首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Surface thermodynamics of bacterial adhesion.   总被引:37,自引:23,他引:14       下载免费PDF全文
The adhesion of five strains of bacteria, i.e., Staphylococcus aureus (strain 049), Staphylococcus epidermidis (strain 047), Escherichia coli (strains 055 and 2627), and Listeria monocytogenes, to various polymeric surfaces was studied. The design of the experimental protocol was dictated by thermodynamic considerations. From the thermodynamic model for the adhesion of small particles from a suspension onto a solid substratum, it follows that the extent of adhesion is determined by the surface properties of all three phases involved, i.e., the surface tensions of the adhering particles, of the substrate, and of the suspending liquid medium. In essence, adhesion is more extensive to hydrophilic substrata (i.e., substrata of relatively high surface tension) than to hydrophobic substrata, when the surface tension of the bacteria is larger than that of the suspending medium. When the surface tension of the suspending liquid is larger than that of the bacteria, the opposite pattern of behavior prevails. Suspensions of bacteria at a concentration of 10(8) microorganisms per ml were brought into contact with several polymeric surfaces (Teflon, polyethylene, polystyrene, and acetal and sulfonated polystyrene) for 30 min at 20 degrees C. After rinsing, the number of bacteria adhering per unit surface area was determined by image analysis. The surface tension of the suspending medium. Hanks balanced salt solution, was modified through the addition of various amounts of dimethyl sulfoxide. It was found that the number of bacteria adhering per unit surface area correlates well with the thermodynamic predictions and that these data may be used to determine the surface tension of the different bacterial species. The surface tensions of the bacteria obtained in this fashion are in excellent agreement with those obtained by other methods.  相似文献   

2.

Background  

The first step in biofilm formation is bacterial attachment to solid surfaces, which is dependent on the cell surface physico-chemical properties. Cell wall anchored proteins (CWAP) are among the known adhesins that confer the adhesive properties to pathogenic Gram-positive bacteria. To investigate the role of CWAP of non-pathogen Gram-positive bacteria in the initial steps of biofilm formation, we evaluated the physico-chemical properties and adhesion to solid surfaces of Lactococcus lactis. To be able to grow in milk this dairy bacterium expresses a cell wall anchored proteinase PrtP for breakdown of milk caseins.  相似文献   

3.
Bacterial adhesion to and subsequent colonization of surfaces are the first steps toward forming biofilms, which are a major concern for implanted medical devices and in many diseases. It has generally been assumed that strong irreversible adhesion is a necessary step for biofilm formation. However, some bacteria, such as Escherichia coli when binding to mannosylated surfaces via the adhesive protein FimH, adhere weakly in a mode that allows them to roll across the surface. Since single-point mutations or even increased shear stress can switch this FimH-mediated adhesion to a strong stationary mode, the FimH system offers a unique opportunity to investigate the role of the strength of adhesion independently from the many other factors that may affect surface colonization. Here we compare levels of surface colonization by E. coli strains that differ in the strength of adhesion as a result of flow conditions or point mutations in FimH. We show that the weak rolling mode of surface adhesion can allow a more rapid spreading during growth on a surface in the presence of fluid flow. Indeed, an attempt to inhibit the adhesion of strongly adherent bacteria by blocking mannose receptors with a soluble inhibitor actually increased the rate of surface colonization by allowing the bacteria to roll. This work suggests that (i) a physiological advantage to the weak adhesion demonstrated by commensal variants of FimH bacteria may be to allow rapid surface colonization and (ii) antiadhesive therapies intended to prevent biofilm formation can have the unintended effect of enhancing the rate of surface colonization.  相似文献   

4.
In our previous study [Hong Y, Brown DG (2009) Appl Environ Microbiol 75(8):2346–2353], the adenosine triphosphate (ATP) level of adhered bacteria was observed to be 2–5 times higher than that of planktonic bacteria. Consequently, the proton motive force (Δp) of adhered bacteria was approximately 15% greater than that of planktonic bacteria. It was hypothesized that the cell surface pH changes upon adhesion due to the charge‐regulated nature of the bacterial cell surface and that this change in surface pH can propagate to the cytoplasmic membrane and alter Δp. In the current study, we developed and applied a charge regulation model to bacterial adhesion and demonstrated that the charge nature of the adhering surface can have a significant effect on the cell surface pH and ultimately the affect the ATP levels of adhered bacteria. The results indicated that the negatively charged glass surface can result in a two‐unit drop in cell surface pH, whereas adhesion to a positively charged amine surface can result in a two‐unit rise in pH. The working hypothesis indicates that the negatively charged surface should enhance Δp and increase cellular ATP, while the positively charged surface should decrease Δp and decrease ATP, and these results of the hypothesis are directly supported by prior experimental results with both negatively and positively charged surfaces. Overall, these results suggest that the nature of charge on the solid surface can have an impact on the proton motive force and cellular ATP levels. Biotechnol. Bioeng. 2010;105: 965–972. © 2009 Wiley Periodicals, Inc.  相似文献   

5.
Surface free energies of oral streptococci and their adhesion to solids   总被引:1,自引:0,他引:1  
Abstract The adhesion of 3 strains of oral streptococci from a buffered suspension onto 3 different solid substrata was studied. Representative strains of streptococci were selected on the basis of their surface free energy ( γ b), namely Streptococcus mitis L1 ( γ b= 37 mJ·m−2), Streptococcus sanguis CH3 (95 mJ·m−2) and Streptococcus mutans NS (117 mJ·m−2). Solid substrata were also selected on basis of their surface free energy ( γ s), and included polytetrafluorethylene ( γ s= 20 mJ·m−2), polymethylmethacrylate (53 mJ·m−2) and glass (109 mJ·m−2). Bacterial adhesion was measured as the number of bacteria adhering per cm2 at equilibrium. Equilibrium was usually obtained within 20 min. S. sanguis CH3, having an intermediate surface free energy did not show a clear preference for any of the 3 solids. S. mitis L1, however, the lowest surface free energy strain, adhered in highest numbers to the low energy solid PTFE, whereas the highest γ b strain, S. mutans NS, adhered in highest numbers to the highest γ s solid, glass. Calculation of the interfacial free energy of adhesion ( ΔF adh) for each bacterial strain showed that this parameter was predictive of bacterial adhesion to solid substrata.  相似文献   

6.
Bacterial adhesion: A physicochemical approach   总被引:12,自引:0,他引:12  
The adhesion of bacteria to solid surfaces was studied using a physicochemical approach. Adhesion to negatively charged polystyrene was found to be reversible and could be described quantitatively using the DLVO theory for colloidal stability, i.e., in terms of Van der Waals and electrostatic interactions. The influence of the latter was assessed by varying the electrolyte strength. Adhesion increased with increasing electrolyte strength. The adhesion Gibbs energy for a bacterium and a negatively charged polystyrene surface was estimated from adhesion isotherms and was found to be 2–3 kT per cell. This low value corresponds to an adhesion in the secondary minimum of interaction as described by the DLVO theory. The consequences of these findings for adhesion in the natural environment are discussed.  相似文献   

7.
There are a number of contrary reports on the effect of surface energy of substrates on bacterial adhesion. Some reports showed that bacterial adhesion decreased with decreasing surface energy of substrates; while other reports showed that bacterial adhesion decreased with increasing surface energy of substrates. In this study Escherichia coli adhesion on the Ni--P--PTFE coatings with various surface energies was investigated and the extended DLVO theory was used to calculate the interaction energy between bacteria and the substrates in water. The theory explained the effect of surface energy of substrates on bacterial adhesion.  相似文献   

8.
Medical implants are often colonized by bacteria which may cause severe infections. The initial step in the colonization, the adhesion of bacteria to the artificial solid surface, is governed mainly by long-range van der Waals and electrostatic interactions between the solid surface and the bacterial cell. While van der Waals forces are generally attractive, the usually negative charge of bacteria and solid surfaces leads to electrostatic repulsion. We report here on the adhesion of a clinical isolate, Stenotrophomonas maltophilia 70401, which is, at physiological pH, positively charged. S. maltophilia has an electrophoretic mobility of +0.3 x 10(-8) m2 V-1 s-1 at pH 7 and an overall surface isoelectric point at pH 11. The positive charge probably originates from proteins located in the outer membrane. For this bacterium, both long-range forces involved in adhesion are attractive. Consequently, adhesion of S. maltophilia to negatively charged surfaces such as glass and Teflon is much favored compared with the negatively charged bacterium Pseudomonas putida mt2. While adhesion of negatively charged bacteria is impeded in media of low ionic strength because of a thick negatively charged diffuse layer, adhesion of S. maltophilia was particularly favored in dilute medium. The adhesion efficiencies of S. maltophilia at various ionic strengths could be explained in terms of calculated long-range interaction energies between S. maltophilia and glass or Teflon.  相似文献   

9.
Cranberry juice has long been believed to benefit the prevention and treatment of urinary tract infections (UTIs). As the first step in the development of infection, bacterial adhesion is of great research interest, yet few studies have addressed molecular level adhesion in this context. P-fimbriated Escherichia coli play a major role in the development of a serious type of UTI, acute pyelonephritis. Experiments were conducted to investigate the molecular-scale effects of cranberry juice on two E. coli strains: HB101, which has no fimbriae, and the mutant HB101pDC1 which expresses P-fimbriae. Atomic force microscopy (AFM) was used to investigate both bacterial surface characteristics and adhesion forces between a probe surface (silicon nitride) and the bacteria, providing a direct evaluation of bacterial adhesion and interaction forces. Cranberry juice affected bacterial surface polymer and adhesion behavior after a short exposure period (<3 h). Cranberry juice affected the P-fimbriated bacteria by decreasing the adhesion forces between the bacterium and tip and by altering the conformation of the surface macromolecules on E. coli HB101pDC1. The equilibrium length of polymer (P-fimbriae) on this bacterium decreased from approximately 148 to approximately 48 nm upon being exposed to cranberry juice. Highly acidic conditions were not necessary for the prevention of bacterial adhesion, since neutralization of cranberry juice solutions to pH = 7.0 allowed us to observe differences in adhesion between the E. coli strains. Our results demonstrate molecular-level changes in the surfaces of P-fimbriated E. coli upon exposure to neutralized cranberry juice.  相似文献   

10.
Autoagregating strains of bacteria are characterised by high surface hydrophobicity, which determines their ability to adhesion. An assessment was done of non-specific adhesion to solid surfaces of S. aureus strains isolated from blood, pus and nasopharynx of hospitalised people. The method used made possible differentiation of strains, which were studied, on the basis of their surface characteristics. Their properties decide about the abilities of strains to the colonisation of host tissues and at the same time they influence their potential virulence. In the study attention was also paid to the participation of surface proteins in the processes of adhesion cells to glass surfaces.  相似文献   

11.
The role of bacterial cell wall hydrophobicity in adhesion   总被引:25,自引:0,他引:25  
In this study, the adhesion of bacteria differing in surface hydrophobicity was investigated. Cell wall hydrophobicity was measured as the contact angle of water on a bacterial layer collected on a microfilter. The contact angles ranged from 15 to 70 degrees. This method was compared with procedures based upon adhesion to hexadecane and with the partition of cells in a polyethylene glycol-dextran two-phase system. The results obtained with these three methods agreed reasonably well. The adhesion of 16 bacterial strains was measured on sulfated polystyrene as the solid phase. These experiments showed that hydrophobic cells adhered to a greater extent than hydrophilic cells. The extent of adhesion correlated well with the measured contact angles (linear regression coefficient, 0.8).  相似文献   

12.
The role of bacterial cell wall hydrophobicity in adhesion.   总被引:31,自引:18,他引:13       下载免费PDF全文
In this study, the adhesion of bacteria differing in surface hydrophobicity was investigated. Cell wall hydrophobicity was measured as the contact angle of water on a bacterial layer collected on a microfilter. The contact angles ranged from 15 to 70 degrees. This method was compared with procedures based upon adhesion to hexadecane and with the partition of cells in a polyethylene glycol-dextran two-phase system. The results obtained with these three methods agreed reasonably well. The adhesion of 16 bacterial strains was measured on sulfated polystyrene as the solid phase. These experiments showed that hydrophobic cells adhered to a greater extent than hydrophilic cells. The extent of adhesion correlated well with the measured contact angles (linear regression coefficient, 0.8).  相似文献   

13.
A mathematical model which describes adhesion of bacteria to host cell lines is presented. The model is flexible enough to account for the following situations: extracellular bacteria are either in exponential or in stationary phase. Adhesion is described as a reversible binding process in which the bacteria attach to or detach from specific receptors uniformly distributed on the cell surface. In turn, attached bacteria can either replicate or, conversely, they are restrained to remain in stationary phase. In the first case, however, we must consider the problem of whether the decrease of unoccupied receptors as adhesion progresses imposes a limit to the replicating capacity of the attached bacteria. The effect exerted by the multiplicity of infection (MOI), i.e. the ratio of the number of bacteria to the number of host cells, on the process of adhesion is also contemplated by the model. This has revealed that experiments performed at the same values of MOI can show completely different levels of adhered bacteria, depending on the number of host cells in the assays. This finding demonstrates that the report of the MOI values is insufficient to characterize comparative studies of bacterial adhesion since it could lead to a misunderstanding of the corresponding data. Simplified models based on the steady-state approximation and in equilibrium analysis by means of a Lagmuir adsorption isotherm for the attached bacteria are also discussed. This allows us to define the adhesion coefficient (β) in a given bacterium-cell system so that, with the exception of those systems where these coefficients cannot be defined, larger values of β are related to a greater adhesion capacity. An overview of the procedures to perform quantitative adhesion data analysis is outlined. Finally, theoretical predictions are compared with experimental results from the literature.  相似文献   

14.
Microrheological aspects of adhesion of Escherichia coli on glass   总被引:2,自引:0,他引:2  
Z Xia  L Woo  T G van de Ven 《Biorheology》1989,26(2):359-375
The adhesion of both live and fixed bacteria (Escherichia coli) on glass has been studied under well-defined hydrodynamic conditions, created in an impinging jet apparatus. With this technique one can accurately measure the initial deposition rate jo on the surface, the average lifetime of a bacterium on the surface, tau esc, and the surface area blocked per deposited bacterium, normalized by its projected area, gamma. The experimental results are compared to theoretical results for equivalent spheres. It is found that near the stagnation point the deposition rate jo is mainly controlled by convective diffusive transport which, for rod-shaped Eschericia coli, with an axis ratio of about 2, is found to be equal to that for spheres. No differences in jo and tau esc were found between live and fixed bacteria at low flow rates. At high flow rates fixed bacteria adhered to the surface at a slower rate. In both systems jo was found to decrease suddenly at a distance of about 150 microns from the stagnation point, in contrast to systems of spherical particles for which jo is uniform over the surface. Most likely this is due to the rotation of the rod-shaped particles, which vary their distance to the surface periodically with time. The main difference between live and fixed bacteria, besides different deposition rates in strong flows, is that gamma is about 30% larger for fixed bacteria than for live ones, resulting in a much lower final coverage for fixed bacteria. These results imply a larger repulsion between fixed bacteria than between living ones. From detachment experiments we can conclude that not all bacteria stick to the surface with the same bond strength. The variation in the bond strength is due to the aging of the bonds between the bacteria and the surface. The average bond strength corresponds to an energy of about 13-15 kT.  相似文献   

15.
Although ubiquitous, the processes by which bacteria colonize surfaces remain poorly understood. Here we report results for the influence of the wall shear stress on the early-stage adhesion of Pseudomonas aeruginosa PA14 on glass and polydimethylsiloxane surfaces. We use image analysis to measure the residence time of each adhering bacterium under flow. Our main finding is that, on either surface, the characteristic residence time of bacteria increases approximately linearly as the shear stress increases (∼0–3.5 Pa). To investigate this phenomenon, we used mutant strains defective in surface organelles (type I pili, type IV pili, or the flagellum) or extracellular matrix production. Our results show that, although these bacterial surface features influence the frequency of adhesion events and the early-stage detachment probability, none of them is responsible for the trend in the shear-enhanced adhesion time. These observations bring what we believe are new insights into the mechanism of bacterial attachment in shear flows, and suggest a role for other intrinsic features of the cell surface, or a dynamic cell response to shear stress.  相似文献   

16.
Summary A thermodynamic model of particle adhesion from a suspension onto a solid surface is used to predict the extent of adhesion of suspension-cultured Catharanthus roseus cells to the following polymer substrates: fluorinated ethylene-propylene (FEP), polystyrene (PS), polyethylene terephthalate (PET), sulphonated polystyrene (SPS), and glass. According to this model, the extent of adhesion is determined by the surface tensions of the plant cells, the polymer substrates, and the suspending liquid medium. Experimentally, adhesion of the washed plant cells was found to decrease with increasing substrate surface tension, following the sequence FEP>PS>PET>SPS>glass, when the surface tension of the liquid was greater than that of the plant cells, in agreement with the model. However, adhesion increased with increasing substrate surface tension when the liquid surface tension was lower than the cellular surface tension, also in agreement with the model. When the liquid and cellular tensions were equal the extent of adhesion was independent of the substrate surface tension. This also agrees with model predictions and leads to a value for the surface tension of C. roseus cells of approximately 54 ergs/cm2 which is in agreement with a value obtained from contact angle measurements on layers of cells and sedimentation volume analysis. The cellular surface tension determined by the sedimentation volume method showed a biphasic alteration during growth cycles of C. roseus cell cultures. These variations (between 55 and 58 ergs/cm2) agree with the pattern of adhesion previously described.  相似文献   

17.
The role that bacterial surface hydrophobicity (surface tension) plays in determining the extent of adhesion of polymer substrates and phagocytic ingestion is reviewed. The early attachment phase in bacterial adhesion is shown to depend critically on the relative surface tensions of the three interacting phases; i.e., bacteria, substrate, and suspending liquid surface tension. When suspended in a liquid with a high surface tension such as Hanks balanced salt solution, the most hydrophobic bacteria adhere to all surfaces to the greatest extent. When the liquid surface tension (gamma LV) is larger than the bacterial surface tension (gamma BV), then for any single bacterial species the extent of adhesion decreases with increasing substrate surface tension (gamma SV). When gamma LV less than gamma BV then adhesion increases with increasing gamma SV. Bacterial surface tension also determines in part the extent of phagocytic ingestion and the degree to which antibodies specifically adsorb onto the bacterium resulting in opsonization. The nonspecific adsorption of antibodies results in a considerable modification in the surface properties of the bacteria. Bacterial surface hydrophobicity can be altered significantly through exposure to subinhibitory concentrations of antibiotics, surfactants, lectins, etc. The effect of these changes on subsequent phagocytic ingestion is discussed.  相似文献   

18.
Adhesion to host tissues is an initiating step in a majority of bacterial infections. In the case of Gram-negative bacteria this adhesion is often mediated by a specific interaction between an adhesin, positioned at the distal end of bacterial pili, and its receptor on the surface of the host tissue. Furthermore, the rod of the pilus, and particularly its biomechanical properties, is believed to be crucial for the ability of bacteria to withstand external forces caused by, for example, (in the case of urinary tract infections) urinary rinsing flows by redistributing the force to several pili. In this work, the adhesion properties of P-piliated E. coli and their dependence of pH have been investigated in a broad pH range by both the surface plasmon resonance technique and force measuring optical tweezers. We demonstrate that P piliated bacteria have an adhesion ability throughout the entire physiologically relevant pH range (pH 4.5 - 8). We also show that pH has a higher impact on the binding rate than on the binding stability or the biomechanical properties of pili; the binding rate was found to have a maximum around pH 5 while the binding stability was found to have a broader distribution over pH and be significant over the entire physiologically relevant pH range. Force measurements on a single organelle level show that the biomechanical properties of P pili are not significantly affected by pH.  相似文献   

19.
Although adhesion of bacteria and yeast have been extensively studied by a wide range of experimental and theoretical approaches, significantly less attention has been focused on microalgae adhesion to solid materials. This work is focused on physicochemical aspects of microalgae adhesion. The results are based on experimental characterization of surface properties of both microalgae and solids by contact angle and zeta potential measurements. These data are used in modeling the surface interactions (thermodynamic and colloidal models) resulting in quantitative prediction of the interaction intensities. Finally, the model predictions are compared with experimental adhesion tests of microalgae onto model solids in order to identify the physicochemical forces governing the microalgae–solid interaction. The model solids were prepared in order to cover a wide range of properties (hydrophobicity and surface charge). The results revealed that, in low ionic strength environment, the adhesion was influenced mostly by electrostatic attraction/repulsion between surfaces, while with increasing ionic strength grew the importance of apolar (hydrophobic) interactions. The impact of solid surface properties on the degree of colonization by microlagae was statistically more significant than the influence of medium composition on cell surface of Chlorella vulgaris.  相似文献   

20.
Adhesion of leukocytes and platelets to solid substrates of different surface tensions and hence different wettability is studied from a thermodynamic point of view. A simple thermodynamic model predicts that cellular adhesion should increase with increasing surface tension of the solid substrate if the surface tension of the medium in which the cells are suspended is lower than the surface tension of the cells. If the surface tension of the suspending medium is higher than that of the cells, the opposite behavior is predicted. These predictions are borne out completely by neutrophil adhesion tests, where the surface tension of the aequeous suspending medium is varied by addition of dimethyl sulfoxide (DMSO). Platelet adhesion experiments also confirm these predictions, the only difference being that surface tensions of the suspending medium above that of the platelets cannot be realized, owing to exudation of surface active solutes from the platelets. Utilization of the thermodynamic prediction that cellular adhesion should become independent of the surface tension of the substrate when the surface tensions of the cells and that of the suspending medium are equal leads to a value of the surface tension of neutrophils of 69.0 erg/cm2,† in excellent agreement with the value obtained from contact angles measured on layers of cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号