首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
LEAFY controls floral meristem identity in Arabidopsis.   总被引:96,自引:0,他引:96  
The first step in flower development is the generation of a floral meristem by the inflorescence meristem. We have analyzed how this process is affected by mutant alleles of the Arabidopsis gene LEAFY. We show that LEAFY interacts with another floral control gene, APETALA1, to promote the transition from inflorescence to floral meristem. We have cloned the LEAFY gene, and, consistent with the mutant phenotype, we find that LEAFY RNA is expressed strongly in young flower primordia. LEAFY expression procedes expression of the homeotic genes AGAMOUS and APETALA3, which specify organ identify within the flower. Furthermore, we demonstrate that LEAFY is the Arabidopsis homolog of the FLORICAULA gene, which controls floral meristem identity in the distantly related species Antirrhinum majus.  相似文献   

2.
The ULTRAPETALA gene controls shoot and floral meristem size in Arabidopsis   总被引:3,自引:0,他引:3  
The regulation of proper shoot and floral meristem size during plant development is mediated by a complex interaction of stem cell promoting and restricting factors. The phenotypic effects of mutations in the ULTRAPETALA gene, which is required to control shoot and floral meristem cell accumulation in Arabidopsis thaliana, are described. ultrapetala flowers contain more floral organs and whorls than wild-type plants, phenotypes that correlate with an increase in floral meristem size preceding organ initiation. ultrapetala plants also produce more floral meristems than wild-type plants, correlating with an increase in inflorescence meristem size without visible fasciation. Expression analysis indicates that ULTRAPETALA controls meristem cell accumulation partly by limiting the domain of CLAVATA1 expression. Genetic studies show that ULTRAPETALA acts independently of ERA1, but has overlapping functions with PERIANTHIA and the CLAVATA signal transduction pathway in controlling shoot and floral meristem size and meristem determinacy. Thus ULTRAPETALA defines a novel locus that restricts meristem cell accumulation in Arabidopsis shoot and floral meristems.  相似文献   

3.
4.
The Arabidopsis LEAFY (LFY) gene product induces cells of the shoot apical meristem to differentiate into floral primordia by acting as a master regulator of downstream floral homeotic genes. Tobacco, an allotetraploid, possesses two homologous genes, NFL1 and NFL2, which are 97% identical in amino acid sequence and share 73% amino acid sequence identity with LFY. In order to test whether the highly conserved tobacco orthologue, NFL1, shares functional identity with LFY, we created transgenic tobacco and Arabidopsis plants that constitutively express the NFL1 cDNA. Our results indicate that NFL1 plays a critical role in the allocation of meristematic cells that differentiate lateral structures such as leaves and branches, thereby determining the architecture of the wild-type tobacco shoot. NFL1 also regulates floral meristem development and does so through the control of cell proliferation as well as cell identity. Surprisingly, unlike ectopic LFY expression, which can act as a floral trigger, ectopic NFL1 expression does not promote severe precocious flowering in Nicotiana tabacum suggesting that variations in amino acid sequence among members of the LFY-like gene family have led to divergence in the functional roles of these genes.  相似文献   

5.
The ABC model of flower organ identity is widely recognized as providing a framework for understanding the specification of flower organs in diverse plant species. Recent studies in Arabidopsis thaliana have shown that three closely related MADS-box genes, SEPALLATA1 (SEP1), SEP2 and SEP3, are required to specify petals, stamens, and carpels because these organs are converted into sepals in sep1 sep2 sep3 triple mutants. Additional studies indicate that the SEP proteins form multimeric complexes with the products of the B and C organ identity genes. Here, we characterize the SEP4 gene, which shares extensive sequence similarity to and an overlapping expression pattern with the other SEP genes. Although sep4 single mutants display a phenotype similar to that of wild-type plants, we find that floral organs are converted into leaf-like organs in sep1 sep2 sep3 sep4 quadruple mutants, indicating the involvement of all four SEP genes in the development of sepals. We also find that SEP4 contributes to the development of petals, stamens, and carpels in addition to sepals and that it plays an important role in meristem identity. These and other data demonstrate that the SEP genes play central roles in flower meristem identity and organ identity.  相似文献   

6.
The homeobox gene family plays a crucial role during the development of multicellular organisms. The KNOTTED-like genes from Arabidopsis thaliana (KNAT6 and KNAT2) are close relatives of the meristematic genes SHOOT MERISTEMLESS (STM) and BREVIPEDICELLUS, but their function is not currently known. To investigate their role, we identified null alleles of KNAT6 and KNAT2. We demonstrate that KNAT6 contributes redundantly with STM to the maintenance of the shoot apical meristem (SAM) and organ separation. Consistent with this role, the expression domain of KNAT6 in the SAM marks the boundaries between the SAM and cotyledons. The lack of meristematic activity in the knat6 stm-2 double mutant and the fusion of cotyledons were linked to the modulation of CUP-SHAPED COTYLEDON (CUC) activity. During embryogenesis, KNAT6 is expressed later than STM and CUC. In agreement with this fact, CUC1 and CUC2 were redundantly required for KNAT6 expression. These data provide the basis for a model in which KNAT6 contributes to SAM maintenance and boundary establishment in the embryo via the STM/CUC pathway. KNAT2, although the closest related member of the family to KNAT6, did not have such a function.  相似文献   

7.
The shoot stem cell niche, contained within the shoot apical meristem (SAM) is maintained in Arabidopsis by the homeodomain protein SHOOT MERISTEMLESS (STM). STM is a mobile protein that traffics cell‐to‐cell, presumably through plasmodesmata. In maize, the STM homolog KNOTTED1 shows clear differences between mRNA and protein localization domains in the SAM. However, the STM mRNA and protein localization domains are not obviously different in Arabidopsis, and the functional relevance of STM mobility is unknown. Using a non‐mobile version of STM (2xNLS‐YFP‐STM), we show that STM mobility is required to suppress axillary meristem formation during embryogenesis, to maintain meristem size, and to precisely specify organ boundaries throughout development. STM and organ boundary genes CUP SHAPED COTYLEDON1 (CUC1), CUC2 and CUC3 regulate each other during embryogenesis to establish the embryonic SAM and to specify cotyledon boundaries, and STM controls CUC expression post‐embryonically at organ boundary domains. We show that organ boundary specification by correct spatial expression of CUC genes requires STM mobility in the meristem. Our data suggest that STM mobility is critical for its normal function in shoot stem cell control.  相似文献   

8.
Moon S  Jung KH  Lee DE  Lee DY  Lee J  An K  Kang HG  An G 《Molecules and cells》2006,21(1):147-152
Most plant organs develop from meristems. Rice FON1, which is an ortholog of Clv1, regulates stem cell proliferation and organ initiation. The point muta-tions, fon1-1 and fon1-2, disrupt meristem balance, resulting in alteration of floral organ numbers and the architecture of primary rachis branches. In this study, we identified two knockout alleles, fon1-3 and fon1-4, generated by T-DNA and Tos17 insertion, respectively. Unlike the previously isolated point mutants, the null mutants have alterations not only of the reproductive organs but also of vegetative tissues, producing fewer tillers and secondary rachis branches. The mutant plants are semi-dwarfs due to delayed leaf emergence, and leaf senescence is delayed. SEM analysis showed that the shoot apical meristems of fon1-3 mutants are enlarged. These results indicate that FON1 controls vegetative as well as reproductive development by regulating meristem size.  相似文献   

9.
10.
11.
12.
13.
SQUAMOSA and APETALA1 are floral meristem identity genes from snapdragon (Antirrhinum majus) and Arabidopsis, respectively. Here, we characterize the floral meristem identity mutation proliferating inflorescence meristem (pim) from pea (Pisum sativum) and show that it corresponds to a defect in the PEAM4 gene, a homolog of SQUAMOSA and APETALA1. The PEAM4 coding region was deleted in the pim-1 allele, and this deletion cosegregated with the pim-1 mutant phenotype. The pim-2 allele carried a nucleotide substitution at a predicted 5' splice site that resulted in mis-splicing of pim-2 mRNA. PCR products corresponding to unspliced and exon-skipped mRNA species were observed. The pim-1 and pim-2 mutations delayed floral meristem specification and altered floral morphology significantly but had no observable effect on vegetative development. These floral-specific mutant phenotypes and the restriction of PIM gene expression to flowers contrast with other known floral meristem genes in pea that additionally affect vegetative development. The identification of PIM provides an opportunity to compare pathways to flowering in species with different inflorescence architectures.  相似文献   

14.
15.
Cytokinins are adenine derivatives that regulate numerous plant growth and developmental processes, including apical and floral meristem development, stem growth, leaf senescence, apical dominance, and stress tolerance. However, not much is known about how cytokinin biosynthesis and metabolism is regulated. We identified a novel Arabidopsis gene, ALL, encoding an aldolase-like enzyme that regulates cytokinin signaling. An Arabidopsis mutant, all-1D, in which ALL is activated by the nearby insertion of the 35S enhancer, exhibited extreme dwarfism with rolled, dark-green leaves and reduced apical dominance, symptomatic of cytokinin-overproducing mutants. Consistent with this, ARR4 and ARR5, two representative primary cytokinin-responsive genes, were significantly induced in all-1D. Whereas SHOOT MERISTEMLESS (STM) and KNAT1, which regulate meristem development, were also greatly induced, expression of REV and PHV that regulate lateral organ polarity was inhibited. ALL encodes an aldolase-like enzyme that belongs to the HpcH/HpaI aldolase family in prokaryotes and is down-regulated by exogenous cytokinin, possibly through a negative feedback pathway. We propose that ALL is involved in cytokinin biosynthesis or metabolism and acts as a positive regulator of cytokinin signaling during shoot apical meristem development and determination of lateral organ polarity.  相似文献   

16.
17.
Normal flower development likely requires both specific and general regulators. We have isolated an Arabidopsis mutant ask1-1 (for -Arabidopsis skp1-like1-1), which exhibits defects in both vegetative and reproductive development. In the ask1-1mutant, rosette leaf growth is reduced, resulting in smaller than normal rosette leaves, and internodes in the floral stem are shorter than normal. Examination of cell sizes in these organs indicates that cell expansion is normal in the mutant, but cell number is reduced. In the mutant, the numbers of petals and stamens are reduced, and many flowers have one or more petals with a reduced size. In addition, all mutant flowers have short stamen filaments. Furthermore, petal/stamen chimeric organs are found in many flowers. These results indicate that the ASK1 gene affects the size of vegetative and floral organs. The ask1 floral phenotype resembles somewhat that of the Arabidopsis ufo mutants in that both genes affect whorls 2 and 3. We therefore tested for possible interactions between ASK1 and UFO by analyzing the phenotypes of ufo-2 ask1-1 double mutant plants. In these plants, vegetative development is similar to that of the ask1-1 single mutant, whereas the floral defects are more severe than those in either single mutant. Interior to the first whorl, the double mutant flowers have more sepals or sepal-like organs than are found in ufo-2, and less petals than ask1-1. Our results suggest that ASK1 interacts with UFO to control floral organ identity in whorls 2 and 3. This is very intriguing because ASK1 is very similar in sequence to the yeast SKP1 protein and UFO contains an F-box, a motif known to interact with SKP1 in yeast. Although the precise mechanism of ASK1 and UFO action is unknown, our results support the hypothesis that these two proteins physically interact in vivo.  相似文献   

18.
Floral induction is controlled by a plethora of genes acting in different pathways that either repress or promote floral transition at the shoot apical meristem (SAM). During vegetative development high levels of floral repressors maintain the Arabidopsis SAM as incompetent to respond to promoting factors. Among these repressors, FLOWERING LOCUS C (FLC) is the most prominent. The processes underlying downregulation of FLC in response to environmental and developmental signals have been elucidated in considerable detail. However, the basal induction of FLC and its upregulation by FRIGIDA (FRI) are still poorly understood. Here we report the functional characterization of the ARABIDOPSIS THALIANA HOMEOBOX 1 (ATH1) gene. A function of ATH1 in floral repression is suggested by a gradual downregulation of ATH1 in the SAM prior to floral transition. Further evidence for such a function of ATH1 is provided by the vernalization-sensitive late flowering of plants that constitutively express ATH1. Analysis of lines that differ in FRI and/or FLC allele strength show that this late flowering is caused by upregulation of FLC as a result of synergism between ATH1 overexpression and FRI. Lack of ATH1, however, results in attenuated FLC levels independently of FRI, suggesting that ATH1 acts as a general activator of FLC expression. This is further corroborated by a reduction of FLC-mediated late flowering in fca-1 and fve-1 autonomous pathway backgrounds when combined with ath1. Since other floral repressors of the FLC clade are not significantly affected by ATH1, we conclude that ATH1 controls floral competency as a specific activator of FLC expression.  相似文献   

19.
20.
In higher plants, meristem organization and cell division regulation are two fundamentally important and intimately related biological processes. Identifying and isolating regulatory genes in these processes is essential for understanding higher plant growth and development. We describe the molecular isolation and analyses of an Arabidopsis gene, TSO1, which regulates both of these processes. We previously showed that tso1 mutants displayed defects in cell division of floral meristem cells including partially formed cell walls, increased DNA content, and multinucleated cells (Liu, Z., Running, M. P. and Meyerowitz, E. M. (1997). Development 124, 665-672). Here, we characterize a second defect of tso1 in influorescence meristem development and show that the enlarged influorescence in tso1 mutants results from repeated division of one inflorescence meristem into two or more influorescence meristems. Using a map-based approach, we isolated the TSO1 gene and found that TSO1 encodes a protein with cysteine-rich repeats bearing similarity to Drosophila Enhancer of zeste and its plant homologs. In situ TSO1 mRNA expression pattern and the nuclear localization of TSO1-GFP are consistent with a regulatory role of TSO1 in floral meristem cell division and in influorescence meristem organization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号