首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The formation of blood vessels within the vascular system entails a variety of cellular processes, including proliferation, migration and differentiation. In many cases, these diverse processes need to be finely coordinated among neighbouring endothelial cells in order to establish a functional vascular network. For instance, during angiogenic sprouting specialized endothelial tip cells follow guidance cues and migrate extensively into avascular tissues while trailing stalk cells must stay connected to the patent blood vessel. The vascular endothelial growth factor (VEGF) and Notch signalling pathways have emerged as the major players in governing these different cellular behaviours. In particular, recent work indicates an important role for Notch signalling in determining how an endothelial cell responds to VEGF. In this review, we provide an overview of these biochemically distinct pathways and discuss how they may interact during endothelial cell differentiation and angiogenesis.  相似文献   

2.
Vascular endothelial growth factor (VEGF)-C is a new member of the VEGF family, a group of polypeptide growth factors which play key roles in the physiology and pathology of many aspects of the cardiovascular system, including vasculogenesis, hematopoiesis, angiogenesis and vascular permeability. VEGF signalling in endothelial cells occurs through three tyrosine kinase receptors (VEGFRs), expressed by endothelial cells and hematopoietic precursors. With respect to the first VEGF described, VEGF-A, which is an endothelial cell specific mitogen and key angiogenic factor, VEGF-C seems to play a major role in the development of the lymphatic system. This may reflect the different binding properties of VEGFs to VEGFRs, in that VEGF-A binds to VEGFR-1 and -2, whereas VEGF-C acts through VEGFR-3, whose expression becomes restricted to lymphatics and certain veins during development. However, the finding that VEGF-C also binds to and activates VEGFR-2 may explain why it induces angiogenesis under certain conditions, which makes it relevant to experimental or clinical settings in which one would wish to block or to stimulate angiogenesis. In this paper we briefly discuss current knowledge on the biological activity of VEGF-C, emphasizing that, as has already been shown for a number of other angiogenic factors, the biological effects of VEGF-C are strictly dependent on the activity of other angiogenic regulators present in the microenvironment of the responding endothelial cells.  相似文献   

3.
Placental villous development requires the co-ordinated action of angiogenic factors on both endothelial and trophoblast cells. Like vascular endothelial growth factor (VEGF), VEGF-C increases vascular permeability, stimulates endothelial cell proliferation and migration. In the present study, we investigated the expression of VEGF-C and its receptors VEGFR-3 and VEGFR-2 in normal and intrauterine growth-restricted (IUGR) placenta. Immunolocalisation studies showed that like VEGF and VEGFR-1, VEGF-C, VEGFR-3 and VEGFR-2 co-localised to the syncytiotrophoblast, to cells in the maternal decidua, as well as to the endothelium of the large placental blood vessels. Western blot analysis demonstrated a significant decrease in placental VEGF-C and VEGFR-3 protein expression in severe IUGR as compared to gestationally-matched third trimester pregnancies. Conditioned medium from VEGF-C producing pancreatic carcinoma (Suit-2) and endometrial epithelial (Hec-1B) cell lines caused an increased association of the phosphorylated extracellular signal regulated kinase (ERK) in VEGFR-3 immunoprecipitates from spontaneously transformed first trimester trophoblast cells. VEGF121 caused dose-dependant phosphorylation of VEGFR-2 in trophoblast cells as well as stimulating DNA synthesis. In addition, premixing VEGF165 with heparin sulphate proteoglycan potentiated trophoblast proliferation and the association of phospho-ERK with the VEGFR-2 receptor. VEGF165-mediated DNA synthesis was inhibited by anti-VEGFR-2 neutralising antibody. The results demonstrate functional VEGFR-2 and VEGFR-3 receptors on trophoblast and suggest that the decreased expression of VEGF-C and VEGFR-3 may contribute to the abnormal villous development observed in IUGR placenta.  相似文献   

4.
《FEBS letters》2014,588(23):4357-4363
The vascular endothelial growth factor (VEGF)-C-induced down-regulation of VEGF receptor (VEGFR)-3 is important in lymphangiogenesis. Here, we demonstrate that VEGF-C, -D, and -C156S, but not VEGF-A, down-regulate VEGFR-3. VEGF-C stimulates VEGFR-3 tyrosyl phosphorylation and transient phosphorylation of extracellular signal-regulated kinase (ERK), p38, and c-Jun N-terminal kinases in lymphatic endothelial cells. VEGF-C-induced down-regulation of VEGFR-3 was blocked by a VEGF-C trap, tyrosine kinase inhibitor, and leupeptin, pepstatin, and E64 (LPE), but was unaffected by Notch 1 activator and γ-secretase inhibitors. Our findings indicate that VEGF-C down-regulates VEGFR-3 in lymphatic endothelial cells through VEGFR-3 kinase activation and, in part, via lysosomal degradation.  相似文献   

5.
Vascular endothelial growth factor receptor-3 (VEGFR-3/Flt4) binds two known members of the VEGF ligand family, VEGF-C and VEGF-D, and has a critical function in the remodelling of the primary capillary vasculature of midgestation embryos. Later during development, VEGFR-3 regulates the growth and maintenance of the lymphatic vessels. In the present study, we have isolated and cultured stable lineages of blood vascular and lymphatic endothelial cells from human primary microvascular endothelium by using antibodies against the extracellular domain of VEGFR-3. We show that VEGFR-3 stimulation alone protects the lymphatic endothelial cells from serum deprivation-induced apoptosis and induces their growth and migration. At least some of these signals are transduced via a protein kinase C-dependent activation of the p42/p44 MAPK signalling cascade and via a wortmannin-sensitive induction of Akt phosphorylation. These results define the critical role of VEGF-C/VEGFR-3 signalling in the growth and survival of lymphatic endothelial cells. The culture of isolated lymphatic endothelial cells should now allow further studies of the molecular properties of these cells.  相似文献   

6.
Notch signaling controls fundamental aspects of angiogenic blood vessel growth including the selection of sprouting tip cells, endothelial proliferation and arterial differentiation. The E3 ubiquitin ligase Fbxw7 is part of the SCF protein complex responsible for the polyubiquitination and thereby proteasomal degradation of substrates such as Notch, c-Myc and c-Jun. Here, we show that Fbxw7 is a critical regulator of angiogenesis in the mouse retina and the zebrafish embryonic trunk, which we attribute to its role in the degradation of active Notch. Growth of retinal blood vessel was impaired and the Notch ligand Dll4, which is also a Notch target, upregulated in inducible and endothelial cell-specific Fbxw7(iECKO) mutant mice. The stability of the cleaved and active Notch intracellular domain was increased after siRNA knockdown of the E3 ligase in cultured human endothelial cells. Injection of fbxw7 morpholinos interfered with the sprouting of zebrafish intersegmental vessels (ISVs). Arguing strongly that Notch and not other Fbxw7 substrates are primarily responsible for these phenotypes, the genetic inactivation of Notch pathway components reversed the impaired ISV growth in the zebrafish embryo as well as sprouting and proliferation in the mouse retina. Our findings establish that Fbxw7 is a potent positive regulator of angiogenesis that limits the activity of Notch in the endothelium of the growing vasculature.  相似文献   

7.
Despite the importance of blood vessels and lymphatic vessels during development and disease, the signalling pathways underpinning vessel construction remain poorly characterised. Primary mouse endothelial cells have traditionally proven difficult to culture and as a consequence, few assays have been developed to dissect gene function and signal transduction pathways in these cells ex vivo. Having established methodology for the purification, short-term culture and transfection of primary blood (BEC) and lymphatic (LEC) vascular endothelial cells isolated from embryonic mouse skin, we sought to optimise robust assays able to measure embryonic LEC proliferation, migration and three-dimensional tube forming ability in vitro. In the course of developing these assays using the pro-lymphangiogenic growth factors FGF2 and VEGF-C, we identified previously unrecognised roles for FGFR1 signalling in lymphangiogenesis. The small molecule FGF receptor tyrosine kinase inhibitor SU5402, but not inhibitors of VEGFR-2 (SU5416) or VEGFR-3 (MAZ51), inhibited FGF2 mediated LEC proliferation, demonstrating that FGF2 promotes proliferation directly via FGF receptors and independently of VEGF receptors in primary embryonic LEC. Further investigation revealed that FGFR1 was by far the predominant FGF receptor expressed by primary embryonic LEC and correspondingly, siRNA-mediated FGFR1 knockdown abrogated FGF2 mediated LEC proliferation. While FGF2 potently promoted LEC proliferation and migration, three dimensional tube formation assays revealed that VEGF-C primarily promoted LEC sprouting and elongation, illustrating that FGF2 and VEGF-C play distinct, cooperative roles in lymphatic vascular morphogenesis. These assays therefore provide useful tools able to dissect gene function in cellular events important for lymphangiogenesis and implicate FGFR1 as a key player in developmental lymphangiogenesis in vivo.  相似文献   

8.
How individual components of the vascular basement membrane influence endothelial cell behaviour remains unclear. Here we show that laminin α4 (Lama4) regulates tip cell numbers and vascular density by inducing endothelial Dll4/Notch signalling in vivo. Lama4 deficiency leads to reduced Dll4 expression, excessive filopodia and tip cell formation in the mouse retina, phenocopying the effects of Dll4/Notch inhibition. Lama4-mediated Dll4 expression requires a combination of integrins in vitro and integrin β1 in vivo. We conclude that appropriate laminin/integrin-induced signalling is necessary to induce physiologically functional levels of Dll4 expression and regulate branching frequency during sprouting angiogenesis in vivo.  相似文献   

9.
Interaction between integrin alphavbeta3 and extracellular matrix is crucial for endothelial cells sprouting from capillaries and for angiogenesis. Furthermore, integrin-mediated outside-in signals co-operate with growth factor receptors to promote cell proliferation and motility. To determine a potential regulation of angiogenic inducer receptors by the integrin system, we investigated the interaction between alphavbeta3 integrin and tyrosine kinase vascular endothelial growth factor receptor-2 (VEGFR-2) in human endothelial cells. We report that tyrosine-phosphorylated VEGFR-2 co-immunoprecipitated with beta3 integrin subunit, but not with beta1 or beta5, from cells stimulated with VEGF-A165. VEGFR-2 phosphorylation and mitogenicity induced by VEGF-A165 were enhanced in cells plated on the alphavbeta3 ligand, vitronectin, compared with cells plated on the alpha5beta1 ligand, fibronectin or the alpha2beta1 ligand, collagen. BV4 anti-beta3 integrin mAb, which does not interfere with endothelial cell adhesion to vitronectin, reduced (i) the tyrosine phosphorylation of VEGFR-2; (ii) the activation of downstream transductor phosphoinositide 3-OH kinase; and (iii) biological effects triggered by VEGF-A165. These results indicate a new role for alphavbeta3 integrin in the activation of an in vitro angiogenic program in endothelial cells. Besides being the most important survival system for nascent vessels by regulating cell adhesion to matrix, alphavbeta3 integrin participates in the full activation of VEGFR-2 triggered by VEGF-A, which is an important angiogenic inducer in tumors, inflammation and tissue regeneration.  相似文献   

10.
Angiogenesis, or the formation of new blood vessels from pre-existing ones, is essential to establish the vascular circuit during embryonic development. During angiogenic sprouting, endothelial cells exhibit a diverse array of cellular behaviours. Endothelial tip cells must migrate extensively and proliferate in response to proangiogenic cues while trailing cells need to maintain their position and connection to the patent vasculature, despite exposure to the same proangiogenic molecules. Several new studies have now shed light on the underlying mechanisms that are responsible for coordinating this process. In particular, this work has identified a conserved role for the Notch signalling pathway in limiting the cellular angiogenic response, in part by reducing the level of Vascular endothelial growth factor receptors in endothelial cells. In this overview, we discuss the emerging concepts elucidated by these studies and propose a model in which Notch acts reiteratively throughout the angiogenic process, likely by acting as a switch to determine a cell's response to Vegf.  相似文献   

11.
12.
Angiogenesis, the sprouting of new blood vessels from pre-existing ones, and the permeability of blood vessels are regulated by vascular endothelial growth factor (VEGF) via its two known receptors Flt1 (VEGFR-1) and KDR/Flk-1 (VEGFR-2). The Flt4 receptor tyrosine kinase is related to the VEGF receptors, but does not bind VEGF and its expression becomes restricted mainly to lymphatic endothelia during development. In this study, we have purified the Flt4 ligand, VEGF-C, and cloned its cDNA from human prostatic carcinoma cells. While VEGF-C is homologous to other members of the VEGF/platelet derived growth factor (PDGF) family, its C-terminal half contains extra cysteine-rich motifs characteristic of a protein component of silk produced by the larval salivary glands of the midge, Chironomus tentans. VEGF-C is proteolytically processed, binds Flt4, which we rename as VEGFR-3 and induces tyrosine autophosphorylation of VEGFR-3 and VEGFR-2. In addition, VEGF-C stimulated the migration of bovine capillary endothelial cells in collagen gel. VEGF-C is thus a novel regulator of endothelia, and its effects may extend beyond the lymphatic system, where Flt4 is expressed.  相似文献   

13.
VEGFR3: a new target for antiangiogenesis therapy?   总被引:1,自引:0,他引:1  
VEGFR-3 signaling plays an important role in developmental, physiological, and pathological angiogenesis and lymphangiogenesis. Tammela et al. in Nature show that VEGFR-3, via Notch regulation, is present on endothelial tip cells and is critical to sprouting angiogenesis.  相似文献   

14.
15.
During vessel sprouting, a migratory endothelial tip cell guides the sprout, while proliferating stalk cells elongate the branch. Tip and stalk cell phenotypes are not genetically predetermined fates, but are dynamically interchangeable to ensure that the fittest endothelial cell (EC) leads the vessel sprout. ECs increase glycolysis when forming new blood vessels. Genetic deficiency of the glycolytic activator PFKFB3 in ECs reduces vascular sprouting by impairing migration of tip cells and proliferation of stalk cells. PFKFB3-driven glycolysis promotes the tip cell phenotype during vessel sprouting, since PFKFB3 overexpression overrules the pro-stalk activity of Notch signaling. Furthermore, PFKFB3-deficient ECs cannot compete with wild-type neighbors to form new blood vessels in chimeric mosaic mice. In addition, pharmacological PFKFB3 blockade reduces pathological angiogenesis with modest systemic effects, likely because it decreases glycolysis only partially and transiently.  相似文献   

16.
The recently identified vascular endothelial growth factor C (VEGF-C) belongs to the platelet-derived growth factor (PDGF)/VEGF family of growth factors and is a ligand for the endothelial-specific receptor tyrosine kinases VEGFR-3 and VEGFR-2. The VEGF homology domain spans only about one-third of the cysteine-rich VEGF-C precursor. Here we have analysed the role of post-translational processing in VEGF-C secretion and function, as well as the structure of the mature VEGF-C. The stepwise proteolytic processing of VEGF-C generated several VEGF-C forms with increased activity towards VEGFR-3, but only the fully processed VEGF-C could activate VEGFR-2. Recombinant 'mature' VEGF-C made in yeast bound VEGFR-3 (K[D] = 135 pM) and VEGFR-2 (K[D] = 410 pM) and activated these receptors. Like VEGF, mature VEGF-C increased vascular permeability, as well as the migration and proliferation of endothelial cells. Unlike other members of the PDGF/VEGF family, mature VEGF-C formed mostly non-covalent homodimers. These data implicate proteolytic processing as a regulator of VEGF-C activity, and reveal novel structure-function relationships in the PDGF/VEGF family.  相似文献   

17.
Recent evidence suggesting vascular endothelial growth factor-C (VEGF-C), which is a regulator of lymphatic and vascular endothelial development, raised the question whether this molecule could be involved in Kaposi's sarcoma (KS), a strongly angiogenic and inflammatory tumor often associated with infection by human immunodeficiency virus-1. This disease is characterized by the presence of a core constituted of three main populations of "spindle" cells, having the features of lymphatic/vascular endothelial cells, macrophagic/dendritic cells, and of a mixed macrophage-endothelial phenotype. In this study we evaluated the biological response of KS cells to VEGF-C, using an immortal cell line derived from a KS lesion (KS IMM), which retains most features of the parental tumor and can induce KS-like sarcomas when injected subcutaneously in nude mice. We show that VEGFR-3, the specific receptor for VEGF-C, is expressed by KS IMM cells grown in vitro and in vivo. In vitro, VEGF-C induces the tyrosine phosphorylation of VEGFR-2, a receptor also for VEGF-A, as well as that of VEGFR-3. The activation of these two receptors in KS IMM cells is followed by a dose-responsive mitogenic and motogenic response. The stimulation of KS IMM cells with a mutant VEGF-C unable to bind and activate VEFGR-2 resulted in no proliferative response and in a weak motogenic stimulation, suggesting that VEGFR-2 is essential in transducing a proliferative signal and cooperates with VEGFR-3 in inducing cell migration. Our data add new insights on the pathogenesis of KS, suggesting that the involvement of endothelial growth factors may not only determine KS-associated angiogenesis, but also play a critical role in controlling KS cell growth and/or migration and invasion.  相似文献   

18.
Growth and remodeling of lymphatic vasculature occur during development and during various pathologic states. A major stimulus for this process is the unique lymphatic vascular endothelial growth factor-C (VEGF-C). Other endothelial growth factors, such as fibroblast growth factor-2 (FGF-2) or VEGF-A, may also contribute. Heparan sulfate is a linear sulfated polysaccharide that facilitates binding and action of some vascular growth factors such as FGF-2 and VEGF-A. However, a direct role for heparan sulfate in lymphatic endothelial growth and sprouting responses, including those mediated by VEGF-C, remains to be examined. We demonstrate that VEGF-C binds to heparan sulfate purified from primary lymphatic endothelia, and activation of lymphatic endothelial Erk1/2 in response to VEGF-C is reduced by interference with heparin or pretreatment of cells with heparinase, which destroys heparan sulfate. Such treatment also inhibited phosphorylation of the major VEGF-C receptor VEGFR-3 upon VEGF-C stimulation. Silencing lymphatic heparan sulfate chain biosynthesis inhibited VEGF-C-mediated Erk1/2 activation and abrogated VEGFR-3 receptor-dependent binding of VEGF-C to the lymphatic endothelial surface. These findings prompted targeting of lymphatic N-deacetylase/N-sulfotransferase-1 (Ndst1), a major sulfate-modifying heparan sulfate biosynthetic enzyme. VEGF-C-mediated Erk1/2 phosphorylation was inhibited in Ndst1-silenced lymphatic endothelia, and scratch-assay responses to VEGF-C and FGF-2 were reduced in Ndst1-deficient cells. In addition, lymphatic Ndst1 deficiency abrogated cell-based growth and proliferation responses to VEGF-C. In other studies, lymphatic endothelia cultured ex vivo from Ndst1 gene-targeted mice demonstrated reduced VEGF-C- and FGF-2-mediated sprouting in collagen matrix. Lymphatic heparan sulfate may represent a novel molecular target for therapeutic intervention.  相似文献   

19.
Endothelial signalling by the Notch ligand Delta-like 4 restricts angiogenesis   总被引:13,自引:0,他引:13  
Notch signalling by the ligand Delta-like 4 (Dll4) is essential for normal vascular remodelling, yet the precise way in which the pathway influences the behaviour of endothelial cells remains a mystery. Using the embryonic zebrafish, we show that, when Dll4-Notch signalling is defective, endothelial cells continue to migrate and proliferate when they should normally stop these processes. Artificial overactivation of the Notch pathway has opposite consequences. When vascular endothelial growth factor (Vegf) signalling and Dll4-Notch signalling are both blocked, the endothelial cells remain quiescent. Thus, Dll4-Notch signalling acts as an angiogenic ;off' switch by making endothelial cells unresponsive to Vegf.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号