首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
M Sato  K Inoue    M Kasai 《Biophysical journal》1992,63(6):1500-1505
An anion selective channel and three types of cation selective channels were found in planar lipid bilayers incorporating synaptic vesicles from rat brains. In asymmetric KCl solutions (cis: 300 mM/trans: 150 mM), the anion selective channel showed a single-channel conductance of 94 pS and was inactivated by negative voltages and by 4-acetoamido-4'-isothiocyanostilbene-2,2'-disulfonic acid disodium salt (SITS). In the same solution, single-channel conductances of three types of cation selective channels were 250 pS (Type 1), 248 pS (Type 2), and 213 pS (Type 3), respectively. These channels resembled one another in single-channel conductances but were different in gating behaviors. Type 1 channel, which was most frequently observed, had a remarkable subconducting state (175 pS). Type 2 channel had a flickering state that increased as the potential became more positive, and a long inactive state that increased as the potentials were more negative. Type 3 channel, which was also sensitive to the potentials, had the open-channel probability increased as the potential became more positive.  相似文献   

2.
Fusion of synaptic vesicle membranes with planar bilayer membranes.   总被引:2,自引:1,他引:1       下载免费PDF全文
The interaction of synaptic vesicles with horizontal bilayer lipid membranes (BLMs) was investigated as a model system for neurotransmitter release. High concentrations (200 mM) of the fluorescent dye, calcein, were trapped within synaptic vesicles by freezing and thawing. In the presence of divalent ions (usually 15 mM CaCl2), these frozen and thawed synaptic vesicles (FTSVs) adhere to squalene-based phosphatidylserine-phosphatidylethanolamine BLMs whereupon they spontaneously release their contents which is visible by fluorescence microscopy as bright flashes. The highest rate of release was obtained in KCl solutions. Release was virtually eliminated in isotonic glucose, but could be elicited by perfusion with KCl or by addition of urea. The fusion and lysis of adhering FTSVs appears to be the consequence of stress resulting from entry of permeable external solute (KCl, urea) and accompanying water. An analysis of flash diameters in experiments where Co+2, which quenches calcein fluorescence, was present on one or both sides of the BLM, indicates that more than half of the flashes represent fusion events, i.e., release of vesicle contents on the trans side of the BLM. A population of small, barely visible FTSVs bind to BLMs at calcium ion concentrations of 100 microM. Although fusion of these small FTSVs to BLMs could not be demonstrated, fusion with giant lipid vesicles was obvious and dramatic, albeit infrequent. Addition of FTSVs or synaptic vesicles to BLMs in the presence of 100 microM-15 mM Ca2+ produced large increases in BLM conductance. The results presented demonstrate that synaptic vesicles are capable of fusing with model lipid membranes in the presence of Ca+2 ion which, at the lower limit, may begin to approach physiological concentrations.  相似文献   

3.
Unilamellar vesicles are observed to form spontaneously at planar lipid bilayers agitated by exothermic chemical reactions. The membrane-binding reaction between biotin and streptavidin, two strong transmembrane neutralization reactions, and a weak neutralization reaction involving an "antacid" buffer, all lead to spontaneous vesicle formation. This formation is most dramatic when a viscosity differential exists between the two phases bounding the membrane, in which case vesicles appear exclusively in the more viscous phase. A hydrodynamic analysis explains the phenomenon in terms of a membrane flow driven by liberated reaction energy, leading to vesicle formation. These results suggest that energy liberated by intra- and extracellular chemical reactions near or at cell and internal organelle membranes can play an important role in vesicle formation, membrane agitation, or enhanced transmembrane mass transfer.  相似文献   

4.
Aggregation state of melittin in lipid vesicle membranes   总被引:5,自引:4,他引:1       下载免费PDF全文
We have performed time-resolved fluorescence energy transfer measurements using melittin as donor and a modified melittin as acceptor. The melittin molecules were bound to fluid vesicle membranes of dimyristoylphosphatidylcholine. Analysis of the temporal decay of the energy transfer and of its variation with the donor and acceptor concentrations led to the conclusion that melittin in fluid membranes is usually monomeric. Only at the high melittin/lipid molar ratio of 1/200 and high ionic strength evidence for aggregation was obtained, the percentage of aggregated melittin molecules being of the order of 10%. The shortcomings of previous steady-state measurements of fluorescence energy transfer between melittin molecules are discussed.  相似文献   

5.
The various experimental approaches and octadecyl rhodamine B chloride (R18) assay's capability to meet the criteria for examining the Ca2+dependent synaptic vesicles (SVs) fusion with target membranes have been investigated. The existence of at least two simultaneous processes one of which attributed to real Ca2+-dependent membrane fusion, while another is considered to be non-specific probe transfer has been shown. The differences in response to temperature changes were found for R18 fluorescence dequenching upon stimulation of membrane fusion or nonspecific probe transfer. The temperature dependences of the probe dequenching rate were the same for heterotypic and homotypic membrane systems and increased with the temperature growth. The combination of R18 fluorescence studies with the data obtained by dynamic light scattering (DLS) offers a unique opportunity for the determination of SVs aggregation and the membrane fusion. The cholesterol content of the synaptosomal plasma membrane was modulated by methyl-β-cyclodextrin (MCD). The MCD molecule has proven to bind directly the membrane cholesterol and interact with lipophilic probe R18 that affects its fluorescence. The obvious distinctions in probe dequenching due to the membrane mixing or the MCD effect were observed. The cholesterol depletion from the synaptosomal plasma membranes was found to inhibit the process of Ca2+-induced membrane fusion with SVs. Thus, the manipulations with conditions of R18 probe dequenching at the model conditions, specific for the Ca2+-triggered fusion steps of regulated exocytosis, allowed us to determine the relative contribution of probe transfer and genuine membrane fusion to the overall fluorescence signal.  相似文献   

6.
Melatonin is a hormone that has been shown to have protective effects in several diseases that are associated with cholesterol dysregulation, including cardiovascular disease, Alzheimer's disease, and certain types of cancers. We studied the interaction of melatonin with model membranes made of dimyristoylphosphatidylcholine (DMPC) at melatonin concentrations ranging from 0.5 mol% to 30 mol%. From 2-dimensional X-ray diffraction measurements, we find that melatonin induces a re-ordering of the lipid membrane that is strongly dependent on the melatonin concentration. At low melatonin concentrations, we observe the presence of melatonin-enriched patches in the membrane, which are significantly thinner than the lipid bilayer. The melatonin molecules were found to align parallel to the lipid tails in these patches. At high melatonin concentrations of 30 mol%, we observe a highly ordered melatonin structure that is uniform throughout the membrane, where the melatonin molecules align parallel to the bilayers and one melatonin molecule associates with 2 lipid molecules. Understanding the organization and interactions of melatonin in membranes, and how these are dependent on the concentration, may shed light into its anti-amyloidogenic, antioxidative and photoprotective properties and help develop a structural basis for these properties.  相似文献   

7.
Sympathetic neurons taken from rat superior cervical ganglia and grown in culture acquire cholinergic function under certain conditions. These cholinergic sympathetic neurons, however, retain a number of adrenergic properties, including the enzymes involved in the synthesis of norepinephrine (NE) and the storage of measurable amounts of NE. These neurons also retain a high affinity uptake system for NE; despite this, the majority of the synaptic vesicles remain clear even after incubation in catecholamines. The present study shows, however, that if these neurons are depolarized before incubation in catecholamine, the synaptic vesicles acquire dense cores indicative of amine storage. These manipulations are successful when cholinergic function is induced with either a medium that contains human placental serum and embryo extract or with heart-conditioned medium, and when the catecholamine is either NE or 5-hydroxydopamine. In some experiments, neurons are grown at low densities and shown to have cholinergic function by electrophysiological criteria. After incubation in NE, only 6% of the synaptic vesicles have dense cores. In contrast, similar neurons depolarized (80 mM K+) before incubation in catecholamine contain 82% dense-cored vesicles. These results are confirmed in network cultures where the percentage of dense-cored vesicles is increased 2.5 to 6.5 times by depolarizing the neurons before incubation with catecholamine. In both single neurons and in network cultures, the vesicle reloading is inhibited by reducing vesicle release during depolarization with an increased Mg++/Ca++ ratio or by blocking NE uptake either at the plasma membrane (desipramine) or at the vesicle membrane (reserpine). In addition, choline appears to play a competitive role because its presence during incubation in NE or after reloading results in decreased numbers of dense-cored vesicles. We conclude that the depolarization step preceding catecholamine incubation acts to empty the vesicles of acetylcholine, thus allowing them to reload with catecholamine. These data also suggest that the same vesicles may contain both neurotransmitters simultaneously.  相似文献   

8.
Cholinergic synaptic vesicles were isolated from the electric organ of Torpedo californica. Vesicle membrane proteins were reconstituted into planar lipid bilayers by the nystatin/ergosterol fusion technique. After fusion, a variety of ion channels were observed. Here we identify four channels and describe two of them in detail. The two channels share a conductance of 13 pS. The first is anion selective and strongly voltage dependent, with a 50% open probability at membrane potentials of -15 mV. The second channel is slightly cation selective and voltage independent. It has a high open probability and a subconductance state. A third channel has a conductance of 4-7 pS, similar to the subconductance state of the second channel. This channel is fairly nonselective and has gating kinetics different from those of the cation channel. Finally, an approximately 10-pS, slightly cation selective channel was also observed. The data indicate that there are one or two copies of each of the above channels in every synaptic vesicle, for a total of six channels per vesicle. These observations confirm the existence of ion channels in synaptic vesicle membranes. It is hypothesized that these channels are involved in vesicle recycling and filling.  相似文献   

9.
10.
Canthaxanthin (β,β-carotene 4,4' dione) used widely as a drug or as a food and cosmetic colorant may have some undesirable effects on human health, caused mainly by the formation of crystals in the macula lutea membranes of the retina of an eye. Experiments show the exceptional molecular organization of canthaxanthin and a strong effect of this pigment on the physical properties of lipid membranes. The most striking difference between canthaxanthin and other macular pigments is that the effects of canthaxanthin at a molecular level are observed at much lower concentration of this pigment with respect to lipid (as low as 0.05 mol%). An analysis of the molecular interactions of canthaxanthin showed molecular mechanisms such as: strong van der Waals interactions between the canthaxanthin molecule and the acyl chains of lipids, restrictions to the segmental molecular motion of lipid molecules, modifications of the surface of the lipid membranes, effect on the membrane thermotropic properties and finally interactions based on the formation of the hydrogen bonds. Such interactions can lead to a destabilization of the membrane and loss of membrane compactness. In the case of the retinal vasculature, it can lead to an increase in the permeability of the retinal capillary walls and the development of retinopathy.  相似文献   

11.
The mechanism by which vesicles spontaneously form supported lipid bilayer membranes on glass surfaces is becoming better understood and this knowledge is the basis of a technology of patterning membrane arrays and controlling composition. Controlled interactions between supported membranes and cells, particularly from the immune system, provide direct insight into cell-cell surface interactions.  相似文献   

12.
A procedure is described for the isolation of synaptic membrane fragments that retain such functionally important proteins as acetylcholine receptors, acetylcholinesterase, 3',5'-cyclic nucleotide phosphodiesterase, and (Na+ + K+)-ATPase. The method is based on the observation, made in brain slices, that junctional membranes are more resistant to phospholipase A2 attack than mitochondrial or plasma membranes. Hydrolysis by phospholipase A2 was controlled by addition of fatty acid-free bovine serum albumin. The membrane fraction obtained represents approximately a 15-fold enrichment of the postsynaptic marker proteins muscarinic and nicotinic acetylcholine receptor and 3',5'-cyclic nucleotide phosphodiesterase over an ordinary synaptic plasma membrane preparation, and is devoid of mitochondrial and microsomal contaminations. The membranes appear on the electron micrographs as rigid fragments (average length 2500-4000A), which do not form vesicles.  相似文献   

13.
Narcine brasiliensis electric organ was stimulated to fatigue in vivo. Electrical display of organ output and biochemical assay of bound acetylcholine (ACh) and ATP in isolated vesicles were used to assess the state of fatigue relative to denervated control organs of the same fish. A morphometric analysis of the fate of the synaptic vesicle populations in the nerve terminals was carried out. Statistically significant morphological changes in vesicle populations and plasma membranes were observed between control and fatigued electroplaque stacks from individual fish. Pooled data from several fish were used to evaluate the possible role of the different vesicle types in neurotransmission. Fatigue resulted in the loss of 49% of the total vesicle population and a 76% loss of vesicles with bound calcium (Ca). An approximately equivalent increase in the nerve-terminal plasma membrane area was measured. This was predominantly in the form of fingerlike protrusions and/or invaginations of the terminals which were present in the control organs but which were significantly increased by stimulation. Vesicle attachments to the nerve terminal membrane were reduced by 90%. This suggests that the failure in transmission may be due to reduction in the number of vesicles which are loaded with transmitter and can attach to the terminal membrane. The Ca-binding capacity of the lost vesicles was not transferred to the plasma membranes. This result was interpreted as support for the hypothesis that vesicle-bound ATP provides the Ca-binding site.  相似文献   

14.
The non-equilibrium dynamic ordering process of coexisting phases has been studied for two-component lipid bilayers composed of saturated di-acyl phospholipids with different acyl chain lengths, such as DC14PC-DC18PC and DC12PC-DC18PC. By means of a microscopic interaction model and computer-simulation techniques the non-equilibrium properties of these two mixtures have been determined with particular attention paid to the effects of the non-equilibrium ordering process on membrane heterogeneity in terms of local and global lateral membrane organization. The results reveal that a sudden temperature change that takes the lipid mixture from the fluid one-phase region into the gel-fluid phase-coexistence region leads to the formation of a large number of small lipid domains which slowly are growing in time. The growth of the lipid domains, which is limited by long-range diffusion of the lipid molecules within the two-dimensional membrane plane, gives rise to the existence of a highly heterogeneous percolative-like structure with a network of interfacial regions that have properties different from those of the phase-separated gel and fluid bulk phases. The results, which are discussed in relation to recent experimental observations interpreted in terms of a percolative-like membrane structure within the two phase region (Almeida, P.F.F., Vaz, W.L.C., and T.E. Thompson. 1992. Biochemistry 31:7198-7210), suggest that non-equilibrium effects may influence lipid domain formation and membrane organization on various length and time scales. Such effects might be of importance in relation to membrane processes that require molecular mobility of the membrane components in restricted geometrical environments of the compartmentalized lipid membrane.  相似文献   

15.
The diphtheria toxin (DT) membrane topology was investigated by proteolysis experiments. Diphtheria toxin was incubated with asolectin liposomes at pH 5 in order to promote its membrane insertion, and the protein domains located outside the lipid vesicles were digested with proteinase K (which is a non-specific protease). The protected peptides were separated by electrophoresis and identified by microsequence analysis. Their orientation with respect to the lipid bilayer and their accessibility to the aqueous phase were determined by attenuated total reflection Fourier-transform infrared spectroscopy (ATR-FTIR). These data, combined with those provided by proteolytic cleavage with a specific protease (endoproteinase Glu-C), led us to propose a topological model of the N-terminal part of the diphtheria toxin B fragment inserted into the lipid membrane. In this model, two a-helices adopt a transmembrane orientation, with their axes parallel to the lipid acyl chains, while a third o-helix could adopt a transmembrane topology only in a small proportion of DT molecules.  相似文献   

16.
Much current work on the mechanism of neurosecretion has focused on proteins specific to neural secretory vesicles (synaptic vesicles). We report a calcium-stimulated lipid kinase that co-purifies with rat brain synaptic vesicles. This enzyme activity is found only in membrane fractions that contain synaptic vesicle markers. Based on identification of the lipid product as ceramide 1-phosphate and on the finding that ceramide kinase activity co-purifies with synaptic vesicles, the enzyme is proposed to be a ceramide kinase. Kinase activity is stimulated by micromolar concentrations of calcium. Calcium increases the apparent Vmax of the reaction with little effect on the Km for ceramide. The vesicular localization of this enzyme, the requirement for ATP, and the stimulation of enzyme activity by micromolar calcium suggest that ceramide phosphorylation may be associated with neurotransmitter release.  相似文献   

17.
Sorting of secreted proteins into dense-core secretory granules may involve selective aggregation of regulated secretory proteins, rather than a conventional sortase. Synaptic vesicles, which mediate paracrine communication between adjacent cells, appear to arise by a modification of the early endosome pathway. Targeting to the cell surface involves the actin-based cytoskeleton and small GTP-binding proteins.  相似文献   

18.
The synaptic vesicle and the cytoskeleton.   总被引:9,自引:0,他引:9       下载免费PDF全文
  相似文献   

19.

Background

The molecular components in synapses that are essential to the life cycle of synaptic vesicles are well characterized. Nonetheless, many aspects of synaptic processes, in particular how they relate to complex behaviour, remain elusive. The genomes of flies, mosquitoes, the honeybee and the beetle are now fully sequenced and span an evolutionary breadth of about 350 million years; this provides a unique opportunity to conduct a comparative genomics study of the synapse.

Results

We compiled a list of 120 gene prototypes that comprise the core of presynaptic structures in insects. Insects lack several scaffolding proteins in the active zone, such as bassoon and piccollo, and the most abundant protein in the mammalian synaptic vesicle, namely synaptophysin. The pattern of evolution of synaptic protein complexes is analyzed. According to this analysis, the components of presynaptic complexes as well as proteins that take part in organelle biogenesis are tightly coordinated. Most synaptic proteins are involved in rich protein interaction networks. Overall, the number of interacting proteins and the degrees of sequence conservation between human and insects are closely correlated. Such a correlation holds for exocytotic but not for endocytotic proteins.

Conclusion

This comparative study of human with insects sheds light on the composition and assembly of protein complexes in the synapse. Specifically, the nature of the protein interaction graphs differentiate exocytotic from endocytotic proteins and suggest unique evolutionary constraints for each set. General principles in the design of proteins of the presynaptic site can be inferred from a comparative study of human and insect genomes.  相似文献   

20.
The protein organization of rat brain synaptic plasma membranes (SPM) and synaptic vesicles (SV) was investigated by surface iodination and one- and two-dimensional electrophoresis. Polypeptides of molecular weights (MWs, in Kilodaltons) 170 K, 135 K, 96-86 K, 68-64-61 K, 56 K, 52 K, 38 K, 35-33 K, and 18 K are predominantly or exclusively exposed on the extracellular side of synaptosomes. Several polypeptides of MW between 70 K and 40 K are exclusively exposed on the cytoplasmic side of SPM. The use of two-dimensional electrophoresis allowed to recognize that, for some classes of MW, there are polypeptides of nearly the same MW and different isoelectric points exposed on both sides of SPM. The synaptosomal membrane shows a predominance of acidic proteins on the extracellular side and more neutral and basic proteins on the cytoplasmic side. With respect to SPM, SV are particularly enriched with polypeptides of MW 71 K, 56 K, 39-38 K, 32 K, 16 K, and 15 K. One of them, a doublet of MW 39-38 K, is the most highly labeled species upon surface iodination and is similar, but not identical, with a doublet located on the cytoplasmic side of SPM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号