首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Group IVA cytosolic phospholipase A(2) (cPLA(2)alpha) initiates eicosanoid production; however, this pathway is not completely ablated in cPLA(2)alpha(-/-) lung fibroblasts stimulated with A23187 or serum. cPLA(2)alpha(+/+) fibroblasts preferentially released arachidonic acid, but A23187-stimulated cPLA(2)alpha(-/-) fibroblasts nonspecifically released multiple fatty acids. Arachidonic acid release from cPLA(2) alpha(-/-) fibroblasts was inhibited by the cPLA(2)alpha inhibitors pyrrolidine-2 (IC(50), 0.03 microM) and Wyeth-1 (IC(50), 0.1 microM), implicating another C2 domain-containing group IV PLA(2). cPLA(2) alpha(-/-) fibroblasts contain cPLA(2)beta and cPLA(2)zeta but not cPLA(2)epsilon or cPLA(2)delta. Purified cPLA(2)zeta exhibited much higher lysophospholipase and PLA(2) activity than cPLA(2)beta and was potently inhibited by pyrrolidine-2 and Wyeth-1, which did not inhibit cPLA(2)beta. In contrast to cPLA(2)beta, cPLA(2)zeta expressed in Sf9 cells mediated A23187-induced arachidonic acid release, which was inhibited by pyrrolidine-2 and Wyeth-1. cPLA(2)zeta exhibits specific activity, inhibitor sensitivity, and low micromolar calcium dependence similar to cPLA(2)alpha and has been identified as the PLA(2) responsible for calcium-induced fatty acid release and prostaglandin E(2) production from cPLA(2) alpha(-/-) lung fibroblasts. In response to ionomycin, EGFP-cPLA(2)zeta translocated to ruffles and dynamic vesicular structures, whereas EGFP-cPLA(2)alpha translocated to the Golgi and endoplasmic reticulum, suggesting distinct mechanisms of regulation for the two enzymes.  相似文献   

2.
Calmodulin (CaM)-dependent protein kinase (CaM kinase) is proposed to regulate the type alpha of cytosolic phospholipase A(2) (cPLA(2)alpha), which has a dominant role in the release of arachidonic acid (AA), via phosphorylation of Ser515 of the enzyme. However, the exact role of CaM kinase in the activation of cPLA(2)alpha has not been well established. We investigated the effects induced by transfection with mutant cPLA(2)alpha and inhibitors for CaM and CaM kinase on the Ca(2+)-stimulated release of AA and translocation of cPLA(2)alpha. The mutation of Ser515 to Ala (S515A) did not change cPLA(2)alpha activity, although S228A and S505A completely and partially decreased the activity, respectively. Stimulation with hydrogen peroxide (H(2)O(2), 1 mM) and A23187 (10 microM) markedly released AA in C12 cells expressing S515A and wild-type cPLA(2)alpha, but the responses in C12-S505A, C12-S727A, and C12-S505A/S515A/S727A (AAA) cells were reduced. In HEK293T cells expressing cPLA(2)alpha, A23187 caused the translocation of the wild-type, the every mutants, cPLA(2)alpha-C2 domain, and cPLA(2)alpha-Delta397-749 lacking proposed phosphorylation sites such as Ser505 and Ser515. Treatment with inhibitors of CaM (W-7) and CaM kinase (KN-93) at 10 microM significantly decreased the release of AA in C12-cPLA(2)alpha cells and C12-S515A cells. KN-93 inhibited the A23187-induced translocation of the wild-type, S515A, AAA and cPLA(2)alpha-Delta397-749, but not cPLA(2)alpha-C2 domain. Our findings show a possible effect of CaM kinase on cPLA(2)alpha in a catalytic domain A-dependent and Ser515-independent manner.  相似文献   

3.
Protein kinase C (PKC) is involved in signaling that modulates the proliferation and differentiation of many cell types, including mammary epithelial cells. In addition, changes in PKC expression or activity have been observed during mammary carcinogenesis. In order to examine the involvement of specific PKC isoforms during normal mammary gland development, the expression and localization of PKCs alpha, delta, epsilon and zeta were examined during puberty, pregnancy, lactation, and involution. By immunoblot analysis, expression of PKC alpha, delta, epsilon and zeta proteins was increased in mammary epithelial organoids during the transition from puberty to pregnancy. In mammary gland frozen sections, PKCs alpha, delta, epsilon and zeta were stained in the luminal epithelium and myoepithelium, in varying isoform-and developmental stage-specific locations. PKC alpha was found in a punctate apical localization in the luminal epithelium during pregnancy. During lactation, PKC epsilon was present in the nucleus, and PKC zeta was concentrated in the subapical region of the luminal epithelium. Additionally, marked staining for PKCs alpha, delta, epsilon, and zeta was observed in the myoepithelial cells at the base of ducts and alveoli. This basal ductal and alveolar staining differed in intensity in a developmentally-specific fashion. During most time points (virgin, pregnant, lactating, and early involution), myoepithelial cells of the duct were more intensely stained than those lining the alveoli for PKCs alpha, delta, epsilon and zeta. During late involution (days 9-12), the preferential staining of ducts was lost or reversed, and the myoepithelial cells lining the regressing alveolar structures stained equally (PKCs epsilon and zeta) or more intensely (PKCs alpha and delta), coincident with the thickening of the myoepithelial cells surrounding the regressing alveoli. The increased PKC isoform staining at the base of alveoli during involution suggests that alveolar regression may be influenced by alterations in signaling in the alveolar myoepithelium.  相似文献   

4.
Oxidant stress and phospholipase A2 (PLA2) activation have been implicated in numerous proinflammatory responses of the mesangial cell (MC). We investigated the cross-talk between group IValpha cytosolic PLA2 (cPLA2alpha) and secretory PLA2s (sPLA2s) during H2O2-induced arachidonic acid (AA) release using two types of murine MC: (i). MC+/+, which lack group IIa and V PLA2s, and (ii). MC-/-, which lack groups IIa, V, and IValpha PLA2s. H2O2-induced AA release was greater in MC+/+ compared with MC-/-. It has been argued that cPLA2alpha plays a regulatory role enhancing the activity of sPLA2s, which act on phospholipids to release fatty acid. Group IIa, V, or IValpha PLA2s were expressed in MC-/- or MC+/+ using recombinant adenovirus vectors. Expression of cPLA2alpha in H2O2-treated MC-/- increased AA release to a level approaching that of H2O2-treated MC+/+. Expression of either group IIa PLA2 or V PLA2 enhanced AA release in MC+/+ but had no effect on AA release in MC-/-. When sPLA2 and cPLA2alpha are both present, the effect of H2O2 is manifested by preferential release of AA compared with oleic acid. Inhibition of the ERK and protein kinase C signaling pathways with the MEK-1 inhibitor, U0126, and protein kinase C inhibitor, GF 1092030x, respectively, and chelating intracellular free calcium with 1,2-bis(2-aminophenoyl)ethane-N,N,N',N'-tetraacetic acid-AM, which also reduced ERK1/2 activation, significantly reduced H2O2-induced AA release in MC+/+ expressing either group IIa or V PLA2s. By contrast, H2O2-induced AA release was not enhanced when ERK1/2 was activated by infection of MC+/+ with constitutively active MEK1-DD. We conclude that the effect of group IIa and V PLA2s on H2O2-induced AA release is dependent upon the presence of cPLA2alpha and the activation of PKC and ERK1/2. Group IIa and V PLA2s are regulatory and cPLA2alpha is responsible for AA release.  相似文献   

5.
The T cell receptor for antigen (TCR) consists of two glycoproteins containing variable regions (TCR-alpha/beta or TCR-gamma/delta) which are expressed on the cell surface in association with at least four invariant proteins (CD3-gamma, -delta, -epsilon and -zeta). CD3-gamma and CD3-delta chains are highly homologous, especially in the cytoplasmic domain. The similarity observed in their genomic organization and their proximity in the chromosome indicate that both genes arose from duplication of a single gene. Here, we provide several lines of evidence which indicate that in human and murine T cells which expressed both the CD3-gamma and CD3-delta chains on their surface, the TCR/CD3 complex consisted of a mixture of alpha beta gamma epsilon zeta and alpha beta delta epsilon zeta complexes rather than a single alpha beta gamma delta epsilon zeta complex. First, a CD3-gamma specific antibody failed to co-immunoprecipitate CD3-delta and conversely, several CD3-delta specific antibodies did not coprecipitate CD3-gamma. Secondly, analysis of a panel of human and murine T cell lines demonstrated that CD3-gamma and CD3-delta were expressed at highly variable ratios on their surface. This suggested that these chains were not expressed as a single complex. Thirdly, CD3-gamma and CD3-delta competed for binding to CD3-epsilon in transfected COS cells, suggesting that CD3-gamma and CD3-delta formed mutually exclusive complexes. The existence of these two forms of TCR/CD3 complexes could have important implications in the understanding of T cell receptor function and its role in T cell development.  相似文献   

6.
7.
The first step in prostacyclin (PGI(2)) synthesis involves the generation of arachidonic acid (AA) from membrane phospholipids mediated by the 85 kDa cytosolic phospholipase A(2) (cPLA(2)alpha). The current study examined the effects of secretory PLA(2)s (sPLA(2)s) on PGI(2) production by human umbilical vein endothelial cells (HUVEC). We demonstrate that exposure of HUVEC to sPLA(2) dose- and time-dependently enhances AA release and PGI(2) generation. sPLA(2)-stimulated AA mobilisation was blocked by AACOCF(3), an inhibitor of cPLA(2)alpha, suggesting cross-talk between the two classes of PLA(2). sPLA(2) induced the phosphorylation of cPLA(2)alpha and enhanced the phosphorylation states of p42/44(mapk), p38(mapk), and JNK, concomitant with elevated AA and PGI(2) release. The MEK inhibitor PD98059 attenuated sPLA(2)-stimulated cPLA(2)alpha phosphorylation and PGI(2) release. These data show that sPLA(2) cooperates with cPLA(2)alpha in a MAPK-dependent manner to regulate PGI(2) generation and suggests that cross-talk between sPLA(2) and cPLA(2)alpha is a physiologically important mechanism for enhancing prostanoid production in endothelial cells.  相似文献   

8.
Previously, ceramide-1-phosphate (C1P) was demonstrated to be a potent and specific activator of group IV cytosolic phospholipase A(2)alpha (cPLA(2)alpha) via interaction with the C2 domain. In this study, we hypothesized that the specific interaction site for C1P was localized to the cationic beta-groove (Arg(57), Lys(58), Arg(59)) of the C2 domain of cPLA(2)alpha. In this regard, mutants of this region of cPLA(2)alpha were generated (R57A/K58A/R59A, R57A/R59A, K58A/R59A, R57A/K58A, R57A, K58A, and R59A) and examined for C1P affinity by surface plasmon resonance. The triple mutants (R57A/K58A/R59A), the double mutants (R57A/R59A, K58A/R59A, and R57A/K58A), and the single mutant (R59A) demonstrated significantly reduced affinity for C1P-containing vesicles as compared with wild-type cPLA(2)alpha. Examining these mutants for enzymatic activity demonstrated that these five mutants of cPLA(2)alpha also showed a significant reduction in the ability of C1P to: 1) increase the V(max) of the reaction; and 2) significantly decrease the dissociation constant (K (A)(s)) of the reaction as compared with the wild-type enzyme. The mutational effect was specific for C1P as all of the cationic mutants of cPLA(2)alpha demonstrated normal basal activity as well as normal affinities for phosphatidylcholine and phosphatidylinositol-4,5-bisphosphate as compared with wild-type cPLA(2)alpha. This study, for the first time, demonstrates a novel C1P interaction site mapped to the cationic beta-groove of the C2 domain of cPLA(2)alpha.  相似文献   

9.
The generation of proinflammatory eicosanoids in response to tumor necrosis factor (TNF) involves the activation of cytosolic phospholipase A(2) (cPLA(2)), presumably by phosphorylation through extracellular signal-regulated kinases (ERK). Earlier results had suggested that a pathway involving the p55 TNF receptor (TNF-R55), neutral sphingomyelinase (N-SMase), and c-Raf-1 activates ERK and cPLA(2). We have previously shown that a cytoplasmic region of TNF-R55 distinct from the death domain regulates the activation of N-SMase through binding of the adapter protein FAN. Analysis of embryonal fibroblasts from FAN knockout mice revealed that TNF-induced activation of both ERK and cPLA(2) occurs without involvement of FAN. Furthermore, we provide evidence that the TNF-dependent activation of ERK and cPLA(2) requires the intact death domain of TNF-R55. Finally, we demonstrate that in murine fibroblasts cPLA(2) is phosphorylated in response to TNF solely by ERK, but not by p38 mitogen-activated protein kinase, suggesting a signaling pathway from TNF-R55 via the death domain to ERK and cPLA(2).  相似文献   

10.
Four new members expand the interleukin-1 superfamily   总被引:4,自引:0,他引:4  
We report here the cloning and characterization of four new members of the interleukin-1 (IL-1) family (FIL1delta, FIL1epsilon, FIL1zeta, and FIL1eta, with FIL1 standing for "Family of IL-1"). The novel genes demonstrate significant sequence similarity to IL-1alpha, IL-1beta, IL-1ra, and IL-18, and in addition maintain a conserved exon-intron arrangement that is shared with the previously known members of the family. Protein structure modeling also suggests that the FIL1 genes are related to IL-1beta and IL-1ra. The novel genes form a cluster with the IL-1s on the long arm of human chromosome 2.  相似文献   

11.
Cytosolic phospholipase A(2)alpha (cPLA(2)alpha) is a rate-limiting key enzyme that releases arachidonic acid (AA) from membrane phospholipid for the production of biologically active lipid mediators including prostaglandins, leukotrienes and platelet-activating factor. cPLA(2)alpha is translocated to nuclear envelope in response to intracellular calcium increase and the enzyme is also present inside the cell nucleus; however, the biological function of cPLA(2)alpha in the nucleus remains unknown. Here we show a novel role of cPLA(2)alpha for activation of peroxisome proliferator-activated receptor-delta (PPARdelta) and beta-catenin in the nuclei. Overexpression of cPLA(2)alpha in human cholangiocarcinoma cells induced the binding of PPARdelta to beta-catenin and increased their association with the TCF/LEF response element. These effects are inhibited by the cPLA(2)alpha siRNA and inhibitors as well as by siRNA knockdown of PPARdelta. Overexpression of PPARdelta or treatment with the selective PPARdelta ligand, GW501516, also increased beta-catenin binding to TCF/LEF response element and increased its reporter activity. Addition of AA and GW501516 to nuclear extracts induced a comparable degree of beta-catenin binding to TCF/LEF response element. Furthermore, cPLA(2)alpha protein is present in the PPARdelta and beta-catenin binding complex. Thus the close proximity between cPLA(2)alpha and PPARdelta provides a unique advantage for their efficient functional coupling in the nucleus, where AA produced by cPLA(2)alpha becomes immediately available for PPARdelta binding and subsequent beta-catenin activation. These results depict a novel interaction linking cPLA(2)alpha, PPARdelta and Wnt/beta-catenin signaling pathways and provide insight for further understanding the roles of these key molecules in human cells and diseases.  相似文献   

12.
Identification of the components of the murine T cell antigen receptor complex   总被引:69,自引:0,他引:69  
In addition to the alpha and beta chains of the MHC class II restricted antigen receptor, monoclonal anti-receptor antibodies coprecipitate four polypeptides that appear to be noncovalently associated with the alpha-beta dimer of murine T cells. Included in the murine T cell antigen receptor complex are two glycoproteins of 25 kd (gamma) and 21 kd (delta) and two nonglycosylated polypeptides of 26 kd (epsilon) and 16 kd (zeta). The epsilon chain appears to possess an intrachain disulfide bond and zeta exists in the complex as a disulfide-linked homodimer. The delta chain is phosphorylated on a serine residue in response to T cell activation with antigen. In contrast, both delta and epsilon are phosphorylated in response to treatment of the T cells with phorbol 12-myristate 13-acetate. These polypeptides may play a role in the transduction of the signal(s) in T cell activation.  相似文献   

13.
Members of the protein kinase C (PKC) isozyme family are important signal transducers in virtually every mammalian cell type. Within the heart, PKC isozymes are thought to participate in a signaling network that programs developmental and pathological cardiomyocyte hypertrophic growth. To investigate the function of PKC signaling in regulating cardiomyocyte growth, adenoviral-mediated gene transfer of wild-type and dominant negative mutants of PKC alpha, beta II, delta, and epsilon (only wild-type zeta) was performed in cultured neonatal rat cardiomyocytes. Overexpression of wild-type PKC alpha, beta II, delta, and epsilon revealed distinct subcellular localizations upon activation suggesting unique functions of each isozyme in cardiomyocytes. Indeed, overexpression of wild-type PKC alpha, but not betaI I, delta, epsilon, or zeta induced hypertrophic growth of cardiomyocytes characterized by increased cell surface area, increased [(3)H]-leucine incorporation, and increased expression of the hypertrophic marker gene atrial natriuretic factor. In contrast, expression of dominant negative PKC alpha, beta II, delta, and epsilon revealed a necessary role for PKC alpha as a mediator of agonist-induced cardiomyocyte hypertrophy, whereas dominant negative PKC epsilon reduced cellular viability. A mechanism whereby PKC alpha might regulate hypertrophy was suggested by the observations that wild-type PKC alpha induced extracellular signal-regulated kinase1/2 (ERK1/2), that dominant negative PKC alpha inhibited PMA-induced ERK1/2 activation, and that dominant negative MEK1 (up-stream of ERK1/2) inhibited wild-type PKC alpha-induced hypertrophic growth. These results implicate PKC alpha as a necessary mediator of cardiomyocyte hypertrophic growth, in part, through a ERK1/2-dependent signaling pathway.  相似文献   

14.
To characterize age-induced effects on muscle protein kinase C (PKC) and its regulation by the steroid hormone 1,25(OH)2-vitamin D3 [1,25(OH)2D3], changes in PKC activity and the expression and translocation of the specific PKC conventional isoforms alpha and beta, novel isoforms delta, epsilon, and theta and atypical isoform zeta were studied in homogenates and subcellular fractions from skeletal muscle of young (3 months) and aged (24 months) rats treated in vitro with 1,25(OH)2D3. The hormone (10(-9) M) increased total and membrane PKC activity, within 1 min, and these effects were completely blunted in muscle from aged rats. The presence of PKC isoenzymes was shown by Western blot analysis with the use of specific antibodies. The expression of PKC alpha, beta and delta was greatly diminished in old rats, whereas age-related changes were less pronounced in the isoforms epsilon, theta and zeta. After a short exposure (1 min) of muscle to 1,25(OH)2D3, increased amounts of PKC alpha and beta in muscle membranes and reverse translocation (from membrane to cytosol) of PKC epsilon were observed only in young animals. The data indicate that, in rat muscle, ageing impairs calcium-dependent PKC (alpha and beta) and calcium-independent PKC (delta, epsilon, theta and zeta) signal transduction pathways under selective regulation by 1,25(OH)2D3.  相似文献   

15.
In this study, we identify the principal splice variant of human cytosolic phospholipase A(2)beta (cPLA(2)beta) (also known as Group IVB cPLA(2)) present in cells. In human lung, spleen, and ovary and in a lung epithelial cell line (BEAS-2B), cPLA(2)beta is expressed as a 100-kDa protein, not the 114-kDa form originally predicted. Using RNA interference, the 100-kDa protein in BEAS-2B cells was confirmed to be cPLA(2)beta. BEAS-2B cells contain three different RNA splice variants of cPLA(2)beta (beta1, beta2, and beta3). cPLA(2)beta1 is identical to the previously cloned cPLA(2)beta, predicted to encode a 114-kDa protein. However, cPLA(2)beta2 and cPLA(2)beta3 splice variants are smaller and contain internal deletions in the catalytic domain. The 100-kDa cPLA(2)beta in BEAS-2B cells is the translated product of cPLA(2)beta3. cPLA(2)beta3 exhibits calcium-dependent PLA(2) activity against palmitoyl-arachidonyl-phosphatidylethanolamine and low level lysophospholipase activity but no activity against phosphatidylcholine. Unlike Group IVA cPLA(2)alpha, cPLA(2)beta3 is constitutively bound to membrane in unstimulated cells, localizing to mitochondria and early endosomes. cPLA(2)beta3 is widely expressed in tissues, suggesting that it has a generalized function at these unique sites.  相似文献   

16.
This report documents the characterization of a novel mouse oocyte protein which was originally identified by microsequence analysis of a 67.8 kDa protein spot (pI 5.7) on a Coomassie-stained two-dimensional (2D) gel of murine egg proteins. Tandem mass spectroscopic analysis of the peptides obtained from the cored protein yielded sequences that appeared to match only ovary, egg, and preimplantation embryo cDNAs. We then cloned the novel gene by RACE-PCR, and analysis of the deduced cDNA sequence found that this maternal product was ∼56% identical to human cytosolic phospholipase A2γ (cPLA2γ). Based on this sequence homology, we named the molecule mouse cytosolic phospholipase A2γ (cPLA2γ). As with human cPLA2γ, mouse cPLA2γ contains a lipase consensus sequence and lacks the calcium binding domain that is found in other PLA2 proteins. However, mouse cPLA2γ is different from human cPLA2γ in that mouse cPLA2γ expression is restricted to the ovary and that the protein does not contain the myristoylation and prenylation lipid-anchoring motifs that are present in human cPLA2γ. Within oocytes, mouse cPLA2γ localizes mainly to the oocyte cortex and to the nucleoplasm. Interestingly, during germinal vesicle breakdown, mouse cPLA2γ aggregates dynamically relocate from the oocyte cortex to the nuclear envelope, suggesting a possible role for this putative egg-restricted phospholipase A2γ in membrane remodeling. Furthermore, mouse cPLA2γ protein continues to be expressed in the embryo until the 4-8-cell stage of development, suggesting that mouse cPLA2γ may function as a previously uncharacterized maternal effect gene.  相似文献   

17.
In this study, the role of interdomain interactions involving the C1 and C2 domains in the mechanism of activation of PKC was investigated. Using an in vitro assay containing only purified recombinant proteins and the phorbol ester, 4 beta-12-O-tetradecanoylphorbol-13-acetate (TPA), but lacking lipids, it was found that PKC alpha bound specifically, and with high affinity, to a alpha C1A-C1B fusion protein of the same isozyme. The alpha C1A-C1B domain also potently activated the isozyme in a phorbol ester- and diacylglycerol-dependent manner. The level of this activity was comparable with that resulting from membrane association induced under maximally activating conditions. Furthermore, it was found that alpha C1A-C1B bound to a peptide containing the C2 domain of PKC alpha. The alpha C1A-C1B domain also activated conventional PKC beta I, -beta II, and -gamma isoforms, but not novel PKC delta or -epsilon. PKC delta and -epsilon were each activated by their own C1 domains, whereas PKC alpha, -beta I, -beta II, or -gamma activities were unaffected by the C1 domain of PKC delta and only slightly activated by that of PKC epsilon. PKC zeta activity was unaffected by its own C1 domain and those of the other PKC isozymes. Based on these findings, it is proposed that the activating conformational change in PKC alpha results from the dissociation of intra-molecular interactions between the alpha C1A-C1B domain and the C2 domain. Furthermore, it is shown that PKC alpha forms dimers via inter-molecular interactions between the C1 and C2 domains of two neighboring molecules. These mechanisms may also apply for the activation of the other conventional and novel PKC isozymes.  相似文献   

18.
19.
The 3'-5' circular trinucleotide cr(GpGpGp) was studied by means of 1D and 2D high resolution NMR techniques and molecular mechanics calculations. Analysis of the J-couplings, obtained from the 1H and 13C-NMR spectra, allowed the determination of the conformation of the sugar rings and of the 'circular' phosphate backbone. In the course of the investigations it was found that the Karplus-equation most recently parametrized for the CCOP J-coupling constants could not account for the measured J(C4'P) of 11.1 Hz and a new parametrization for both HCOP and CCOP coupling constants is therefore presented. Subsequent analysis of the coupling constants yielded 'fixed' values for the torsion angles beta and delta (with beta = 178 degrees and delta = 139 degrees). The value of the latter angle corresponds to an S-type sugar conformation. The torsion angles gamma and epsilon are involved in a rapid equilibrium in which they are converted between the gauche(+) and trans and between the trans and gauche(-) domain respectively. We show that the occurrence of epsilon in the gauche(-) domain necessitates S-type sugar conformations. Given the aforementioned values for beta, gamma, delta and epsilon the ring closure constraints for the ring, formed by the phosphate backbone can only be fulfilled if alpha and zeta adopt some special values. After energy minimization with the CHARMm force field only two combinations of alpha and zeta result in energetically favourable structures, i.e. the combination alpha (t)/zeta(g-) in case gamma is in a gauche(+) and epsilon is in a trans conformation, and the combination alpha (t)/zeta (g+) for the combination gamma (t)/epsilon (g-). The results are discussed in relation to earlier findings obtained for cd(ApAp) and cr(GpGp), the latter molecule being a regulator of the synthesis of cellulose in Acetobacter xylinum.  相似文献   

20.
The mammalian lamina-associated polypeptide 2 (LAP2) gene encodes six isoforms (LAP2alpha, beta, delta, epsilon, gamma, zeta) that are synthesised from alternatively spliced mRNAs. The mammalian LAP2alpha is one of the predominant isoforms and localised in the nucleoplasm whereas LAP2beta, delta, epsilon, and gamma are integral membrane proteins of the inner nuclear membrane. We have analysed the LAP2 gene structure of the zebrafish Danio rerio as an attractive lower vertebrate model organism. The zebrafish LAP2 (ZLAP2) gene without regulatory sequences spans approximately 19 kb of genomic DNA. It contains 15 exons that encode the isoforms ZLAP2beta, gamma, and omega which are localised in the inner nuclear membrane. By radiation hybrid mapping, we have located the gene onto linkage group 4 between EST markers fc01g04 (213.97cR) and fb49f01 (215.69cR). The identification of a chicken genomic clone comprising the complete coding region of the avian LAP2 gene enabled us to compare the LAP2 gene structure amongst vertebrates. In contrast to the mammalian LAP2 gene, the zebrafish and the chicken sequences do not encode for an alpha-isoform. In parallel we searched for an alpha-isoform in birds using polyclonal and monoclonal LAP2 antibodies specific for the common evolutionary conserved aminoterminal domain present in all isoforms. We detected LAP2beta as the predominant isoform but no LAP2alpha in tissues of 10-day-old chicken embryos and cultured chicken fibroblasts thus confirming the genomic analysis. The comparison of each zebrafish and chicken LAP2 exon with the corresponding exons of the human LAP2 gene demonstrates that the degree of identity at the amino acid level is much higher between the human and chicken than between the human and zebrafish sequences. By Blast search with the nucleotide and amino acid sequences of the human LAP2alpha, we did not find any significant homologies in databases of the zebrafish and chicken sequences. Our data suggest that LAP2alpha is a novelty of mammals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号