible GST inhibition, implying non-covalent binding. Furthermore, reactive oxygen species did not significantly affect GST activity.  相似文献   

13.
The glutathione S-transferase (GST) family of enzymes has a vital role in phase II of biotransformation of environmental carcinogens, pollutants, drugs and other xenobiotics. GSTs are polymorphic, with the type and frequency of polymorphism being ethnic dependent. Polymorphisms in GST genes have been shown to be associated with susceptibility to disease and disease outcome. We determined the frequencies of GSTM1, GSTT1 and GSTP1 polymorphisms in 591 volunteers who had been residents of Rio de Janeiro for at least six months. Blood was collected and DNA extracted by proteinase K/SDS digestion. Information about social habits and health problems was also recorded. GSTM1 and GSTT1 polymorphisms were analyzed by a PCR-Multiplex procedure, whereas GSTP1 polymorphism was analyzed by PCR-RFLP. We found that 42.1% (48.9% of whites and 34.2% of non-whites) of the individuals had the GSTM1 null genotype, whereas 25.4% (25.1% of whites and 25.7% of non-whites) had the GSTT1 null genotype. The genotypic distribution of GSTP1 was 49.7% I/I, 38.1% I/V, and 12.2% V/V, whereas the allelic frequencies were 0.69 for the Ile allele, and 0.31 for the Val allele. The frequencies of GST polymorphisms in this Brazilian population were found to be different from those observed in other populations, particularly of other South American countries.  相似文献   

14.
Several genes involved in the metabolism of carcinogenesis have been found to be polymorphic in the human population, and specific alleles are associated with increase risk of cancer of various sites. This study is focused on the polymorphic enzymes glutathione-S-transferase M1 (GSTM1) and T1 (GSTT1) that involved in the detoxification of many xenobiotics involved in the etiology of prostate cancer. Objective. To evaluate whether GSTM1 and/or GSTT1 contribute to prostate cancer (CaP) etiology, we studied 110 incident CaP cases and 122 controls. Results. The probability of having CaP was increased in men who had homozygous deleted (non-functional) genotypes at GSTT1 (OR = 2.17; 95% CI = 1–3.79) but not GSTM1 (OR = 0.89; 95% CI = 0.66–1.88). Hence, individuals lacking the GSTT1 gene are at approximately twofold higher risk of developing prostate cancer in comparison with individuals with at least one active allele in the GSTT1 locus. Conclusion. These results suggest that GSTT1 is associated with CaP risk. The effect of smoking associated with the GSTT10/0 genotype was not found to affect the risk of prostate cancer.  相似文献   

15.
 Glutathione S-transferase-mediated metabolism of exogenous compounds usually leads to detoxification, but there are some exceptions. For example, glutathione S-transferase-T1 (GSTT1) can also generate genotoxic metabolites. Studies on the biology of GSTT1 are limited by the lack of specific antibodies recognizing GSTT1 in animal tissues. We localized GSTT1 immunohistochemically in mouse kidney, liver, and lung using a novel antibody targeted against the C-terminus of rat GSTT1 (rGSTT1). The antibody was characterized using immunoblot and shown to specifically recognize rGSTT1 and mouse GSTT1, but not human GSTT1. In kidney, GSTT1 staining was detected only in collecting duct epithelium. In liver, pericentral hepatocytes showed cytoplasmic and nuclear staining. Nuclear staining was also observed in several other hepatocytes without relation to liver zonation. Nuclei and supranuclear cytoplasm of bile duct epithelium and endothelium of interlobular arterioles also reacted strongly. In lung, staining was observed in bronchiolar epithelium and in surrounding muscle cells. Type II pneumocytes and endothelial cells of intrapulmonary capillaries also showed strong positive staining. This report describes the first immunohistochemical localization of GSTT1 in mammalian tissues. The reported location of GSTT1 is consistent with its known metabolic activity toward compounds such as dichloromethane and their metabolism into genotoxic products. Accepted: 11 May 1998  相似文献   

16.
刘喃喃  朱芳  徐强  高希武 《昆虫学报》2006,49(4):671-679
杀虫剂抗性是指“生物的一个品系发展了对该生物正常种群中大多数个体具有致死作用剂量的杀虫药剂的能力”。行为改变、生理学上的变化或代谢解毒等抗性机制能够降低毒物到达靶标的有效剂量。行为抗性是指减少昆虫与毒物接触或使昆虫能够存活于对大多数对正常个体致死(或有害)的环境中的任何行为。生理学改变的机制包括杀虫剂对表皮的穿透性降低、增加对药剂阻隔(sequestration)或储存和加速杀虫剂的排泄。细胞色素P450、水解酶和谷胱甘肽S-转移酶是杀虫药剂代谢解毒的主要3大酶系。细胞色素P450是一个超基因家族,是生物体内对外源性和内源性化合物解毒代谢或活化最重要的酶系。在许多害虫中发现P450介导的解毒代谢增加导致了对杀虫药剂抗性的增加。谷胱甘肽S-转移酶是可溶性的 二聚体蛋白,与代谢解毒、大量内源性和外源性化合物的排泄有关,许多昆虫中证明其抗药性与该酶活性增加有关。水解酶实际上是一组异源的酶类,其对抗药性的作用包括通过基因扩增增加酶量,作为结合蛋白隔离杀虫药剂或通过增加酶的活性加强对药剂的水解作用。  相似文献   

17.
Abstract: The nature of the pathogenic insult in acrylamide neuropathy is unknown, but axonal transport disturbances are suspected. Using N1E.115 neuroblastoma in vitro, we examined acrylamide and related compounds in terms of general cytotoxicity, ability to block neurite outgrowth, and effects on neurite integrity and fast axonal transport. Acrylamide, glycidamide, and methylene-bisacrylamide were weakly cytotoxic in a 51Cr-release assay, but only at ≥10 m M (order of efficacy: methylene-bis-acrylamide > glycidamide > acrylamide). Neurite outgrowth by differentiating cells was inhibited at 100-fold lower concentrations, with similar EC50 values for all three toxicants, i.e., acrylamide, 70 ± 15 μ M ; methylene-bis-acrylamide, 92 ± 31 μ M ; glycidamide, 120 ± 30 μ M . Only glycidamide (1 m M ) caused degeneration of established neurites within a period of 48 h. Video-enhanced contrast differential interference contrast microscopy was used to test the effect of acrylamide and glycidamide on organelle transport in the neurites. In exposures of ≤48 h at 1 m M , neither toxicant altered bidirectional organelle flux, measured as organelles transported per minute per micrometer of neurite diameter. Anterograde and retrograde organelle speeds were also undisturbed. These results suggest that mechanisms other than direct inhibition of organellar motility are responsible for acrylamide's neurotoxicity in vivo.  相似文献   

18.
The glutathione S-transferase gene family has an important role in the biotransformation and detoxification of different xenobiotics and endogenous compounds. Two polymorphic genes of this family, GSTM1 and GSTT1, present null alleles that consequently do not produce the respective enzyme when the genotype is homozygous. These polymorphisms are also interesting for population dynamics studies because they have great frequency variations among different ethnic groups and have been reported worldwide. The distribution of these alleles in urban and Amerindian populations in Brazil has been described, but none of those studies reported on African-descended rural populations. The aim of this study was to analyze the genotype frequency distribution of the GSTM1 and GSTT1 null alleles in an urban sample from the Federal District (n = 91) and in four semi-isolated African-descended populations: Mocambo (n = 55), Rio das R?s (n = 117), Riacho de Sacutiaba (n = 34), and Kalunga (n = 68). The GSTM1 and GSTT1 null genotype frequencies in these populations range from 17% to 35% for GSTM1 and from 22% to 44% for GSTT1. These values are similar to those described in other African and African-descended populations. Despite this range, there is no distribution difference among the analyzed populations. Combined GSTM1 and GSTT1 null genotype frequencies range from 6% to 13% and are similar to European-derived populations, suggesting admixture with this ethnic group. This can be interpreted as a European contribution to these African-descended populations. Regarding the urban population in the Federal District, our results suggest an important African and European contribution.  相似文献   

19.
Uhm YK  Yoon SH  Kang IJ  Chung JH  Yim SV  Lee MH 《Life sciences》2007,81(3):223-227
Vitiligo is an acquired pigmentary disorder of the skin involving melanocyte dysfunction. It has been reported that melanocyte impairment could be related to increased oxidative stress. The glutathione S-transferases (GSTs) are group of polymorphic enzymes that are important in protection against oxidative stress. To find the relationship between GSTM1 and GSTT1 polymorphisms with vitiligo susceptibility, GSTM1 and GSTT1 (homozygous deletion vs. non-deleted) polymorphisms between vitiligo patients (n=310) and healthy controls (n=549) were analyzed. We observed significant association in null alleles of the GSTM1 (P<0.001, OR=2.048, 95% CI=1.529-2.743). GSTM1 null type was also statistically different between two vitiligo subtypes and controls (Focal P<0.001, OR=2.224, 95% CI=1.499-3.298; Generalized P=0.001, OR=1.974, 95% CI=1.342-2.904). However, no significant association in GSTT1 (P=0.869, OR=1.024, 95% CI=0.775-1.353) was observed with vitiligo. In combined analysis of GSTM1 and GSTT1, both null type and GSTM1/GSTT1 (null/present) group showed significant differences between controls and vitiligo patients. These results suggest that GSTM1 null type might be associated with vitiligo susceptibility in Korean population.  相似文献   

20.
In contrast to their mammalian hosts, parasitic nematodes are heme auxotrophs and require pathways for the uptake and transport of exogenous heme for incorporation into hemoproteins. Phase II detoxification Nu-class glutathione transferase (GST) proteins have a proposed role as heme-binding ligandins in parasitic nematodes. The genome-verified free-living nematode Caenorhabditis elegans also cannot synthesize heme and is an ideal functional genomics model to delineate the role of individual nematode GSTs in heme trafficking and heme detoxification. In this study, C. elegans was exposed to externally controlled heme concentrations ranging from 20-fold suboptimal growth levels to 10-fold supra-optimal growth levels to mimic fluctuations in blood- and tissue-feeding parasitic cousins from the same nematode group. A new heme-responsive GST (GST-19) was identified by subproteomics approaches. Functional characterization of this and two other C. elegans GSTs revealed that they all have high affinity for heme compounds similar to mammalian soluble heme carrier proteins such as HBP23 ( K d approximately 10 (-8) M). In the genomics-predicted absence of orthologous mammalian soluble heme-binding proteins in nematodes, we propose that Nu-class GSTs are candidates in the cellular processing of heme compounds. Toxic heme binding may be coupled to enzymatic protection from its breakdown as several GSTs possess glutathione peroxidase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号