首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A modified isolation procedure provides a homogeneous A(1)-ATPase from the archaeon Methanosarcina mazei G?1, containing the five subunits in stoichiometric amounts of A(3):B(3):C:D:F. A(1) obtained in this way was characterized by three-dimensional electron microscopy of single particles, resulting in the first three-dimensional reconstruction of an A(1)-ATPase at a resolution of 3.2 nm. The A(1) consists of a headpiece of 10.2 nm in diameter and 10.8 nm in height, formed by the six elongated subunits A(3) and B(3). At the bottom of the A(3)B(3) complex, a stalk of 3.0 nm in length can be seen. The A(3)B(3) domain surrounds a large cavity that extends throughout the length of the A(3)B(3) barrel. A part of the stalk penetrates inside this cavity and is displaced toward an A-B-A triplet. To investigate further the topology of the stalk subunits C-F in A(1), cross-linking has been carried out by using dithiobis[sulfosuccinimidylpropionate] (DSP) and 1-ethyl-3-(dimethylaminopropyl)-carbodiimide (EDC). In experiments where DSP was added the cross-linked products B-F, A(x)-D, A-B-D, and A(x)-B(x)-D were formed. Subunits B-F, A-D, A-B-D, and A-B-C-D could be cross-linked by EDC. The subunit-subunit interaction in the presence of DSP was also studied as a function of nucleotide binding, demonstrating movements of subunits C, D, and F during ATP cleavage. Finally, the three-dimensional organization of this A(1) complex is discussed in terms of the relationship to the F(1)- and V(1)-ATPases at a resolution of 3.2 nm.  相似文献   

2.
Li Z  Zhang X 《Planta》2004,219(6):948-954
The vacuolar H+-ATPase from mung bean (Vigna radiata L. cv. Wilczek) was purified to homogeneity. The purified complex contained all the reported subunits from mung bean, but also included a 40-kDa subunit, corresponding to the membrane-associated subunit d, which has not previously been observed. The structure of the V-ATPase from mung bean was studied by electron microscopy of negatively stained samples. An analysis of over 6,000 single-particle images obtained by electron microscopy of the purified complex revealed that the complex, similar to other V-ATPases, is organized into two major domains V1 and Vo with overall dimensions of 25 nm×13.7 nm and a stalk region connecting the V1 and Vo domains. Several individual areas of protein density were observed in the stalk region, indicating its complexity. The projections clearly showed that the complex contained one central stalk and at least two peripheral stalks. Subcomplexes containing subunits A, B and E, dissociated from the tonoplast membrane by KI, were purified. The structure of the subcomplex was also studied by electron microscopy followed by single-molecule analysis of 13,000 projections. Our preliminary results reveal an area of high protein density at the bottom of the subcomplex immediately below the cavity formed by the A and B subunits, indicating the position of subunit E.Abbreviations MSA Multivariate statistical analysis - 2D, 3D Two-, three-dimensional - V-ATPase Vacuolar H+-ATPase  相似文献   

3.
Vacuolar-type H(+)-ATPase (V-ATPase or V-type ATPase) is a multisubunit complex comprised of a water-soluble V(1) complex, responsible for ATP hydrolysis, and a membrane-embedded V(o) complex, responsible for proton translocation. The V(1) complex of Thermus thermophilus V-ATPase has the subunit composition of A(3)B(3)DF, in which the A and B subunits form a hexameric ring structure. A central stalk composed of the D and F subunits penetrates the ring. In this study, we investigated the pathway for assembly of the V(1) complex by reconstituting the V(1) complex from the monomeric A and B subunits and DF subcomplex in vitro. Assembly of these components into the V(1) complex required binding of ATP to the A subunit, although hydrolysis of ATP is not necessary. In the absence of the DF subcomplex, the A and B monomers assembled into A(1)B(1) and A(3)B(3) subcomplexes in an ATP binding-dependent manner, suggesting that ATP binding-dependent interaction between the A and B subunits is a crucial step of assembly into V(1) complex. Kinetic analysis of assembly of the A and B monomers into the A(1)B(1) heterodimer using fluorescence resonance energy transfer indicated that the A subunit binds ATP prior to binding the B subunit. Kinetics of binding of a fluorescent ADP analog, N-methylanthraniloyl ADP (mant-ADP), to the monomeric A subunit also supported the rapid nucleotide binding to the A subunit.  相似文献   

4.
The stoichiometry of yeast V(1)-ATPase peripheral stalk subunits E and G was determined by two independent approaches using mass spectrometry (MS). First, the subunit ratio was inferred from measuring the molecular mass of the intact V(1)-ATPase complex and each of the individual protein components, using native electrospray ionization-MS. The major observed intact complex had a mass of 593,600 Da, with minor components displaying masses of 553,550 and 428,300 Da, respectively. Second, defined amounts of V(1)-ATPase purified from yeast grown on (14)N-containing medium were titrated with defined amounts of (15)N-labeled E and G subunits as internal standards. Following protease digestion of subunit bands, (14)N- and (15)N-containing peptide pairs were used for quantification of subunit stoichiometry using matrix-assisted laser desorption/ionization-time of flight MS. Results from both approaches are in excellent agreement and reveal that the subunit composition of yeast V(1)-ATPase is A(3)B(3)DE(3)FG(3)H.  相似文献   

5.
The V-type Na(+)-ATPase of the thermophilic, anaerobic bacterium Caloramator fervidus was purified to homogeneity. The subunit compositions of the catalytic V(1) and membrane-embedded V(0) parts were determined and the structure of the enzyme complex was studied by electron microscopy. The V(1) headpiece consists of seven subunits present in one to three copies, and the V(0) part of two subunits in a ratio of 5:2. An analysis of over 7500 single particle images obtained by electron microscopy of the purified V(1)V(0) enzyme complex revealed that the stalk region, connecting the V(1) and V(0) parts, contains two peripheral stalks in addition to a central stalk. One of the two is connected to the V(0) part, while the other is connected to the first via a bar-like structure that is positioned just above V(0), parallel with the plane of the membrane. In projection, this bar seems to contact the central stalk. The data show that the stator structure that prevents rotation of the static part of V(0) relative to V(1) in the rotary catalysis mechanism of energy coupling in ATPases/ATPsynthases is more complex than previously thought.  相似文献   

6.
Arata Y  Baleja JD  Forgac M 《Biochemistry》2002,41(37):11301-11307
Using a combination of cysteine mutagenesis and covalent cross-linking, we have identified subunits in close proximity to specific sites within subunit B of the vacuolar (H(+))-ATPase (V-ATPase) of yeast. Unique cysteine residues were introduced into subunit B by site-directed mutagenesis, and the resultant V-ATPase complexes were reacted with the bifunctional, photoactivatable maleimide reagent 4-(N-maleimido)benzophenone (MBP) followed by irradiation. Cross-linked products were identified by Western blot using subunit-specific antibodies. Introduction of cysteine residues at positions Glu(106) and Asp(199) led to cross-linking of subunits B and E, at positions Asp(341) and Ala(424) to cross-linking of subunits B and D, and at positions Ala(15) and Lys(45) to cross-linking of subunits B and G. Using a molecular model of subunit B constructed on the basis of sequence homology between the V- and F-ATPases, the X-ray coordinates of the F(1)-ATPase, and energy minimization, Glu(106), Asp(199), Ala(15), and Lys(45) are all predicted to be located on the outer surface of the complex, with Ala(15) and Lys(45) located near the top of the complex furthest from the membrane. By contrast, Asp(341) and Ala(424) are predicted to face the interior of the A(3)B(3) hexamer. These results suggest that subunits E and G form part of a peripheral stalk connecting the V(1) and V(0) domains whereas subunit D forms part of a central stalk. Subunit D is thus the most likely homologue to the gamma subunit of F(1), which undergoes rotation during ATP hydrolysis and serves an essential function in rotary catalysis.  相似文献   

7.
V0V1-ATPase is a proton-translocating ATPase responsible for acidification of eukaryotic intracellular compartments and for ATP synthesis in archaea and some eubacteria. We demonstrated recently the rotation of the central stalk subunits in V1, a catalytic sector of V0V1-ATPase (Imamura, H., Nakano, M., Noji, H., Muneyuki, E., Ohkuma, S., Yoshida, M., and Yokoyama, K. (2003) Proc. Natl. Acad. Sci. U. S. A. 100, 2312-2315), but the rotation of the proteolipid ring, a predicted counterpart rotor in the membrane V0 sector, has remained to be proven. V0V1-ATPase that retained sensitivity to N',N'-dicyclohexylcarbodiimide was isolated from Thermus thermophilus, immobilized onto a glass surface through the N termini of the A subunits of V1, and decorated with a bead attached to a proteolipid subunit of V0. Rotation of beads was observed in the presence of ATP, and direction of rotation was always counterclockwise viewed from the membrane side. The rotation proceeded at approximately 3.0 rev/s in average at 4 mm ATP and was abolished by N',N'-dicyclohexylcarbodiimide treatment. Thus, the rotation of the central stalk in V1 accompanies rotation of a proteolipid ring of V0 in the functioning V0V1-ATPase.  相似文献   

8.
V-type ATPase (V(o)V(1)) capable of ATP-driven H(+) pumping and of H(+) gradient driven ATP synthesis was isolated from a thermophilic eubacterium, Thermus thermophilus. When the enzyme was analyzed by gel electrophoresis in the presence of sodium dodecyl sulfate, it showed eight polypeptide bands of which four were subunits of V(1). We also isolated the V(o)V(1) operon, containing nine genes in the order of atpG-I-L-E-X-F-A-B-D, which encoded proteins with molecular sizes of 13, 43, 10, 20, 35, 11, 64, 53, and 25 kDa, respectively. The last four genes were identified as those for V(1) subunits; atpA, B, D, and F encoded the A, B, gamma, and delta subunits, respectively. The first five genes, atpG-atpX, were identified as genes for the V(o) subunits. The product of atpL, the proteolipid subunit, lacked a 19-amino acid presequence and, unlike V-type ATPases, contained two membrane-spanning domains rather than four. The hydrophobic 43-kDa product of atpI is the smallest member so far found of the eukaryotic 100-kDa subunit family. Its electrophoretic band overlapped with the band of the A subunit. Therefore, all the gene products were found in our purified V(o)V(1). We isolated the A(3)B(3) subcomplex reconstituted from the isolated subunits and the A(3)B(3)gamma subcomplex from subunit-expressing Escherichia coli. Electron microscopic observation of these subcomplexes revealed that the gamma subunit of V(1) filled the central cavity of A(3)B(3) and might be central subunit, similar to the gamma subunit of F(1)-ATPase.  相似文献   

9.
The structure of the vacuolar ATPase from bovine brain clathrin-coated vesicles has been determined by electron microscopy of negatively stained, detergent-solubilized enzyme molecules. Preparations of both lipid-containing and delipidated enzyme have been analyzed. The complex is organized in two major domains, a V(1) and V(0), with overall dimensions of 28 x 14 x 14 nm. The V(1) is a more or less spherical molecule with a central cavity. The V(0) has the shape of a flattened sphere or doughnut with a radius of about 100 A. The V(1) and V(0) are joined by a 60-A long and 40-A wide central stalk, consisting of several individual protein densities. Two kinds of smaller densities are visible at the top periphery of the V(1), and one of these seems to extend all the way down to the stalk domain in some averages. Images of both the lipid-containing and the delipidated complex show a 30-50-kDa protein density on the lumenal side of the complex, opposite the central stalk, centered in the ring of c subunits. A large trans-membrane mass, probably the C-terminal domain of the 100-kDa subunit a, is seen at the periphery of the c subunit ring in some projections. This large mass has both a lumenal and a cytosolic domain, and it is the cytosolic domain that interacts with the central stalk. Two to three additional protein densities can be seen in the V(1)-V(0) interface, all connected to the central stalk. Overall, the structure of the V-ATPase is similar to the structure of the related F(1)F(0)-ATP synthase, confirming their common origin.  相似文献   

10.
We have employed a combination of site-directed mutagenesis and covalent cross-linking to identify subunits in close proximity to subunit B in the vacuolar H(+)-ATPase (V-ATPase) complex. Unique cysteine residues were introduced into a Cys-less form of subunit B, and the V-ATPase complex in isolated vacuolar membranes from each mutant strain was reacted with the bifunctional, photoactivable maleimide reagent 4-(N-maleimido)benzophenone. Photoactivation resulted in cross-linking of the unique sulfhydryl groups on subunit B with other subunits in the complex. Four of the eight mutants constructed containing a unique cysteine residue at Ala(15), Lys(45), Glu(494), or Thr(501) resulted in the formation of cross-linked products, which were recognized by Western blot analysis using antibodies against both subunits B and E. These products had a molecular mass of 84 kDa, consistent with a cross-linked product of subunits B and E. Molecular modeling of subunit B places Ala(15) and Lys(45) near the top of the V(1) structure (i.e. farthest from the membrane), whereas Glu(494) and Thr(501) are predicted to reside near the bottom of V(1), with all four residues predicted to be oriented toward the external surface of the complex. A model incorporating these and previous data is presented in which subunit E exists in an extended conformation on the outer surface of the A(3)B(3) hexamer that forms the core of the V(1) domain. This location for subunit E suggests that this subunit forms part of the peripheral stalk of the V-ATPase that links the V(1) and V(0) domains.  相似文献   

11.
The three-dimensional structure of the Manduca sexta midgut V(1) ATPase has been determined at 3.2 nm resolution from electron micrographs of negatively stained specimens. The V(1) complex has a barrel-like structure 11 nm in height and 13.5 nm in diameter. It is hexagonal in the top view, whereas in the side view, the six large subunits A and B are interdigitated for most of their length (9 nm). The topology and importance of the individual subunits of the V(1) complex have been explored by protease digestion, resistance to chaotropic agents, MALDI-TOF mass spectrometry, and CuCl(2)-induced disulfide formation. Treatment of V(1) with trypsin or chaotropic iodide resulted in a rapid cleavage or release of subunit D from the enzyme, indicating that this subunit is exposed in the complex. Trypsin cleavage of V(1) decreased the ATPase activity with a time course that was in line with the cleavage of subunits B, C, G, and F. When CuCl(2) was added to V(1) in the presence of CaADP, the cross-linked products A-E-F and B-H were generated. In experiments where CuCl(2) was added after preincubation of CaATP, the cross-linked products E-F and E-G were formed. These changes in cross-linking of subunit E to near-neighbor subunits support the hypothesis that these are nucleotide-dependent conformational changes of the E subunit.  相似文献   

12.
Vacuolar-type rotary H(+)-ATPase/synthase (V(o)V(1)) from Thermus thermophilus, composed of nine subunits, A, B, D, F, C, E, G, I, and L, has been reconstituted from individually isolated V(1) (A(3)B(3)D(1)F(1)) and V(o) (C(1)E(2)G(2)I(1)L(12)) subcomplexes in vitro. A(3)B(3)D and A(3)B(3) also reconstituted with V(o), resulting in a holoenzyme-like complexes. However, A(3)B(3)D-V(o) and A(3)B(3)-V(o) did not show ATP synthesis and dicyclohexylcarbodiimide-sensitive ATPase activity. The reconstitution process was monitored in real time by fluorescence resonance energy transfer (FRET) between an acceptor dye attached to subunit F or D in V(1) or A(3)B(3)D and a donor dye attached to subunit C in V(o). The estimated dissociation constants K(d) for V(o)V(1) and A(3)B(3)D-V(o) were ~0.3 and ~1 nm at 25 °C, respectively. These results suggest that the A(3)B(3) domain tightly associated with the two EG peripheral stalks of V(o), even in the absence of the central shaft subunits. In addition, F subunit is essential for coupling of ATP hydrolysis and proton translocation and has a key role in the stability of whole complex. However, the contribution of the F subunit to the association of A(3)B(3) with V(o) is much lower than that of the EG peripheral stalks.  相似文献   

13.
The central stalk in ATP synthase, made of gamma, delta and epsilon subunits in the mitochondrial enzyme, is the key rotary element in the enzyme's catalytic mechanism. The gamma subunit penetrates the catalytic (alpha beta)(3) domain and protrudes beneath it, interacting with a ring of c subunits in the membrane that drives rotation of the stalk during ATP synthesis. In other crystals of F(1)-ATPase, the protrusion was disordered, but with crystals of F(1)-ATPase inhibited with dicyclohexylcarbodiimide, the complete structure was revealed. The delta and epsilon subunits interact with a Rossmann fold in the gamma subunit, forming a foot. In ATP synthase, this foot interacts with the c-ring and couples the transmembrane proton motive force to catalysis in the (alpha beta)(3) domain.  相似文献   

14.
The vacuolar (H+)-ATPase (or V-ATPase) is a membrane protein complex that is structurally related to F1 and F0 ATP synthases. The V-ATPase is composed of an integral domain (V0) and a peripheral domain (V1) connected by a central stalk and up to three peripheral stalks. The number of peripheral stalks and the proteins that comprise them remain controversial. We have expressed subunits E and G in Escherichia coli as maltose binding protein fusion proteins and detected a specific interaction between these two subunits. This interaction was specific for subunits E and G and was confirmed by co-expression of the subunits from a bicistronic vector. The EG complex was characterized using size exclusion chromatography, cross-linking with short length chemical cross-linkers, circular dichroism spectroscopy, and electron microscopy. The results indicate a tight interaction between subunits E and G and revealed interacting helices in the EG complex with a length of about 220 angstroms. We propose that the V-ATPase EG complex forms one of the peripheral stators similar to the one formed by the two copies of subunit b in F-ATPase.  相似文献   

15.
V1-ATPase from the yeast Saccharomyces cerevisiae was purified via a FLAG affinity tag introduced into the N terminus of the G subunit. The preparation migrated as a single band in native gel electrophoresis and contained subunits ABCDEFGH (with subunit C present at substoichiometric amounts) as determined by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. The initial specific Ca-ATPase activity was approximately 6 micromol/min/mg. The structure of the yeast V1-ATPase was studied by electron microscopy of negatively stained and frozen hydrated samples. A 25-A resolution three-dimensional model of the complex was calculated from two-dimensional projections by the angular reconstitution technique. The model shows six elongated densities arranged in pseudo-3-fold symmetry around a large central cavity. At the top of the molecule, various protrusions can be seen. At the bottom of the complex, two large masses are visible that are connected to the main body of the molecule. Comparison of the yeast V1 structure with the structure of the intact V1V0-ATPase from bovine brain clathrin-coated vesicles (Wilkens, S., Vasilyeva, E., and Forgac, M. (1999) J. Biol. Chem. 274, 31804-31810) indicates that the structure of the isolated V1 from yeast is very similar to the structure of the V1 domain in the intact V-ATPase complex.  相似文献   

16.
The V0V1-ATPase of Thermus thermophilus catalyzes ATP synthesis coupled with proton translocation. It consists of an ATPase-active V1 part (ABDF) and a proton channel V0 part (CLEGI), but the arrangement of each subunit is still largely unknown. Here we found that acid treatment of V0V1-ATPase induced its dissociation into two subcomplexes, one with subunit composition ABDFCL and the other with EGI. Exposure of the isolated V0 to acid or 8 m urea also produced two subcomplexes, EGI and CL. Thus, the C subunit (homologue of d subunit, yeast Vma6p) associates with the L subunit ring tightly, and I (homologue of 100-kDa subunit, yeast Vph1p), E, and G subunits constitute a stable complex. Based on these observations and our recent demonstration that D, F, and L subunits rotate relative to A3B3 (Imamura, H., Nakano, M., Noji, H., Muneyuki, E., Ohkuma, S., Yoshida, M., and Yokoyama, K. (2003) Proc. Natl. Acad. Sci. U. S. A. 100, 2312-2315; Yokoyama, K., Nakano, M., Imamura, H., Yoshida, M., and Tamakoshi, M. (2003) J. Biol. Chem. 278, 24255-24258), we propose that C, D, F, and L subunits constitute the central rotor shaft and A, B, E, G, and I subunits comprise the surrounding stator apparatus in the V0V1-ATPase.  相似文献   

17.
In Archaea, bacteria, and eukarya, ATP provides metabolic energy for energy-dependent processes. It is synthesized by enzymes known as A-type or F-type ATP synthase, which are the smallest rotatory engines in nature (Yoshida, M., Muneyuki, E., and Hisabori, T. (2001) Nat. Rev. Mol. Cell. Biol. 2, 669-677; Imamura, H., Nakano, M., Noji, H., Muneyuki, E., Ohkuma, S., Yoshida, M., and Yokoyama, K. (2003) Proc. Natl. Acad. Sci. U. S. A. 100, 2312-2315). Here, we report the first projected structure of an intact A(1)A(0) ATP synthase from Methanococcus jannaschii as determined by electron microscopy and single particle analysis at a resolution of 1.8 nm. The enzyme with an overall length of 25.9 nm is organized in an A(1) headpiece (9.4 x 11.5 nm) and a membrane domain, A(0) (6.4 x 10.6 nm), which are linked by a central stalk with a length of approximately 8 nm. A part of the central stalk is surrounded by a horizontal-situated rodlike structure ("collar"), which interacts with a peripheral stalk extending from the A(0) domain up to the top of the A(1) portion, and a second structure connecting the collar structure with A(1). Superposition of the three-dimensional reconstruction and the solution structure of the A(1) complex from Methanosarcina mazei G?1 have allowed the projections to be interpreted as the A(1) headpiece, a central and the peripheral stalk, and the integral A(0) domain. Finally, the structural organization of the A(1)A(0) complex is discussed in terms of the structural relationship to the related motors, F(1)F(0) ATP synthase and V(1)V(0) ATPases.  相似文献   

18.
ATP synthase, the assembly which makes ATP in mitochondria, chloroplasts and bacteria, uses transmembrane proton gradients generated by respiration or photosynthesis to drive the phosphorylation of ADP. Its membrane domain is joined by a slender stalk to a peripheral catalytic domain, F1-ATPase. This domain is made of five subunits with stoichiometries of 3 alpha: 3 beta: 1 gamma: 1 delta: 1 epsilon, and in bovine mitochondria has a molecular mass of 371,000. We have determined the 3-dimensional structure of bovine mitochondrial F1-ATPase to 6.5 A resolution by X-ray crystallography. It is an approximately spherical globule 110 A in diameter, on a 40 A stem which contains two alpha-helices in a coiled-coil. This stem is presumed to be part of the stalk that connects F1 with the membrane domain in the intact ATP synthase. A pit next to the stem penetrates approximately 35 A into the F1 particle. The stem and the pit are two examples of the many asymmetric features of the structure. The central element in the asymmetry is the longer of the two alpha-helices in the stem, which extends for 90 A through the centre of the assembly and emerges on top into a dimple 15 A deep. Features with threefold and sixfold symmetry, presumed to be parts of homologous alpha and beta subunits, are arranged around the central rod and pit, but the overall structure is asymmetric. The central helix provides a possible mechanism for transmission of conformational changes induced by the proton gradient from the stalk to the catalytic sites of the enzyme.  相似文献   

19.
The structure of the V1 ATPase from the tobacco hornworm Manduca sexta has been determined from electron micrographs of isolated, negatively stained specimens. The resulting images clearly show a pseudohexagonal arrangement of six equal-sized protein densities, presumably representing the three copies each of subunits A and B, which comprise the headpiece of the enzyme. A seventh density could be observed either centrally or asymmetrically to the hexamer. The maximum diameter of the V1 complex in the hexagonal projection is 13 nm with each of the six peripheral densities being 3-4 nm in diameter.  相似文献   

20.
The subunit architecture of the yeast vacuolar ATPase (V-ATPase) was analyzed by single particle transmission electron microscopy and electrospray ionization (ESI) tandem mass spectrometry. A three-dimensional model of the intact V-ATPase was calculated from two-dimensional projections of the complex at a resolution of 25 angstroms. Images of yeast V-ATPase decorated with monoclonal antibodies against subunits A, E, and G position subunit A within the pseudo-hexagonal arrangement in the V1, the N terminus of subunit G in the V1-V0 interface, and the C terminus of subunit E at the top of the V1 domain. ESI tandem mass spectrometry of yeast V1-ATPase showed that subunits E and G are most easily lost in collision-induced dissociation, consistent with a peripheral location of the subunits. An atomic model of the yeast V-ATPase was generated by fitting of the available x-ray crystal structures into the electron microscopy-derived electron density map. The resulting atomic model of the yeast vacuolar ATPase serves as a framework to help understand the role the peripheral stalk subunits are playing in the regulation of the ATP hydrolysis driven proton pumping activity of the vacuolar ATPase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号