首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We recently described the identification of a non-peptidyl fungal metabolite (l-783,281, compound 1), which induced activation of human insulin receptor (IR) tyrosine kinase and mediated insulin-like effects in cells, as well as decreased blood glucose levels in murine models of Type 2 diabetes (Zhang, B., Salituro, G., Szalkowski, D., Li, Z., Zhang, Y., Royo, I., Vilella, D., Diez, M. T. , Pelaez, F., Ruby, C., Kendall, R. L., Mao, X., Griffin, P., Calaycay, J., Zierath, J. R., Heck, J. V., Smith, R. G. & Moller, D. E. (1999) Science 284, 974-977). Here we report the characterization of an active analog (compound 2) with enhanced IR kinase activation potency and selectivity over related receptors (insulin-like growth factor I receptor, epidermal growth factor receptor, and platelet-derived growth factor receptor). The IR activators stimulated tyrosine kinase activity of partially purified native IR and recombinant IR tyrosine kinase domain. Administration of the IR activators to mice was associated with increased IR tyrosine kinase activity in liver. In vivo oral treatment with compound 2 resulted in significant glucose lowering in several rodent models of diabetes. In db/db mice, oral administration of compound 2 elicited significant correction of hyperglycemia. In a streptozotocin-induced diabetic mouse model, compound 2 potentiated the glucose-lowering effect of insulin. In normal rats, compound 2 improved oral glucose tolerance with significant reduction in insulin release following glucose challenge. A structurally related inactive analog (compound 3) was not effective on insulin receptor activation or glucose lowering in db/db mice. Thus, small molecule IR activators exert insulin mimetic and sensitizing effects in cells and in animal models of diabetes. These results have implications for the future development of new therapies for diabetes mellitus.  相似文献   

2.
Type 2 diabetes patients show defects in insulin signal transduction that include lack of insulin receptor, decrease in insulin stimulated receptor tyrosine kinase activity and receptor-mediated phosphorylation of insulin receptor substrates (IRSs). A small molecule that could target insulin signaling would be of significant advantage in the treatment of diabetes. Berberine (BBR) has recently been shown to lower blood glucose levels and to improve insulin resistance in db/db mice partly through the activation of AMP-activated protein kinase (AMPK) signaling and induction of phosphorylation of insulin receptor (IR). However, the underlying mechanism remains largely unknown. Here we report that BBR mimics insulin action by increasing glucose uptake ability by 3T3-L1 adipocytes and L6 myocytes in an insulin-independent manner, inhibiting phosphatase activity of protein tyrosine phosphatase 1B (PTP1B), and increasing phosphorylation of IR, IRS1 and Akt in 3T3-L1 adipocytes. In diabetic mice, BBR lowers hyperglycemia and improves impaired glucose tolerance, but does not increase insulin release and synthesis. The results suggest that BBR represents a different class of anti-hyperglycemic agents.  相似文献   

3.
Insulin binding and insulin receptor tyrosine kinase activity were examined in two rodent models with genetic insulin resistance using partially-purified skeletal muscle membrane preparations. Insulin binding activity was decreased about 50% in both 12-week (219 +/- 184 vs 1255 +/- 158 fmoles/mg, p less than 0.01) and 24-week old (2120 +/- 60 vs 1081 +/- 60 fmoles/mg, p less than 0.01) ob/ob mice. In contrast, insulin binding to membrane derived from 24-week old db/db mice was not significantly different from lean controls (1371 +/- 212 vs 1253 +/- 247 fmoles/mg). Insulin-associated tyrosine kinase activity of membranes from ob/ob skeletal muscle was decreased, compared to its normal lean littermate, when compared on a per mg of protein basis in both 12-week (37 +/- 3 vs 21 +/- 3 pmoles/min/mg, p less than 0.05) and 24-week old (71 +/- 5 vs 37 +/- 6 pmoles/min/mg, p less than 0.01) mice. However, no significant differences in kinase activities were observed when the data were normalized and compared on a per fmole of insulin-binding activity basis for the 12-week (12 +/- 1 vs 11 +/- 2) and 24-week (27 +/- 2 vs 20 +/- 3) age groups. Insulin receptor tyrosine kinase activity of db/db skeletal muscle membranes was not different than its normal lean littermate whether expressed on a protein (34 +/- 7 vs 30 +/- 3) or fmole of insulin-binding activity (21 +/- 4 vs 18 +/- 4) basis. These data suggest that insulin receptor tyrosine kinase is not associated with the insulin resistance observed in ob/ob and db/db mice and demonstrate differences in receptor regulation between both animal models.  相似文献   

4.
Altered insulin signaling in retinal tissue in diabetic states   总被引:3,自引:0,他引:3  
Both type 1 and type 2 diabetes can lead to altered retinal microvascular function and diabetic retinopathy. Insulin signaling may also play a role in this process, and mice lacking insulin receptors in endothelial cells are protected from retinal neovascularization. To define the role of diabetes in retinal function, we compared insulin signaling in the retinal vasculature of mouse models of type 1 (streptozotocin) and type 2 diabetes (ob/ob). In streptozotocin mice, in both retina and liver, insulin receptor (IR) and insulin receptor substrate (IRS)-2 protein and tyrosine phosphorylation were increased by insulin, while IRS-1 protein and its phosphorylation were maintained. By contrast, in ob/ob mice, there was marked down-regulation of IR, IRS-1, and IRS-2 protein and phosphorylation in liver; these were maintained or increased in retina. In both mice, Phosphatidylinositol 3,4,5-trisphosphate generation by acute insulin stimulation was enhanced in retinal endothelial cells. On the other hand, protein levels and phosphorylation of PDK1 and Akt were decreased in retina of both mice. Interestingly, phosphorylation of p38 mitogen-activated protein kinase and ERK1 were responsive to insulin in retina of both mice but were unresponsive in liver. HIF-1alpha and vascular endothelial growth factor were increased and endothelial nitric-oxide synthase was decreased in retina. These observations indicate that, in both insulin-resistant and insulin-deficient diabetic states, there are alterations in insulin signaling, such as impaired PDK/Akt responses and enhanced mitogen-activated protein kinases responses that could contribute to the retinopathy. Furthermore, insulin signaling in retinal endothelial cells is differentially altered in diabetes and is also differentially regulated from insulin signaling in classical target tissues such as liver.  相似文献   

5.
Thiazolidinediones may slow the progression of type 2 diabetes by preserving pancreatic beta-cells. The effects of pioglitazone (PIO) on structure and function of beta-cells in KKA(y), C57BL/6J ob/ob, and C57BL/KsJ db/db mice (genetic models of type 2 diabetes) were examined. ob/ob (n = 7) and db/db (n = 9) mice were randomly assigned to 50-125 mg.kg body wt-1.day-1 of PIO in chow beginning at 6-10 wk of age. Control ob/ob (n = 7) and db/db mice (n = 9) were fed chow without PIO. KKA(y) mice (n = 15) were fed PIO daily at doses of 62-144 mg.kg body wt-1.day-1. Control KKA(y) mice (n = 10) received chow without PIO. Treatment continued until euthanasia at 14-26 wk of age. Blood was collected at baseline (before treatment) and just before euthanasia and was analyzed for glucose, glycosylated hemoglobin, and plasma insulin. Some of the splenic pancreas of each animal was resected and partially sectioned for light or electron microscopy. The remainder of the pancreas was assayed for insulin content. Compared with baseline and control groups, PIO treatment significantly reduced blood glucose and glycosylated hemoglobin levels. Plasma insulin levels decreased significantly in ob/ob mice treated with PIO. All groups treated with PIO exhibited significantly greater beta-cell granulation, evidence of reduced beta-cell stress, and 1.5- to 15-fold higher levels of pancreatic insulin. The data from these studies suggest that comparable effects would be expected to slow the progression of type 2 diabetes, either delaying or possibly preventing progression to an insulin-dependent state.  相似文献   

6.
Elevated levels of the hormone resistin, which is secreted by fat cells, are proposed to cause insulin resistance and to serve as a link between obesity and type 2 diabetes. In this report we show that resistin expression is significantly decreased in the white adipose tissue of several different models of obesity including the ob/ob, db/db, tub/tub, and KKA(y) mice compared with their lean counterparts. Furthermore, in response to several different classes of antidiabetic peroxisome proliferator-activated receptor gamma agonists, adipose tissue resistin expression is increased in both ob/ob mice and Zucker diabetic fatty rats. These data demonstrate that experimental obesity in rodents is associated with severely defective resistin expression, and decreases in resistin expression are not required for the antidiabetic actions of peroxisome proliferator-activated receptor gamma agonists.  相似文献   

7.
8.
Although zinc (Zn) deficiency has been associated with insulin resistance, and altered Zn metabolism (e.g., hyperzincuria, low-normal plasma Zn concentrations) may be present in diabetes, the potential effects of Zn on modulation of insulin action in Type II diabetes have not been established. The objective of this study was to compare the effects of dietary Zn deficiency and Zn supplementation on glycemic control in db/db mice. Weanling db/db mice and lean littermate controls were fed Zn-deficient (3 ppm Zn; dbZD and InZD groups), Zn-adequate control (30 ppm Zn; dbC and InC groups) or Zn-supplemented (300 ppm Zn; dbZS and InZS groups) diets for 6 weeks. Mice were assessed for Zn status, serum and urinary indices of diabetes, and gastrocnemius insulin receptor concentration and tyrosine kinase activity. Fasting serum glucose concentrations were significantly lower in the dbZS group compared with the dbZD group (19.3 +/- 2.9 and 27.9 +/- 4.1 mM, respectively), whereas the dbC mice had an intermediate value. There was a negative correlation between femur Zn and serum glucose concentrations (r = -0.59 for lean mice, P = 0.007). The dbZS group had higher pancreatic Zn and lower circulating insulin concentrations than dbZC mice. Insulin-stimulated tyrosine kinase activity in gastrocnemius muscle was higher in the db/db genotype, and insulin receptor concentration was not altered. In summary, dietary Zn supplementation attenuated hyperglycemia and hyperinsulinemia in db/db mice, suggesting that the roles of Zn in pancreatic function and peripheral tissue glucose uptake need to be further investigated.  相似文献   

9.
G-protein-coupled receptor (GPR) 119 is involved in glucose-stimulated insulin secretion (GSIS) and represents a promising target for the treatment of type 2 diabetes as it is highly expressed in pancreatic β-cells. Although a number of oral GPR119 agonists have been developed, their inability to adequately directly preserve β-cell function limits their effectiveness. Here, we evaluated the therapeutic potential of a novel small-molecule GPR119 agonist, AS1907417, which represents a modified form of a 2,4,6-tri-substituted pyrimidine core agonist, AS1269574, we previously identified. The exposure of HEK293 cells expressing human GPR119, NIT-1 cells expressing human insulin promoter, and the pancreatic β-cell line MIN-6-B1 to AS1907417, enhanced intracellular cAMP, GSIS, and human insulin promoter activity, respectively. In in vivo experiments involving fasted normal mice, a single dose of AS1907417 improved glucose tolerance, but did not affect plasma glucose or insulin levels. Twice-daily doses of AS1907417 for 4 weeks in diabetic db/db, aged db/db mice, ob/ob mice, and Zucker diabetic fatty rats reduced hemoglobin A1c levels by 1.6%, 0.8%, 1.5%, and 0.9%, respectively. In db/db mice, AS1907417 improved plasma glucose, plasma insulin, pancreatic insulin content, lipid profiles, and increased pancreatic insulin and pancreatic and duodenal homeobox 1 (PDX-1) mRNA levels. These data demonstrate that novel GPR119 agonist AS1907417 not only effectively controls glucose levels, but also preserves pancreatic β-cell function. We therefore propose that AS1907417 represents a new type of antihyperglycemic agent with promising potential for the effective treatment of type 2 diabetes.  相似文献   

10.
11.
Dual inhibitors of the closely related receptor tyrosine kinases insulin-like growth factor 1 receptor (IGF-1R) and insulin receptor (IR) are promising therapeutic agents in cancer. Here, we report an unusually selective class of dual inhibitors of IGF-1R and IR identified in a parallel screen of known kinase inhibitors against a panel of 300 human protein kinases. Biochemical and structural studies indicate that this class achieves its high selectivity by binding to the ATP-binding pocket of inactive, unphosphorylated IGF-1R/IR and stabilizing the activation loop in a native-like inactive conformation. One member of this compound family was originally reported as an inhibitor of the serine/threonine kinase ERK, a kinase that is distinct in the structure of its unphosphorylated/inactive form from IR/IGF-1R. Remarkably, this compound binds to the ATP-binding pocket of ERK in an entirely different conformation to that of IGF-1R/IR, explaining the potency against these two structurally distinct kinase families. These findings suggest a novel approach to polypharmacology in which two or more unrelated kinases are inhibited by a single compound that targets different conformations of each target kinase.  相似文献   

12.
Type 2 diabetes mellitus is thought to be a significant risk factor for Alzheimer's disease. Insulin resistance also affects the central nervous system by regulating key processes, such as neuronal survival and longevity, learning and memory. However, the mechanisms underlying these effects remain uncertain. To investigate whether insulin resistance is associated with the assembly of amyloid β-protein (Aβ) at the cell surface of neurons, we inhibited insulin-signalling pathways of primary neurons. The treatments of insulin receptor (IR)-knockdown and a phosphatidylinositol 3-kinase inhibitor (LY294002), but not an extracellular signal-regulated kinase inhibitor, induced an increase in GM1 ganglioside (GM1) levels in detergent-resistant membrane microdomains of the neurons. The aged db/db mouse brain exhibited reduction in IR expression and phosphorylation of Akt, which later induced an increase in the high-density GM1-clusters on synaptosomes. Neurons treated with IR knockdown or LY294002, and synaptosomes of the aged db/db mouse brains markedly accelerated an assembly of Aβs. These results suggest that ageing and peripheral insulin resistance induce brain insulin resistance, which accelerates the assembly of Aβs by increasing and clustering of GM1 in detergent-resistant membrane microdomains of neuronal membranes.  相似文献   

13.
The orexigenic hormone ghrelin is important in diabetes because it has an inhibitory effect on insulin secretion. Ghrelin ablation in leptin-deficient ob/ob (Ghrelin(-/-):ob/ob) mice increases insulin secretion and improves hyperglycemia. The physiologically relevant ghrelin receptor is the growth hormone secretagogue receptor (GHS-R), and GHS-R antagonists are thought to be an effective strategy for treating diabetes. However, since some of ghrelin's effects are independent of GHS-R, we have utilized genetic approaches to determine whether ghrelin's effect on insulin secretion is mediated through GHS-R and whether GHS-R antagonism indeed inhibits insulin secretion. We investigated the effects of GHS-R on glucose homeostasis in Ghsr-ablated ob/ob mice (Ghsr(-/-):ob/ob). Ghsr ablation did not rescue the hyperphagia, obesity, or insulin resistance of ob/ob mice. Surprisingly, Ghsr ablation worsened the hyperglycemia, decreased insulin, and impaired glucose tolerance. Consistently, Ghsr ablation in ob/ob mice upregulated negative β-cell regulators (such as UCP-2, SREBP-1c, ChREBP, and MIF-1) and downregulated positive β-cell regulators (such as HIF-1α, FGF-21, and PDX-1) in whole pancreas; this suggests that Ghsr ablation impairs pancreatic β-cell function in leptin deficiency. Of note, Ghsr ablation in ob/ob mice did not affect the islet size; the average islet size of Ghsr(-/-):ob/ob mice is similar to that of ob/ob mice. In summary, because Ghsr ablation in leptin deficiency impairs insulin secretion and worsens hyperglycemia, this suggests that GHS-R antagonists may actually aggravate diabetes under certain conditions. The paradoxical effects of ghrelin ablation and Ghsr ablation in ob/ob mice highlight the complexity of the ghrelin-signaling pathway.  相似文献   

14.
Increased fragility fracture risk with improper healing is a frequent and severe complication of insulin resistance (IR). The mechanisms impairing bone health in IR are still not fully appreciated, which gives importance to studies on bone pathologies in animal models of diabetes. Mice deficient in leptin signaling are widely used models of IR and its comorbidities. Leptin was first recognized as a hormone, regulating appetite and energy balance; however, recent studies have expanded its role showing that leptin is a link between insulin-dependent metabolism and bone homeostasis. In the light of these findings, it is intriguing to consider the role of leptin resistance in bone regeneration. In this study, we show that obese diabetic mice lacking leptin receptor (db/db) are deficient in postnatal regenerative osteogenesis. We apply an ectopic osteogenesis and a fracture healing model, both showing that db/db mice display compromised bone acquisition and regeneration capacity. The underlying mechanisms include delayed periosteal mesenchymatic osteogenesis, premature apoptosis of the cartilage callus and impaired microvascular invasion of the healing tissue. Our study supports the use of the db/db mouse as a model of IR associated bone-healing deficits and can aid further studies of mesenchymatic cell homing and differentiation, microvascular invasion, cartilage to bone transition and callus remodeling in diabetic fracture healing.  相似文献   

15.
Immunoreactive C-peptide was evaluated in the plasma and pancreas of Aston ob/ob and C57BL/KsJ db/db mice in relation to disturbances in pancreatic B-cell function. At 18-24 weeks of age, ob/ob and db/db mice displayed hyperglycaemia (1.6 and 3.8 fold increases respectively) and hyperinsulinaemia (10.8 and 5.1 fold increases respectively) despite a similar pancreatic insulin content to their respective non-diabetic lean control mice. Immunoreactive C-peptide concentrations in the plasma and pancreas of the mutants corresponded with the degree of hyperinsulinaemia and pancreatic insulin content, and the insulin: C-peptide molar ratios in both mutants were similar to lean controls. In ob/ob mice parenteral glucose administration decreased plasma insulin and C-peptide concentrations, despite markedly raised glucose concentrations. However, administration of a low dose of insulin (5 U/kg) to lean mice and much higher doses of insulin (50 and 120 U/kg) to ob/ob mice markedly decreased plasma glucose and C-peptide concentrations. When the rate and extent of insulin-induced glucose suppression observed in ob/ob mice was mimicked in lean mice, an almost complete (95%) inhibition of C-peptide was achieved compared with a 57% decrease in the ob/ob mutant. Injection of ob/ob mice with glucose to counter the insulin-induced hypoglycaemia failed to affect the fall of C-peptide concentrations. The data suggest that the metabolic processing of insulin and C-peptide are undisturbed in obese-diabetic mice, and that the impaired suppression of circulating C-peptide by insulin-hypoglycaemia in ob/ob mice predominantly reflects impaired feedback inhibition by insulin.  相似文献   

16.
Epidemiological studies indicate that obesity, insulin resistance, and diabetes are important comorbidities of patients with ischemic heart disease and increase mortality and development of congestive heart failure after myocardial infarction. Although ob/ob and db/db mice are commonly used to study obesity with insulin resistance or diabetes, mutations in the leptin gene or its receptor are rarely the cause of obesity in humans, which is, instead, primarily a consequence of dietary and lifestyle factors. Therefore, we used a murine model of diet-induced obesity to examine the physiological effects of obesity and the inflammatory and healing response of diet-induced obese (DIO) mice after myocardial ischemia-reperfusion injury. DIO mice developed hyperinsulinemia and insulin resistance and hepatic steatosis, with significant ectopic lipid deposition in the heart and cardiac hypertrophy in the absence of significant changes in blood pressure. The mRNA levels of chemokines at 24 h and cytokines at 24 and 72 h of reperfusion were higher in DIO than in lean mice. In granulation tissue at 72 h of reperfusion, macrophage density was significantly increased, whereas neutrophil density was reduced, in DIO mice compared with lean mice. At 7 days of reperfusion, collagen deposition in the scar was significantly reduced and left ventricular (LV) dilation and cardiac hypertrophy were increased, indicative of adverse LV remodeling, in infarcted DIO mice. Characterization of a murine diet-induced model of obesity and insulin resistance that satisfies many aspects commonly observed in human obesity allows detailed examination of the adverse cardiovascular effects of diet-induced obesity at the molecular level.  相似文献   

17.
Leptin, the ob gene product secreted by adipocytes, controls overall energy balance. We previously showed that leptin administration to leptin-deficient obese (ob/ob) mice suppressed mRNA expression and activity of renal 25-hydroxyvitamin D(3)-1alpha-hydroxylase (CYP27B1). In leptin receptor-deficient (db/db) mice, we presently examined whether leptin affects 1alpha-hydroxylase expression in renal tubules through the active form of the leptin receptor (ObRb). Elevated serum concentrations of calcium and 1,25-dihydroxyvitamin D(3) [1,25-(OH)(2)D(3)] in untreated ob/ob mice showed sharp reduction with leptin administration (4 mg/kg, i.p. every 12h for 2 days); no such reduction of elevation occurred in db/db mice. ObRb mRNA was expressed in kidney, brain, fat, lung, and bone in wild-type and ob/ob mice, but not db/db mice. The ob/ob and db/db mice showed large increases in renal 1alpha-hydroxylase mRNA expression and activity. Leptin administration (4 mg/kg) completely abrogated these increases in ob/ob but not db/db mice. Renal 25-hydroxyvitamin D(3)-24-hydroxylase (CYP24) mRNA synthesis also was greatly elevated in ob/ob and db/db mice; excesses decreased significantly with leptin administration in ob/ob mice, but increased in db/db mice. Renal tubular cells in primary culture expressed mRNAs including proximal tubules markers (1alpha-hydroxylase and megalin), parathyroid hormone receptor, and vitamin D receptor. Calcitonin receptor mRNA, synthesized mainly in distal tubules, was scant, indicating that most cultured cells were from proximal tubules. Cells did not express ObRb mRNA. Forskolin exposure at 10(-6)M for 3 or 6h significantly increased 1alpha-hydroxylase mRNA. Leptin at 10(-6)M did not change mRNA expression in either presence or absence of forskolin. Accordingly, leptin attenuates renal 1alpha-hydroxylase gene expression through ObRb. Furthermore, leptin appears to act indirectly on renal proximal tubules to regulate 1alpha-hydroxylase gene expression.  相似文献   

18.
Adrenalectomy in young obese (ob/ob) and the diabetic (db/db) mouse slowed body weight gain. Treatment of adrenalectomized ob/ob mice with cortisone or deoxycorticosterone acetate (DOCA) significantly increased weight gain in a dose-related manner. Cortisone had no effect on weight gain on lean mice and treatment with dehydroepiandrosterone sulfate was without effect on either ob/ob or lean mice. The increment in body weight of adrenalectomized ob/ob mice treated with corticosterone and DOCA was associated with an increase in body weight and an increase in food intake. When adrenalectomy was performed at twenty-three days of age (five days before weaning), animals carrying the (db/db) genotype remained lighter than their normal littermates. These data document the importance of the adrenal gland and its steroids for the development and maintenance of many features of the obese or diabetes mouse.  相似文献   

19.
20.
Metabolic syndrome is associated with insulin resistance and atherosclerosis. Here, we show that deficiency of one or two alleles of ATM, the protein mutated in the cancer-prone disease ataxia telangiectasia, worsens features of the metabolic syndrome, increases insulin resistance, and accelerates atherosclerosis in apoE-/- mice. Transplantation with ATM-/- as compared to ATM+/+ bone marrow increased vascular disease. Jun N-terminal kinase (JNK) activity was increased in ATM-deficient cells. Treatment of ATM+/+apoE-/- mice with low-dose chloroquine, an ATM activator, decreased atherosclerosis. In an ATM-dependent manner, chloroquine decreased macrophage JNK activity, decreased macrophage lipoprotein lipase activity (a proatherogenic consequence of JNK activation), decreased blood pressure, and improved glucose tolerance. Chloroquine also improved metabolic abnormalities in ob/ob and db/db mice. These results suggest that ATM-dependent stress pathways mediate susceptibility to the metabolic syndrome and that chloroquine or related agents promoting ATM activity could modulate insulin resistance and decrease vascular disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号