首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cysteine proteinases are relevant to several aspects of the parasite life cycle and of parasite-host relationships. Here, a quantitative investigation of the effect of temperature and pH on the total substrate inhibition of cruzipain, the major papain-like cysteine proteinase from Trypanosoma cruzi, is reported. Values of the apparent catalytic and inhibition parameters Km, Vmax, Vmax/Km, and K(i) for the cruzipain-catalysed hydrolysis of N-alpha-benzyloxycarbonyl-L-phenylalanyl-L-arginine-(7-amino-4-methylcoumarin) (Z-Phe-Arg-AMC) and azocasein were determined between 10.0 degrees C and 40.0 degrees C and between pH 4.5 and 8.5. Values of Km were independent of temperature and pH, whereas values of Vmax, Vmax/Km, and K(i) were temperature-dependent and pH-dependent. Over the whole pH range explored, values of logVmax, log(Vmax/Km), and logK(i) increased linearly with respect to T(-1). Values of Vmax and Vmax/Km were affected by the acid-base equilibrium of one temperature-independent ionizing group (i.e. pK(unl)' = pK(lig)' = 5.7 +/- 0.1, at 25.0 degrees C). Moreover, values of K(i) were affected by the alkaline pK shift of one ionizing group of active cruzipain (from pK(unl)" = 5.7 +/- 0.1 to pK(lig)" = 6.1 +/- 0.1, at 25.0 degrees C) upon Z-Phe-Arg-AMC binding. Values of logK(unl)', logK(lig)', and logK(lig)" were temperature-independent. Conversely, values of logK(unl)" were linearly dependent on T(-1). As a whole, total substrate inhibition of cruzipain decreased with increasing temperature and pH. These data suggest that both synthetic and protein substrates can bind to the unique active centre of cruzipain either productively or following a binding mode which results in enzyme inhibition. However, allosteric effect(s) cannot be excluded.  相似文献   

2.
K L Grant  J P Klinman 《Biochemistry》1989,28(16):6597-6605
The magnitudes of primary and secondary H/T and D/T kinetic isotope effects have been measured in the bovine serum amine oxidase catalyzed oxidation of benzylamine from 0 to 45 degrees C. Secondary H/T and D/T kinetic effects are small and in the range anticipated from equilibrium isotope effects; Arrhenius preexponential factors (AH/AT and AD/AT) determined from the temperature dependence of isotope effects also indicate semiclassical behavior. By contrast, primary H/T and D/T isotope effects, 35.2 +/- 0.8 and 3.07 +/- 0.07, respectively, at 25 degrees C, are larger than semiclassical values and give anomalously low preexponential factor ratios, AH/AT = 0.12 +/- 0.04 and AD/AT = 0.51 +/- 0.10. Stopped-flow studies indicate similar isotope effects on cofactor reduction as seen in the steady state, consistent with a single rate-limiting C-H bond cleavage step for Vmax/Km. The comparison of primary and secondary isotope effects allows us to rule out appreciable coupling between the primary and secondary hydrogens at C-1 of the substrate. From the properties of primary isotope effects, we conclude that both protium and deuterium undergo significant tunneling in the course of substrate oxidation. These findings represent the first example of quantum mechanical effects in an enzyme-catalyzed proton abstraction reaction.  相似文献   

3.
M H O'Leary  J A Limburg 《Biochemistry》1977,16(6):1129-1135
Pig heart NADP+-dependent isocitrate dehydrogenase requires a metal ion for activity. Under optimum conditions (pH 7.5, Mg2+ present), the carbon isotope effect is k12/k13 = 0.9989 +/- 0.0004 for the carboxyl carbon undergoing decarboxylation and hydrogen isotope effects are VmaxH/VmaxD = 1.09 +/- 0.04 and (Vmax/Km)H/(Vmax/Km)D = 0.76 +/- 0.12 with threo-D,L-[2-2H]isocitric acid. Deuterium isotope effects measured by the equilibrium perturbation technique under the same conditions are VH/VD = 1.20 for the forward reaction and 1.02 for the reverse reaction. Under these conditions the rate-determining step in the enzymatic reaction must be product release. Dissociation of isocitrate from the enzyme-isocitrate complex and the enzyme-NADP+ complex must be two or more orders of magnitude slower than the chemical steps. The catalytic activity of the enzyme is about tenfold lower in the presence of Ni2+ than in the presence of Mg2+. The carbon isotope effect in the presence of Ni2+ at pH 7.5 is k12/k13 = 1.0051 +/- 0.0012 and the hydrogen isotope effects are VmaxH/VmaxD = 0.98 +/- 0.07 and (Vmax/Km)H/(Vmax/Km)D = 1.11 +/- 0.14. Thus, the rate decrease caused by substitution of Ni2+ for Mg2+ must result from the effects of metal on substrate and product binding and dissociation, rather than effects of metal on catalysis. However, a more detailed analysis of the carbon isotope effects reveals that there is also a large metal effect on the rate of the decarboxylation step, consistent with the view that the carbonyl oxygen of the oxalosuccinate intermediate is coordinated to the metal during decarboxylation.  相似文献   

4.
Q Su  J P Klinman 《Biochemistry》1999,38(26):8572-8581
Glucose oxidase catalyzes the oxidation of glucose by molecular dioxygen, forming gluconolactone and hydrogen peroxide. A series of probes have been applied to investigate the activation of dioxygen in the oxidative half-reaction, including pH dependence, viscosity effects, 18O isotope effects, and solvent isotope effects on the kinetic parameter Vmax/Km(O2). The pH profile of Vmax/Km(O2) exhibits a pKa of 7.9 +/- 0.1, with the protonated enzyme form more reactive by 2 orders of magnitude. The effect of viscosogen on Vmax/Km(O2) reveals the surprising fact that the faster reaction at low pH (1.6 x 10(6) M-1 s-1) is actually less diffusion-controlled than the slow reaction at high pH (1.4 x 10(4) M-1 s-1); dioxygen reduction is almost fully diffusion-controlled at pH 9.8, while the extent of diffusion control decreases to 88% at pH 9.0 and 32% at pH 5.0, suggesting a transition of the first irreversible step from dioxygen binding at high pH to a later step at low pH. The puzzle is resolved by 18O isotope effects. 18(Vmax/Km) has been determined to be 1.028 +/- 0.002 at pH 5.0 and 1.027 +/- 0.001 at pH 9.0, indicating that a significant O-O bond order decrease accompanies the steps from dioxygen binding up to the first irreversible step at either pH. The results at high pH lead to an unequivocal mechanism; the rate-limiting step in Vmax/Km(O2) for the deprotonated enzyme is the first electron transfer from the reduced flavin to dioxygen, and this step accompanies binding of molecular dioxygen to the active site. In combination with the published structural data, a model is presented in which a protonated active site histidine at low pH accelerates the second-order rate constant for one electron transfer to dioxygen through electrostatic stabilization of the superoxide anion intermediate. Consistent with the proposed mechanisms for both high and low pH, solvent isotope effects indicate that proton transfer steps occur after the rate-limiting step(s). Kinetic simulations show that the model that is presented, although apparently in conflict with previous models for glucose oxidase, is in good agreement with previously published kinetic data for glucose oxidase. A role for electrostatic stabilization of the superoxide anion intermediate, as a general catalytic strategy in dioxygen-utilizing enzymes, is discussed.  相似文献   

5.
The current studies were designed to characterize calcium transport by intestinal brush border membrane in the spontaneously hypertensive rat (SHR) and normotensive control, the Wistar-Kyoto (WKY) rat. The biochemical and functional purity of the intestinal brush border membranes in SHR and WKY rats was validated by marker enzymes and the ability to transiently transport D-glucose in the presence of Na+ gradient. Calcium transport into duodenal and jejunal vesicles represented a minor binding component and transmembrane movement as evident by initial rate studies, A23187 studies, and lanthanum displacement experiments. Initial rate and time course of calcium uptake was lower in SHR compared with WKY rats. Kinetic analysis of calcium uptake by the jejunum (total uptake minus binding component) showed a Vmax of 6.98 +/- 0.2 and 1.8 +/- 0.2 nmol/mg protein/7 sec in WKY rats and SHR, respectively (P less than 0.001), whereas Km values were 0.76 +/- 0.04 and 0.87 +/- 0.1 mM for WKY rats and SHR, respectively. Similar kinetic analysis of calcium uptake by the duodenal segments showed a Vmax of 10.3 +/- 0.8 and 2.8 +/- 0.2 nmol/mg protein/7 sec in WKY rats and SHR, respectively (P less than 0.01). Km values were 0.7 +/- 0.2 and 0.3 +/- 0.06 mM (P greater than 0.05). Vmax of calcium uptake in the 2-week-old rats (prehypertensive period) was 6.0 +/- 0.3 and 3.53 +/- 0.3 nmol/mg protein/7 sec in WKY rats and SHR, respectively (P less than 0.001), whereas Km values were 0.60 +/- 0.07 and 0.5 +/- 0.01 mM, respectively. These results suggest that calcium binding and uptake by duodenal and jejunal intestinal brush border membranes of SHR is significantly decreased compared with WKY rats. The decrease in transmembrane calcium uptake is secondary to decrease in Vmax and is present before the appearance of hypertension, implying a genetically determined defect in calcium uptake in intestinal brush border membranes of the SHR.  相似文献   

6.
We investigated the uptake of biphenyl by the psychrotolerant, polychlorinated biphenyl (PCB)-degrader, Pseudomonas sp. strain Cam-1 and the mesophilic PCB-degrader, Burkholderia sp. strain LB400. The effects of growth substrates, metabolic inhibitors, and temperature on [14C]biphenyl uptake were studied. Biphenyl uptake by both strains was induced by growth on biphenyl, and was inhibited by dinitrophenol (DNP) and carbonyl cyanide m-chlorophenylhydrazone (CCCP), which are metabolic uncouplers. The Vmax and Km for biphenyl uptake by Cam-1 at 22 degrees C were 5.4 +/- 1.7 nmol x min(-1) x (mg of cell protein)(-1) and 83.1 +/- 15.9 micromol x L(-1), respectively. The Vmax and Km for biphenyl uptake by LB400 at 22 degrees C were 3.2 +/- 0.3 nmol x min(-1) x (mg of cell protein(-1)) and 51.5 +/- 9.6 micromol x L(-1), respectively. At 15 degrees C, the maximum rate for biphenyl uptake by Cam-1 and LB400 was 3.1 +/- 0.3 nmol x min(-1) x (mg of cell protein)(-1) and 0.89 +/- 0.1 nmol x min(-1) x (mg of cell protein)(-1), respectively. Thus, the maximum rate for biphenyl uptake by Cam-1 at 15 degrees C was more than 3 times higher than that for LB400.  相似文献   

7.
D M Quinn 《Biochemistry》1985,24(13):3144-3149
Solvent deuterium isotope effects on the rates of lipoprotein lipase (LpL) catalyzed hydrolysis of the water-soluble esters p-nitrophenyl acetate (PNPA) and p-nitrophenyl butyrate (PNPB) have been measured and fall in the range 1.5-2.2. The isotope effects are independent of substrate concentration, LpL stability, and reaction temperature and hence are effects on chemical catalysis and not due to a medium effect of D2O on LpL stability and/or conformation. pL (L = H or D) vs. rate profiles for the Vmax/Km of LpL-catalyzed hydrolysis of PNPB increase sigmoidally with increasing pL. Least-squares analysis of the profiles gives pKaH2O = 7.10 +/- 0.01, pKaD2O = 7.795 +/- 0.007, and a solvent isotope effect on limiting velocity at high pL of 1.97 +/- 0.03. Because the pL-rate profiles are for the Vmax/Km of hydrolysis of a water-soluble substrate, the measured pKa's are intrinsic acid-base ionization constants for a catalytically involved LpL active-site amino acid side chain. Benzeneboronic acid, a potent inhibitor of LpL-catalyzed hydrolysis of triacylglycerols [Vainio, P., Virtanen, J. A., & Kinnunen, P. K. J. (1982) Biochim. Biophys. Acta 711, 386-390], inhibits LpL-catalyzed hydrolysis of PNPB, with Ki = 6.9 microM at pH 7.36, 25 degrees C. This result and the solvent isotope effects for LpL-catalyzed hydrolysis of water-soluble esters are interpreted in terms of a proton transfer mechanism that is similar in many respects to that of the serine proteases.  相似文献   

8.
Glutamine metabolism in the liver is essential for gluconeogenesis and ureagenesis. During the suckling period there is high hepatic protein accretion and the portal vein glutamine concentration is twice that in the adult, whereas hepatic vein glutamine concentration is similar between adult and suckling rats. Therefore, we hypothesized that glutamine uptake by the liver could be greater in the suckling period compared to the adult period. The present studies were, therefore, designed to investigate the transport of glutamine by plasma membranes of rat liver during maturation (suckling--2-week old, weanling--3-week old and adult--12-week old). Glutamine uptake by the plasma membranes of the liver represented transport into an osmotically sensitive space in all age groups. Inwardly directed Na+ gradient resulted in an "overshoot" phenomenon compared to K+ gradient. The magnitude of the overshoot was greater in suckling rats plasma membranes compared to adult membranes. Glutamine uptake under Na+ gradient was electrogenic and maximal at pH 7.5, whereas uptake under K+ gradient was electroneutral. Glutamine uptake with various concentrations of glutamine under Na+ gradient was saturable in all age groups with a Vmax of 1.5 +/- 0.1, 0.7 +/- 0.1 and 0.5 +/- 0.06 nmoles/mg protein/10 seconds in suckling, weanling and adult rats, respectively (P < 0.01). Km values were 0.6 +/- 0.1, 0.5 +/- 0.1 and 0.5 +/- 0.1 mM respectively. Vmax for Na(+)-independent glutamine uptake were 0.6 +/- 0.1, 0.55 +/- 0.07 and 0.54 +/- 0.06 nmoles/mg protein with Km values of 0.54 +/- 0.2, 0. +/- 0.1 and 0.5 +/- 0.2 mM, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Deuterium isotope effects on the kinetic parameters for the hydroperoxide-supported N-demethylation of N,N-dimethylaniline catalyzed by chloroperoxidase and horseradish peroxidase were determined using N,N-di-(trideuteromethyl)aniline. The isotope effect on the Vmax for the chloroperoxidase-catalyzed demethylation reaction supported by ethyl hydroperoxide was 1.42 +/- 0.31. The isotope effects on the Vmax for the horseradish peroxidase-catalyzed reaction supported by ethyl hydroperoxide and hydrogen peroxide were 1.99 +/- 0.39 and 4.09 +/- 0.27, respectively. Isotope effects ranging from 1.76 to 5.10 were observed on the Vmax/Km for the hydroperoxide substrate (i.e. the second order rate constant for the reaction of the hydroperoxide with the peroxidase to form compound I) in both enzyme systems when the N-methyl groups of N,N-dimethylaniline were deuterated. These results are not predicted by the simple ping-pong kinetic model for peroxidase-catalyzed N-demethylation reactions. The data are most simply explained by a mechanism involving the transfer of deuterium (or hydrogen) from N,N-dimethylaniline to the enzyme during catalysis. The deuterium must subsequently be displaced from the enzyme by the hydroperoxide, causing the observed isotope effects.  相似文献   

10.
The effect of phorbol myristate acetate (PMA) on pulmonary removal of [14C]serotonin (5-[14C]HT) and metabolism of [3H]benzoyl-phenylalanyl-alanyl-proline (BPAP), a synthetic substrate for angiotensin-converting enzyme (ACE), was evaluated in isolated rabbit lungs perfused in situ with Krebs-albumin. Metabolic functions were assessed before, during, and after perfusion with 80 nM PMA (n = 11), or PMA plus 133 microM papaverine (n = 10) or PMA diluent (dimethyl sulfoxide, n = 11). Organ kinetic parameters (apparent Vmax, Km) were calculated by use of indicator-dilution techniques and by a mathematical model of whole-organ metabolism. PMA treatment resulted in a significant decline in Vmax for BPAP metabolism (from 52 +/- 4 to 30 +/- 4 nmol/s) and 5-HT removal (from 2.1 +/- 0.2 to 1.1 +/- 0.1 nmol/s). Km for BPAP was not significantly altered, whereas Km for 5-HT removal was higher after treatment (before treatment, 1.1 +/- 0.1 microM; after treatment, 2.3 +/- 0.6 microM). Coperfusion with papaverine, which attenuated the pressor response to PMA, abolished PMA-induced changes in Vmax for BPAP metabolism and in Km for 5-HT removal but left PMA-induced changes in Vmax for 5-HT removal intact. We conclude that PMA alters endothelial metabolic function by both hemodynamic and biochemical mechanisms that are independent of circulating blood cells. Pulmonary capacity for BPAP metabolism may largely reflect perfused surface area, and capacity for 5-HT removal may be more sensitive to frank endothelial cell dysfunction in this model.  相似文献   

11.
The hydrolysis of adenosine 3':5'-monophosphate by the high Km cyclic nucleotide phosphodiesterase of bakers' yeast was studied over a range of temperature and pH at I = 0.17. The effects of ionic strength and MgCl2 concentration were studied at pH 7.7 and 30 degrees C. Km and Vmax were insensitive to changes in the MgCl2 concentration between 1 and 30 mM, implying that this enzyme (which does not require free divalent metal ions) does not discriminate between free cyclic AMP- and the Mg-cyclic AMP+ complex. Vmax decreased below pH 6.8 because of protonation of a group required in the basic form in the enzyme x substrate complex. On the basis of its pK (5.46 at 30 degrees C) and delta H (23 kJ/mol) this group was tentatively identified as imidazole. Vmax/Km decreased above pH 6.8 because of ionization of a group required in the acid form in the free enzyme, with a pK of 7.88 at 30 degrees C and a delta H of about 13 kJ/mol. Several possibilities exist for the identity of this group, the most likely being a second imidazole, sulfhydryl, or a water molecule bonded to tightly bound zinc. At pH 7.90, log Vmax and log Km both changed linearly with 1/T (between 12 degrees C and 37 degrees C) with enthalpies of 47 and 55 kJ/mol, respectively. Consequently, at low enough cyclic AMP concentration, the rate of reaction at pH 7.90 decreases slightly when the temperature is increased. This is also true at higher pH, but in the physiological pH range (6.4 to 7.5) Vmax/Km and, therefore, the rate of reaction at very low cyclic AMP concentration were nearly independent of temperature. Under physiological conditions, the Km approaches the upper limit of in vivo cyclic AMP concentrations in yeast, and at normal in vivo cyclic AMP concentrations the pH optimum is within or below the physiological range of pH in yeast.  相似文献   

12.
Activity of delta 5-3 beta-hydroxysteroid dehydrogenase coupled with steroid-delta 5-4-isomerase was demonstrated for the first time in the pancreas. The enzyme complex was assayed by measuring the conversion of pregnenolone to progesterone as well as of dehydroepiandrosterone to androstenedione and found to be localized primarily in the mitochondrial fraction of dog pancreas homogenates. The delta 5-3 beta-hydroxysteroid dehydrogenase used either NAD+ or NADP+ as co-substrates, although maximal activity was observed with NAD+. In phosphate buffer, pH 7.0 and 37 degrees C, the apparent Km values of the dehydrogenase were 6.54 +/- 0.7 microM for pregnenolone and 9.61 +/- 0.8 microM for NAD+. The apparent Vmax was determined as 0.82 +/- 0.02 nmol min-1 mg-1. Under the same conditions the Km values for dehydroepiandrosterone and NAD+ were 3.3 +/- 0.2 microM and 9.63 +/- 1.6 microM, respectively, and the apparent Vmax was 0.62 +/- 0.01 nmol min-1 mg-1.  相似文献   

13.
1. Michaelis-Menten parameters for the hydrolysis of p-nitrophenyl alpha-L-arabinofuranoside were measured as a function of pL (pH or pD) in both 1H2O and 2H2O. 2. The variation of both Vmax. and Vmax./Km with pL is sigmoid, the pK governing Vmax. shifting from 6.34 +/- 0.05 in 1H2O to 6.84 +/- 0.07 in 2H2O, and that governing Vmax./Km from 5.89 +/- 0.03 in 1H2O to 6.38 +/- 0.05 in 2H2O. 3. In the plateau regions there is a small inverse solvent isotope effect on Vmax./Km (0.92), and one of 1.45 on Vmax. 4. The variation of Vmax. with isotopic composition is strictly linear, indicating that the isotope effect arises from the transfer of a single proton.  相似文献   

14.
The Methanocaldococcus jannaschii genome contains putative genes for all four nonoxidative pentose phosphate pathway enzymes. Open reading frame (ORF) MJ0960 is a member of the mipB/talC family of 'transaldolase-like' genes, so named because of their similarity to the well-characterized transaldolase B gene family. However, recently, it has been reported that both the mipB and the talC genes from Escherichia coli encode novel enzymes with fructose-6-phosphate aldolase activity, not transaldolase activity (Schürmann and Sprenger 2001). The same study reports that other members of the mipB/talC family appear to encode transaldolases. To confirm the function of MJ0960 and to clarify the presence of a nonoxidative pentose phosphate pathway in M. jannaschii, we have cloned ORF MJ0960 from M. jannaschii genomic DNA and purified the recombinant protein. MJ0960 encodes a transaldolase and displays no fructose-6-phosphate aldolase activity. It etained full activity for 4 h at 80 degrees C, and for 3 weeks at 25 degrees C. Methanocaldococcus jannaschii transaldolase has a maximal velocity (Vmax) of 1.0 +/- 0.2 micromol min(-1) mg(-1) at 25 degrees C, whereas Vmax = 12.0 +/- 0.5 micromol min(-1) mg(-1) at 50 degrees C. Apparent Michaelis constants at 50 degrees C were Km = 0.65 +/- 0.09 mM for fructose-6-phosphate and Km = 27.8 +/- 4.3 microM for erythrose-4-phosphate. When ribose-5-phosphate replaced erythrose-4-phosphate as an aldose acceptor, Vmax decreased twofold, whereas the Km was 150-fold higher. The molecular mass of the active enzyme is 271 +/- 27 kDa as estimated by gel filtration, whereas the predicted monomer size is 23.96 kDa, suggesting that the native form of the protein is probably a decamer. A readily available source of thermophilic pentose phosphate pathway enzymes including transaldolase may have direct application in enzymatic biohydrogen production.  相似文献   

15.
Agrawal N  Hong B  Mihai C  Kohen A 《Biochemistry》2004,43(7):1998-2006
The enzyme thymidylate synthase (TS) catalyzes a complex reaction that involves forming and breaking at least six covalent bonds. The physical nature of the hydride transfer step in this complex reaction cascade has been studied by means of isotope effects and their temperature dependence. Competitive kinetic isotope effects (KIEs) on the second-order rate constant (V/K) were measured over a temperature range of 5-45 degrees C. The observed H/T ((T)V/K(H)) and D/T ((T)V/K(D)) KIEs were used to calculate the intrinsic KIEs throughout the temperature range. The Swain-Schaad relationships between the H/T and D/T V/K KIEs revealed that the hydride transfer step is the rate-determining step at the physiological temperature of Escherichia coli (20-30 degrees C) but is only partly rate-determining at elevated and reduced temperatures. H/D KIE on the first-order rate constant k(cat) ((D)k = 3.72) has been previously reported [Spencer et al. (1997) Biochemistry 36, 4212-4222]. Additionally, the Swain-Schaad relationships between that (D)k and the V/K KIEs reported here suggested that at 20 degrees C the hydride transfer step is the rate-determining step for both rate constants. Intrinsic KIEs were calculated here and were found to be virtually temperature independent (DeltaE(a) = 0 within experimental error). The isotope effects on the preexponential Arrhenius factors for the intrinsic KIEs were A(H)/A(T) = 6.8 +/- 2.8 and A(D)/A(T) = 1.9 +/- 0.25. Both effects are significantly above the semiclassical (no-tunneling) predicted values and indicate a contribution of quantum mechanical tunneling to this hydride transfer reaction. Tunneling correction to transition state theory would predict that these isotope effects on activation parameters result from no energy of activation for all isotopes. Yet, initial velocity measurements over the same temperature range indicate cofactor inhibition and result in significant activation energy on k(cat) (4.0 +/- 0.1 kcal/mol). Taken together, the temperature-independent KIEs, the large isotope effects on the preexponential Arrhenius factors, and a significant energy of activation all suggest vibrationally enhanced hydride tunneling in the TS-catalyzed reaction.  相似文献   

16.
Acetyl phosphate produced an increase in the maximum velocity (Vmax. for the carboxylation of phosphoenolpyruvate catalysed by phosphoenolpyruvate carboxylase. The limiting Vmax. was 22.2 mumol X min-1 X mg-1 (185% of the value without acetyl phosphate). This compound also decreased the Km for phosphoenolpyruvate to 0.18 mM. The apparent activation constants for acetyl phosphate were 1.6 mM and 0.62 mM in the presence of 0.5 and 4 mM-phosphoenolpyruvate respectively. Carbamyl phosphate produced an increase in Vmax. and Km for phosphoenolpyruvate. The variation of Vmax./Km with carbamyl phosphate concentration could be described by a model in which this compound interacts with the carboxylase at two different types of sites: an allosteric activator site(s) and the substrate-binding site(s). Carbamyl phosphate was hydrolysed by the action of phosphoenolpyruvate carboxylase. The hydrolysis produced Pi and NH4+ in a 1:1 relationship. Values of Vmax. and Km were 0.11 +/- 0.01 mumol of Pi X min-1 X mg-1 and 1.4 +/- 0.1 mM, respectively, in the presence of 10 mM-NaHCO3. If HCO3- was not added, these values were 0.075 +/- 0.014 mumol of Pi X min-1 X mg-1 and 0.76 +/- 0.06 mM. Vmax./Km showed no variation between pH 6.5 and 8.5. The reaction required Mg2+; the activation constants were 0.77 and 0.31 mM at pH 6.5 and 8.5 respectively. Presumably, carbamyl phosphate is hydrolysed by phosphoenolpyruvate carboxylase by a reaction the mechanism of which is related to that of the carboxylation of phosphoenolpyruvate.  相似文献   

17.
The hormone-stimulated 'dense-vesicle' cyclic AMP phosphodiesterase was solubilized as a proteolytically 'clipped' species, and purified to apparent homogeneity from rat liver with a 2000-3000-fold purification and a 13-18% yield. It appeared to be a dimer (Mr 112,000), of two Mr-57,000 subunits. Solubilization of either a liver or a hepatocyte membrane fraction, with sodium cholate in the presence of the protein inhibitor benzamidine, identified three protein bands which could be immunoprecipitated by a polyclonal antibody raised against the pure enzyme. The major band at Mr 62,000 is suggested to be the native 'dense-vesicle' enzyme, having a Mr-5000 extension which serves to anchor this enzyme to the membrane and which is cleaved off during proteolytic solubilization; the Mr-200,000 band is an aggregate of the Mr-62,000 species, and the Mr-63,000 species is possibly a precursor. The purified 'clipped' enzyme hydrolysed cyclic AMP with kinetics indicative of apparent negative co-operativity, with a Hill coefficient (h) of 0.43 and limiting kinetic constants of Km1 = 0.3 +/- 0.05 microM, Km2 = 29 +/- 6 microM, Vmax.1 = 0.114 +/- 0.015 unit/mg of protein and Vmax.2 = 0.633 +/- 0.054 unit/mg of protein. It hydrolysed cyclic GMP with Michaelis kinetics, Km = 10 +/- 1 microM and Vmax. = 4.1 +/- 0.2 units/mg of protein. Cyclic GMP was a potent inhibitor of cyclic AMP hydrolysis, with an IC50 (concn. giving 50% inhibition) of 0.20 +/- 0.01 microM-cyclic GMP when assayed at 0.1 microM-cyclic AMP. This enzyme was inhibited potently by several drugs known to exert positive inotropic effects on the heart, was extremely thermolabile, with a half-life of 4.5 +/- 0.5 min at 40 degrees C, and was shown to be distinct from the rat liver insulin-stimulated peripheral-plasma-membrane cyclic AMP phosphodiesterase [Marchmont, Ayad & Houslay (1981) Biochem. J. 195, 645-652].  相似文献   

18.
The pH dependence of kcat/Km for the papain-catalyzed hydrolysis of ethyl hippurate, N-alpha-benzoyl-L-citrulline methyl ester, and the p-nitroanilide, amide, and ethyl ester derivatives of N-alpha-benzoyl-L-arginine was determined below pH 6.4. The value of kcat/Km was observed to be modulated by two acid ionizations rather than a single ionization as previously believed. For the five substrates studied, the average pK values for the two ionizations are 3.78 +/- 0.2 and 3.95 +/- 0.1 at T/2 0.3, 25 degrees C. The observation that similar pK values were obtained with different substrates was taken as evidence that the kinetically determined pK values are close in value to true macroscopic ionization constants for ionization of groups on the free enzyme.  相似文献   

19.
Soybean nodule xanthine dehydrogenase: a kinetic study   总被引:1,自引:0,他引:1  
Xanthine dehydrogenase was purified from soybean nodules and the kinetic properties were studied at pH 7.5. Km values of 5.0 +/- 0.6 and 12.5 +/- 2.5 microM were obtained for xanthine and NAD+, respectively. The pattern of substrate dependence suggested a Ping-Pong mechanism. Reaction with hypoxanthine gave Km's of 52 +/- 3 and 20 +/- 2.5 microM for hypoxanthine and NAD+, respectively. The Vmax for this reaction was twice that for the xanthine-dependent reaction. The pH dependence of Vmax gave a pKa of 7.6 +/- 0.1 for either xanthine or hypoxanthine oxidation. In addition the Km for xanthine had a pKa of 7.5 consistent with the protonated form of xanthine being the true substrate. Km for hypoxanthine varied only 2.5-fold between pH 6 and 10.7. Product inhibition studies were carried out with urate and NADH. Both products gave mixed inhibition with respect to both substrates. Xanthine dehydrogenase was able to use APAD+ as an electron acceptor for xanthine oxidation, with a Km at pH 7.5 of 21.2 +/- 2.5 microM and Vmax the same as that obtained with NAD+. Reduction of APAD+ by NADH was also catalyzed by xanthine dehydrogenase with a Km of 102 +/- 15 microM; Vmax was approximately 2.5 times that for the xanthine-dependent reaction, and was independent of pH between 6 and 9. Reaction with group-specific reagents indicated the possibility of an essential histidyl group. A thiol-modifying reagent did not cause inactivation of the enzyme. A role for the histidyl side chain in catalysis is proposed.  相似文献   

20.
Purified plasma membrane vesicles from the optic nerve of the squid Sepiotheutis sepioidea accumulate calcium in the presence of Mg2+ and ATP. Addition of the Ca2+ ionophore A23187 to vesicles which have reached a steady state of calcium-active uptake induces complete discharge of the accumulated cation. Kinetic analysis of the data indicates that the apparent Km for free Ca2+ and ATP are 0.2 muM and 21 muM, respectively. The average Vmax is 1 nmol Ca2+/min per mg protein at 25 degrees C. This active transport is inhibited by orthovanadate in the micromolar range. An Na+-Ca2+ exchange mechanism is also present in the squid optic nerve membrane. When an outwardly directed Na+ gradient is imposed on the vesicles, they accumulate calcium in the absence of Mg2+ and/or ATP. This ability to accumulate Ca2+ is absolutely dependent on the Na+ gradient: replacement of Na+ by K+, or passive dissipation of the Na+ gradient, abolishes transport activity. The apparent Km for Ca2+ of the Na+-Ca2+ exchange is more than 10-fold higher than that of the ATP-driven pump (app. Km=7.5 muM). While the apparent Km for Na+ is 74 mM, the Vmax of the exchanger is 27 nmol Ca2+/min per mg protein at 25 degrees C. These characteristics are comparable to those displayed by the uncoupled Ca pump and Na+-Ca2+ exchange previously described in dialyzed squid axons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号