首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
150多年前, 孟德尔进行了豌豆7对相对性状的杂交试验, 发现了遗传学的两个基本规律。1900年, 孟德尔定律被重新发现以后, 人们从生理生化、细胞和分子水平等不同层次上对豌豆的这7个性状进行了深入研究。近年, 随着分子生物学技术的发展, 已有种子形状(R)、茎的长度(Le)、子叶颜色(I)和花的颜色(A)等4个性状的基因被克隆; 未成熟豆荚的颜色(Gp)、花的着生位置(Fa)和豆荚形状(V)的基因已被定位在各自的连锁群上。4个孟德尔基因的鉴定和克隆加深了人们对基因概念的理解:如基因功能的多样性、在分子水平上基因变异原因的多样性、显性和隐性的分子实质等。在遗传学教学中, 把孟德尔基因克隆和研究的最新进展介绍给学生, 在分子水平上诠释经典遗传规律, 有助于提高学生的学习兴趣, 帮助学生全面把握从形式遗传学到分子遗传学的内容和遗传学的发展方向。  相似文献   

2.
Although Mendel is now widely recognized as the founder of genetics, historical studies have shown that he did not in fact propose the modern concept of paired characters linked to genes, nor did he formulate the two "Mendelian laws" in the form now given. Furthermore, Mendel was accused of falsifying his data, and Mendelism has been met with scepticism because of its failure to provide scientific explanation for evolution, to furnish a basis for the process of genetic assimilation and to explain the inheritance of acquired characters, graft hybridization and many other facts. Darwin was the first to clearly describe almost all genetical phenomena of fundamental importance, and was the first to present a developmental theory of heredity--Pangenesis, which not only greatly influenced many subsequent theories of inheritance, particularly those of de Vries, Galton, Brooks and Weismann, but also tied all aspects of variation, heredity and development together, provided a mechanism for most of the observable facts, and is supported by increasing evidence. It has also been indicated that Darwin's influence on Mendel, primarily from The Origin, is evident. The word "gene" was derived from "pangen", itself a derivative of "Pangenesis" which Darwin had coined. It seems that Darwin should have been regarded as the pioneer, if not of transmissional genetics, of developmental genetics and molecular genetics.  相似文献   

3.
A central goal of evolutionary genetics is to trace the causal pathway between mutations at particular genes and adaptation at the phenotypic level. The proximate objective is to identify adaptations through the analysis of molecular sequence data from specific candidate genes or their regulatory elements. In this paper, we consider the molecular evolution of floral color in the morning glory genus (Ipomoea) as a model for relating molecular and phenotypic evolution. To begin, flower color variation usually conforms to simple Mendelian transmission, thus facilitating genetic and molecular analyses. Population genetic studies of flower color polymorphisms in the common morning glory (Ipomoea purpurea) have shown that some morphs are subject to complex patterns of selection. Striking differences in floral color and morphology are also associated with speciation in the genus Ipomoea. The molecular bases for these adaptive shifts can be dissected because the biosynthetic pathways that determine floral pigmentation are well understood and many of the genes of flavonoid biosynthesis have been isolated and extensively studied. We present a comparative analysis of the level of gene expression in Ipomoea for several key genes in flavonoid biosynthesis. Specifically we ask: how frequently are adaptive shifts in flower color phenotypes associated with changes in regulation of gene expression versus mutations in structural genes? The results of this study show that most species differences in this crucial phenotype are associated with changes in the regulation of gene expression.  相似文献   

4.
Genetics, development and evolution of adaptive pigmentation in vertebrates   总被引:6,自引:0,他引:6  
Hoekstra HE 《Heredity》2006,97(3):222-234
The study of pigmentation has played an important role in the intersection of evolution, genetics, and developmental biology. Pigmentation's utility as a visible phenotypic marker has resulted in over 100 years of intense study of coat color mutations in laboratory mice, thereby creating an impressive list of candidate genes and an understanding of the developmental mechanisms responsible for the phenotypic effects. Variation in color and pigment patterning has also served as the focus of many classic studies of naturally occurring phenotypic variation in a wide variety of vertebrates, providing some of the most compelling cases for parallel and convergent evolution. Thus, the pigmentation model system holds much promise for understanding the nature of adaptation by linking genetic changes to variation in fitness-related traits. Here, I first discuss the historical role of pigmentation in genetics, development and evolutionary biology. I then discuss recent empirically based studies in vertebrates, which rely on these historical foundations to make connections between genotype and phenotype for ecologically important pigmentation traits. These studies provide insight into the evolutionary process by uncovering the genetic basis of adaptive traits and addressing such long-standing questions in evolutionary biology as (1) are adaptive changes predominantly caused by mutations in regulatory regions or coding regions? (2) is adaptation driven by the fixation of dominant mutations? and (3) to what extent are parallel phenotypic changes caused by similar genetic changes? It is clear that coloration has much to teach us about the molecular basis of organismal diversity, adaptation and the evolutionary process.  相似文献   

5.

Background  

Despite the importance of the shoot apical meristem (SAM) in plant development and organ formation, our understanding of the molecular mechanisms controlling its function is limited. Genomic tools have the potential to unravel the molecular mysteries of the SAM, and legume systems are increasingly being used in plant-development studies owing to their unique characteristics such as nitrogen fixation, secondary metabolism, and pod development. Garden pea (Pisum sativum) is a well-established classic model species for genetics studies that has been used since the Mendel era. In addition, the availability of a plethora of developmental mutants makes pea an ideal crop legume for genomics studies. This study aims to utilise genomics tools in isolating genes that play potential roles in the regulation of SAM activity.  相似文献   

6.
The discoveries of Gregor Mendel, as described by Mendel in his 1866 paper Versuche uber Pflanzen-Hybriden (Experiments on plant hybrids), can be used in undergraduate genetics and biology courses to engage students about specific nature of science characteristics and their relationship to four of his major contributions to genetics. The use of primary source literature as an instructional tool to enhance genetics students' understanding of the nature of science helps students more clearly understand how scientists work and how the science of genetics has evolved as a discipline. We offer a historical background of how the nature of science developed as a concept and show how Mendel's investigations of heredity can enrich biology and genetics courses by exemplifying the nature of science.  相似文献   

7.
8.
Hirschsprung's disease (HSCR, aganglionic megacolon) is a frequent congenital malformation regarded as a multigenic neurocristopathy. Three susceptibility genes have been recently identified in HSCR, namely the RET proto-oncogene, the endothelin B receptor (EDNRB) gene, and the endothelin 3 (EDN3) gene. RET gene mutations were found in significant proportions of familial (50%) and sporadic (15-20%) HSCR, while homozygosity for EDNRB or EDN3 mutations accounted for the rare HSCR-Waardenburg syndrome (WS) association. More recently, heterozygous EDNRB an EDN3 missense mutations have been reported in isolated HSCR patients. Some of these results were obtained after the identification of mouse genes whose natural or site-directed mutations resulted in megacolon and coat color spotting. There is also conclusive evidence for the involvement of other independent loci in HSCR. In particular, the recent identification of neurotrophic factors acting as RET ligands (GDNF and Neurturin) provide additional candidate genes for HSCR. The dissection of the genetic etiology of HSCR disease may then provide a unique opportunity to distinguish between a polygenic and a genetically heterogeneous disease, thereby helping to understand other complex disorders and congenital malformations hitherto considered as multifactorial in origin. Finally, the study of the molecular bases of HSCR is also a step towards the understanding of developmental genetics of the enteric nervous system giving support to the role of the tyrosine kinase and endothelin-signaling pathways in the development of neural crest-derived enteric neurons in human.  相似文献   

9.
The color patterns on the wings of lepidopterans are among the most striking patterns in nature and have inspired diverse biological hypotheses such as the ecological role of aposomatic coloration, the evolution of mimicry, the role of human activities in industrial melanism, and the developmental basis of phenotypic plasticity. Yet, the developmental mechanisms underlying color pattern development are not well understood for three reasons. First, few mutations that alter color patterns have been characterized at the molecular level, so there is little mechanistic understanding of how mutant phenotypes are produced. Second, although gene expression patterns resembling adult color patterns are suggestive, there are few data available showing that gene products have a functional role in color pattern formation. Finally, because with few exceptions (notably Bombyx), genetic maps for most species of Lepidoptera are rudimentary or nonexistent, it is very difficult to characterize spontaneous mutants or to determine whether mutations with similar phenotypes are because of lesions in the same gene or different genes. Discussed here are two strategies for overcoming these difficulties: germ-line transformation of lepidopteran species using transposon vectors and amplified frequency length polymorphism-based genetic mapping using variation between divergent strains within a species or between closely related and interfertile species. These advances, taken together, will create new opportunities for the characterization of existing genetic variants, the creation of new sequence-tagged mutants, and the testing of proposed functional genetic relationships between gene products, and will greatly facilitate our understanding of the evolution and development of lepidopteran color patterns.  相似文献   

10.
White is a widespread coat color among domestic pig breeds and is controlled by an autosomal dominant gene I. The segregation of this gene was analyzed in a reference pedigree for gene mapping developed by crossing the European wild pig and a Large White domestic breed. The gene for dominant white color was shown to be closely linked to the genes for albumin (ALB) and platelet-derived growth factor receptor alpha (PDGFRA) on chromosome 8. An unexpected phenotype with patches of colored and white coat was observed among the F1 and F2 animals. The segregation data indicated that the phenotype was controlled by a third allele, denoted patch (Ip), most likely transmitted by one of the Large White founder animals. It is shown that the ALB, PDGFRA, I linkage group shares homologies with parts of mouse chromosome 5, human chromosome 4, and horse linkage group II, all of which contain dominant genes for white or white spotting. Candidate genes for the dominant white and patch mutations in the pig are proposed on the basis on these linkage homologies and the recent molecular definition of the dominant white spotting (W) and patch (Ph) mutations in the mouse.  相似文献   

11.
花青素代谢途径与植物颜色变异   总被引:2,自引:0,他引:2  
祝志欣  鲁迎青 《植物学报》2016,51(1):107-119
花青素是种子植物呈色的重要色素, 由一系列结构基因编码的酶(CHS、CHI、F3H、F3'H、F3'5'H、DFR、ANS和3GT)催化而成, 随后经过各种修饰被转运至液泡等部位储存。各类器官中差异表达的MYB、bHLH和WDR三种调控因子通过形成MBW复合体直接正调控以上结构基因的表达。这个过程涉及的基因变异常会导致植物的各种颜色变异。在生活中人们广泛利用这些变异品种, 取其丰富色味。造成颜色变异的具体分子机制在很多情况下还不清楚, 但日益积累的个例研究为其中的规律性提供了基础数据。该文概述了花青素的合成、转运过程及其转录调控机制, 探讨了研究颜色变异品种的常用思路及方法。在总结近年工作的基础上, 对生活中常见蔬菜、水果和花卉的颜色变异品种的分子机制进行了综述。  相似文献   

12.
The wealth of information on the genetics of pigmentation and the clear fitness consequences of many pigmentation phenotypes provide an opportunity to study the molecular basis of an ecologically important trait. The melanocortin-1 receptor (Mc1r) is responsible for intraspecific color variation in mammals and birds. Here, we study the molecular evolution of Mc1r and investigate its role in adaptive intraspecific color differences in reptiles. We sequenced the complete Mc1r locus in seven phylogenetically diverse squamate species with melanic or blanched forms associated with different colored substrates or thermal environments. We found that patterns of amino acid substitution across different regions of the receptor are similar to the patterns seen in mammals, suggesting comparable levels of constraint and probably a conserved function for Mc1r in mammals and reptiles. We also found high levels of silent-site heterozygosity in all species, consistent with a high mutation rate or large long-term effective population size. Mc1r polymorphisms were strongly associated with color differences in Holbrookia maculata and Aspidoscelis inornata. In A. inornata, several observations suggest that Mc1r mutations may contribute to differences in color: (1) a strong association is observed between one Mc1r amino acid substitution and dorsal color; (2) no significant population structure was detected among individuals from these populations at the mitochondrial ND4 gene; (3) the distribution of allele frequencies at Mc1r deviates from neutral expectations; and (4) patterns of linkage disequilibrium at Mc1r are consistent with recent selection. This study provides comparative data on a nuclear gene in reptiles and highlights the utility of a candidate-gene approach for understanding the evolution of genes involved in vertebrate adaptation.  相似文献   

13.
Evolutionary dynamics of genes controlling floral development   总被引:1,自引:0,他引:1  
Advances in the understanding of floral developmental genetics in model species such as Arabidopsis continue to provide an important foundation for comparative studies in other flowering plants. In particular, floral organ identity genes are the focus of many projects that are addressing both ancient and recent evolutionary questions. Expanded analyses of the evolution of these gene lineages have highlighted the dynamic nature of the gene birth-and-death process, and may have significant implications for the evolution of genetic pathways. Crucial functional studies of floral organ identity genes in diverse taxa are allowing the first real insight into the conservation of gene function, while findings on the genetic control of organ elaboration offer to open up new avenues for investigation. Taken together, these trends show that the field of floral developmental evolution continues to make significant progress towards elucidating the processes that have shaped the evolution of flower development and morphology.  相似文献   

14.
Fresh apples can cause birch pollen-related food allergy in northern and central European populations, primarily because of the presence of Mal d 1, the major apple allergen that is cross-reactive to the homologous and sensitizing allergen Bet v 1 from birch. Apple cultivars differ significantly in their allergenicity. Knowledge of the genetic basis of these differences would direct breeding for hypoallergenic cultivars. The PCR genomic cloning and sequencing were performed on two cultivars, Prima and Fiesta, which resulted in 37 different Mal d 1 gDNA sequences. Based on the mapping of sequence-specific molecular markers, these sequences appeared to represent 18 Mal d 1 genes. Sixteen genes were located in two clusters, one cluster with seven genes on linkage group (LG) 13, and the other cluster with nine genes on the homoeologous LG 16. One gene was mapped on LG 6, and one remained unmapped. According to sequence identity, these 18 genes could be subdivided into four subfamilies. Subfamilies I–III had an intron of different size that was subfamily and gene-specific. Subfamily IV consisted of 11 intronless genes. The deduced amino acid sequence identity varied from 65% to 81% among subfamilies, from 82% to 100% among genes within a subfamily, and from 97.5% to 100% among alleles of one gene. This study provides a better understanding of the genetics of Mal d 1 and the basis for further research on the occurrence of allelic diversity among cultivars in relation to allergenicity and their biological functions.  相似文献   

15.
16.
Forward genetics, the phenotype-driven approach to investigating gene identity and function, has a long history in mouse genetics. Random mutations in the mouse transcend bias about gene function and provide avenues towards unique discoveries. The study of the peripheral nervous system is no exception; from historical strains such as the trembler mouse, which led to the identification of PMP22 as a human disease gene causing multiple forms of peripheral neuropathy, to the more recent identification of the claw paw and sprawling mutations, forward genetics has long been a tool for probing the physiology, pathogenesis, and genetics of the PNS. Even as spontaneous and mutagenized mice continue to enable the identification of novel genes, provide allelic series for detailed functional studies, and generate models useful for clinical research, new methods, such as the piggyBac transposon, are being developed to further harness the power of forward genetics. Special issue article in honor of Dr. George DeVries.  相似文献   

17.
While color vision perception is thought to be adaptively correlated with foraging efficiency for diurnal mammals, those that forage exclusively at night may not need color vision nor have the capacity for it. Indeed, although the basic condition for mammals is dichromacy, diverse nocturnal mammals have only monochromatic vision, resulting from functional loss of the short-wavelength sensitive opsin gene. However, many nocturnal primates maintain intact two opsin genes and thus have dichromatic capacity. The evolutionary significance of this surprising observation has not yet been elucidated. We used a molecular population genetics approach to test evolutionary hypotheses for the two intact opsin genes of the fully nocturnal aye-aye (Daubentonia madagascariensis), a highly unusual and endangered Madagascar primate. No evidence of gene degradation in either opsin gene was observed for any of 8 aye-aye individuals examined. Furthermore, levels of nucleotide diversity for opsin gene functional sites were lower than those for 15 neutrally evolving intergenic regions (>25 kb in total), which is consistent with a history of purifying selection on aye-aye opsin genes. The most likely explanation for these findings is that dichromacy is advantageous for aye-ayes despite their nocturnal activity pattern. We speculate that dichromatic nocturnal primates may be able to perceive color while foraging under moonlight conditions, and suggest that behavioral and ecological comparisons among dichromatic and monochromatic nocturnal primates will help to elucidate the specific activities for which color vision perception is advantageous.  相似文献   

18.
Prokopenko SN  He Y  Lu Y  Bellen HJ 《Genetics》2000,156(4):1691-1715
In our quest for novel genes required for the development of the embryonic peripheral nervous system (PNS), we have performed three genetic screens using MAb 22C10 as a marker of terminally differentiated neurons. A total of 66 essential genes required for normal PNS development were identified, including 49 novel genes. To obtain information about the molecular nature of these genes, we decided to complement our genetic screens with a molecular screen. From transposon-tagged mutations identified on the basis of their phenotype in the PNS we selected 31 P-element strains representing 26 complementation groups on the second and third chromosomes to clone and sequence the corresponding genes. We used plasmid rescue to isolate and sequence 51 genomic fragments flanking the sites of these P-element insertions. Database searches using sequences derived from the ends of plasmid rescues allowed us to assign genes to one of four classes: (1) previously characterized genes (11), (2) first mutations in cloned genes (1), (3) P-element insertions in genes that were identified, but not characterized molecularly (1), and (4) novel genes (13). Here, we report the cloning, sequence, Northern analysis, and the embryonic expression pattern of candidate cDNAs for 10 genes: astray, chrowded, dalmatian, gluon, hoi-polloi, melted, pebble, skittles, sticky ch1, and vegetable. This study allows us to draw conclusions about the identity of proteins required for the development of the nervous system in Drosophila and provides an example of a molecular approach to characterize en masse transposon-tagged mutations identified in genetic screens.  相似文献   

19.
Vascular tissue differentiation is essential to enable plant growth and follows well-structured and complex developmental patterns. Based on recent data obtained from Arabidopsis and Populus, advances in the understanding of the molecular basis of vascular system development are reviewed. As identified by forward and/or reverse genetics, several gene families have been shown to be involved in the proliferation and identity of vascular tissues and in vascular bundle patterning. Although the functioning of primary meristems, for example the shoot apical meristem (SAM), is well documented in the literature, the genetic network that regulates (pro)cambium is still largely not deciphered. However, recent genome-wide expression analyses have identified candidate genes for secondary vascular tissue development. Of particular interest, several genes known to regulate the SAM have also been found to be expressed in the vascular cambium, highlighting possible overlapping regulatory mechanisms between these two meristems.  相似文献   

20.
The molecular genetic basis of adaptive variation is of fundamental importance for evolutionary dynamics, but is still poorly known. Only in very few cases has the relationship between genetic variation at the molecular level, phenotype and function been established in natural populations. We examined the functional significance and genetic basis of a polymorphism in production of leaf hairs, trichomes, in the perennial herb Arabidopsis lyrata. Earlier studies suggested that trichome production is subject to divergent selection. Here we show that the production of trichomes is correlated with reduced damage from insect herbivores in natural populations, and using statistical methods developed for medical genetics we document an association between loss of trichome production and mutations in the regulatory gene GLABROUS1. Sequence data suggest that independent mutations in this regulatory gene have provided the basis for parallel evolution of reduced resistance to insect herbivores in different populations of A. lyrata and in the closely related Arabidopsis thaliana. The results show that candidate genes identified in model organisms provide a valuable starting point for analysis of the genetic basis of phenotypic variation in natural populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号