首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Concerted evolution describes the unusual evolutionary pattern exhibited by certain repetitive sequences, whereby all the repeats are maintained in the genome with very similar sequences but differ between related species. The pattern of concerted evolution is thought to result from continual turnover of repeats by recombination, a process known as homogenization. Approaches to studying concerted evolution have largely been observational because of difficulties investigating repeat evolution in an experimental setting with large arrays of identical repeats. Here, we establish an experimental evolution approach to look at the rate and dynamics of concerted evolution in the ribosomal DNA (rDNA) repeats. A small targeted mutation was made in the spacer of a single rDNA unit in Saccharomyces cerevisiae so we could monitor the fate of this unit without the need for a selectable marker. The rate of loss of this single unit was determined, and the frequency of duplication was also estimated. The results show that duplication and deletion events occur at similar rates and are very common: An rDNA unit may be gained or lost as frequently as once every cell division. Investigation of the spatial dynamics of rDNA turnover showed that when the tagged repeat unit was duplicated, the copy predominantly, but not exclusively, ended up near to the tagged repeat. This suggests that variants in the rDNA spread in a semiclustered fashion. Surprisingly, large deletions that remove a significant fraction of total rDNA repeats were frequently found. We propose these large deletions are a driving force of concerted evolution, acting to increase homogenization efficiency over-and-above that afforded by turnover of individual rDNA units. Thus, the results presented here enhance our understanding of concerted evolution by offering insights into both the spatial and temporal dynamics of the homogenization process and suggest an important new aspect in our understanding of concerted evolution.  相似文献   

2.
Wide arrays of repetitive DNA sequences form an important part of eukaryotic genomes. These repeats appear to evolve as coherent families, where repeats within a family are more similar to each other than to other orthologous representatives in related species. The continuous homogenization of repeats, through selective and non-selective processes, is termed concerted evolution. Ascertaining the level of variation between repeats is crucial to determining which evolutionary model best explains the homogenization observed for these sequences. Here, for the grasshopper Eyprepocnemis plorans, we present the analysis of intragenomic diversity for two repetitive DNA sequences (a satellite DNA (satDNA) and the 45S rDNA) resulting from the independent microdissection of several chromosomes. Our results show different homogenization patterns for these two kinds of paralogous DNA sequences, with a high between-chromosome structure for rDNA but no structure at all for the satDNA. This difference is puzzling, considering the adjacent localization of the two repetitive DNAs on paracentromeric regions in most chromosomes. The disparate homogenization patterns detected for these two repetitive DNA sequences suggest that several processes participate in the concerted evolution in E. plorans, and that these mechanisms might not work as genome-wide processes but rather as sequence-specific ones.  相似文献   

3.
The long interspersed repetitive family L1 was analysed in different species belonging to the genus Mus. It is shown to be highly conserved even in M.n. setulosus, which diverged from the other species around ten million years ago. The study of the linkage between diagnostic restriction sites in the various species and the sequence variations of different regions of the L1Md repeat shows that the L1 family undergoes concerted changes involving subsets of repeats. The rate at which this homogenization process occurs does not appear to be the same for all the subfamilies detected. The L1Md repeat in the twelfth intron of the serum albumin gene of Balb/c mice is shown to be a recent insertion. The role retroposon- and gene conversion-like events may play in the concerted evolution of the L1 family is discussed.  相似文献   

4.
5.
We examined ribosomal RNA concerted evolution in an Epichlo? endophyte interspecific hybrid (Lp1) and its progenitors (Lp5 and E8). We show that the 5S rrn genes are organized as dispersed copies. Cloned 5S gene sequences revealed two subfamilies exhibiting 12% sequence divergence, with substitutions forming coevolving pairs that maintain secondary structure and presumably function. Observed sequence patterns are not fully consistent with either concerted or classical evolution. The 5S rrn genes are syntenic with the tandemly arranged rDNA genes, despite residing outside the rDNA arrays. We also examined rDNA concerted evolution. Lp1 has rDNA sequence from only one progenitor and contains multiple rDNA arrays. Using 5S rrn genes as chromosomal markers, we propose that interlocus homogenization has replaced all Lp5 rDNA sequence with E8 sequence in the hybrid. This interlocus homogenization appears to have been rapid and efficient and is the first demonstration of hybrid interlocus homogenization in the Fungi.  相似文献   

6.
Multiple copies of a given ribosomal RNA gene family undergo concerted evolution such that sequences of all gene copies are virtually identical within a species although they diverge normally between species. In eukaryotes, gene conversion and unequal crossing over are the proposed mechanisms for concerted evolution of tandemly repeated sequences, whereas dispersed genes are homogenized by gene conversion. However, the homogenization mechanisms for multiple-copy, normally dispersed, prokaryotic rRNA genes are not well understood. Here we compared the sequences of multiple paralogous rRNA genes within a genome in 12 prokaryotic organisms that have multiple copies of the rRNA genes. Within a genome, putative sequence conversion tracts were found throughout the entire length of each individual rRNA genes and their immediate flanks. Individual conversion events convert only a short sequence tract, and the conversion partners can be any paralogous genes within the genome. Interestingly, the genic sequences undergo much slower divergence than their flanking sequences. Moreover, genomic context and operon organization do not affect rRNA gene homogenization. Thus, gene conversion underlies concerted evolution of bacterial rRNA genes, which normally occurs within genic sequences, and homogenization of flanking regions may result from co-conversion with the genic sequence. Received: 31 March 2000 / Accepted: 15 June 2000  相似文献   

7.
Clara Frontali 《Genetica》1994,94(2-3):91-100
Extensive genome plasticity inPlasmodium involves frequent loss of dispensable functions under non-selective conditions, polymorphisms in subtelomeric repetitive regions, as well as rapid and apparently concerted variation in the intra-genic repetitive arrays that are typical of plasmodial antigen genes. As an example of the latter type of variation, the region of the merozoite surface antigen gene MSA-1 ofPlasmodium falciparum, which encodes a tri-peptide repeat, is analysed in detail. The example illustrates how evasion of the immune defenses of the vertebrate host can be achieved through repeat homogenization mechanisms, acting at the DNA level, and leading to rapid fixation of variant epitopes. The remarkable ability of Plasmodia to utilize mechanisms which operate on its own nuclear DNA in the course of mitotic multiplication is discussed against the need of life cycle closure as a haploid unicellular. The possibility is suggested that active genomic diversification in a (clonal) multicellular population evolved as an adaptive tool.  相似文献   

8.
Diversity in host resistance often associates with reduced pathogen spread. This may result from ecological and evolutionary processes, likely with feedback between them. Theory and experiments on bacteria–phage interactions have shown that genetic diversity of the bacterial adaptive immune system can limit phage evolution to overcome resistance. Using the CRISPR–Cas bacterial immune system and lytic phage, we engineered a host–pathogen system where each bacterial host genotype could be infected by only one phage genotype. With this model system, we explored how CRISPR diversity impacts the spread of phage when they can overcome a resistance allele, how immune diversity affects the evolution of the phage to increase its host range and if there was feedback between these processes. We show that increasing CRISPR diversity benefits susceptible bacteria via a dilution effect, which limits the spread of the phage. We suggest that this ecological effect impacts the evolution of novel phage genotypes, which then feeds back into phage population dynamics.  相似文献   

9.
The polyubiquitin gene, encoding tandemly repeated multiple ubiquitins, constitutes a uniquitin gene subfamily. It has been demonstrated that polyubiquitin genes are subject to concerted evolution; namely, the individual ubiquitin coding units contained within a polyubiquitin gene are more similar to one another than they are to the ubiquitin coding units in the orthologous gene from other species. However there has been no comprehensive study on the concerted evolution of polyubiquitin genes in a wide range of species, because the relationships (orthologous or paralogous) among multiple polyubiquitin genes from different species have not been extensively analyzed yet. In this report, we present the results of analyzing the nucleotide sequence of polyubiquitin genes of mammals, available in the DDBJ/EMBL/GenBank nucleotide sequence databases, in which we found that there are two groups of polyubiquitin genes in an orthologous relationship. Based on this result, we analyzed the concerted evolution of the polyubiquitin gene in various species and compared the frequency of concerted evolutionary events interspecifically by taking into consideration that the rate of synonymous substitution at the polyubiquitin gene locus may vary depending on species. We found that the concerted evolutionary events in polyubiquitin genes have been more frequent in rats and Chinese hamsters than those in humans, cows, and sheep. The guinea pig polyubiquitin gene was an intermediate example. The frequency of concerted evolution in the mouse gene was unexpectedly low compared to that of other rodent genes. Received: 18 January 2000 / Accepted: 26 April 2000  相似文献   

10.
A major challenge in evolutionary ecology is to explain extensive natural variation in transmission rates and virulence across pathogens. Host and pathogen ecology is a potentially important source of that variation. Theory of its effects has been developed through the study of non-spatial models, but host population spatial structure has been shown to influence evolutionary outcomes. To date, the effects of basic host and pathogen demography on pathogen evolution have not been thoroughly explored in a spatial context. Here we use simulations to show that space produces novel predictions of the influence of the shape of the pathogen’s transmission–virulence tradeoff, as well as host reproduction and mortality, on the pathogen’s evolutionary stable transmission rate. Importantly, non-spatial models predict that neither the slope of linear transmission–virulence relationships, nor the host reproduction rate will influence pathogen evolution, and that host mortality will only influence it when there is a transmission–virulence tradeoff. We show that this is not the case in a spatial context, and identify the ecological conditions under which spatial effects are most influential. Thus, these results may help explain observed natural variation among pathogens unexplainable by non-spatial models, and provide guidance about when space should be considered. We additionally evaluate the ability of existing analytical approaches to predict the influence of ecology, namely spatial moment equations closed with an improved pair approximation (IPA). The IPA is known to have limited accuracy, but here we show that in the context of pathogens the limitations are substantial: in many cases, IPA incorrectly predicts evolution to pathogen-driven extinction. Despite these limitations, we suggest that the impact of ecology can still be understood within the conceptual framework arising from spatial moment equations, that of “self-shading’’, whereby the spread of highly transmissible pathogens is impeded by local depletion of susceptible hosts.  相似文献   

11.
Cow stomach lysozyme genes have evolved in a mosaic pattern. The majority of the intronic and flanking sequences show an amount of sequence difference consistent with divergent evolution since duplication of the genes 40–50 million years ago. In contrast, exons 1, 2, and 4 and immediately adjacent intronic sequences differ little between genes and show evidence of recent concerted evolution. Exon 3 appears to be evolving divergently. The three characterized genes vary from 5.6 to 7.9 kilobases in length. Different distributions of repetitive DNA are found in each gene, which accounts for the majority of length differences between genes. The different distributions of repetitive DNA in each gene suggest the repetitive elements were inserted into each gene after the duplications that give rise to these three genes and provide additional support for divergent evolution for the majority of each gene. The observation that intronic and flanking sequences are evolving divergently suggests that the concerted evolution events involved in homogenizing the coding regions of lysozyme genes involve only one exon at a time. This model of concerted evolution would allow the shuffling of exon-sized pieces of information between genes, a phenomenon that may have aided in the early adaptive evolution of stomach lysozyme.Deceased July 21, 1991 Correspondence to: D.M. Irwin  相似文献   

12.
Concerted evolution is a consequence of processes that convert copies of a gene in a multigene family into the same copy. Here we ask whether this homogenization may be adaptive. Analysis of a modifier of homogenization reveals (1) that the trait is most likely to spread if interactions between deleterious mutations are not strongly synergistic; (2) that selection on the modifier is of the order of the mutation rate, hence the modifier is most likely to be favoured by selection when the species has a large effective population size and/or if the modifier affects many genes simultaneously; and (3) that linkage between the genes in the family, and between these genes and the modifier, makes invasion of the modifier easier, suggesting that selection may favour multigene families being in clustered arrays. It follows from the first conclusion that genes for which mutations may often be dominant or semi-dominant should undergo concerted evolution more commonly than others. By analysis of the mouse knockout database, we show that mutations affecting growth-related genes are more commonly associated with dominant lethality than expected by chance. We predict then that selection will favour homogenization of such genes, and possibly others that are significantly dosage dependent, more often than it favours homogenization in other genes. The first condition is almost the opposite of that required for the maintenance of sexual reproduction according to the mutation-deterministic theory. The analysis here therefore suggests that sexual organisms can simultaneously minimize both the effects of deleterious, strongly synergistically, interacting mutations and those that interact either weakly synergistically, multiplicatively, or antagonistically, assuming the latter class belong to a multicopy gene family. Recombination and an absence of homogenization are efficient in purging deleterious mutations in the former class, homogenization and an absence of recombination are efficient at minimizing the costs imposed by the latter classes.  相似文献   

13.
Vector-borne disease transmission is a common dissemination mode used by many pathogens to spread in a host population. Similar to directly transmitted diseases, the within-host interaction of a vector-borne pathogen and a host’s immune system influences the pathogen’s transmission potential between hosts via vectors. Yet there are few theoretical studies on virulence–transmission trade-offs and evolution in vector-borne pathogen–host systems. Here, we consider an immuno-epidemiological model that links the within-host dynamics to between-host circulation of a vector-borne disease. On the immunological scale, the model mimics antibody-pathogen dynamics for arbovirus diseases, such as Rift Valley fever and West Nile virus. The within-host dynamics govern transmission and host mortality and recovery in an age-since-infection structured host-vector-borne pathogen epidemic model. By considering multiple pathogen strains and multiple competing host populations differing in their within-host replication rate and immune response parameters, respectively, we derive evolutionary optimization principles for both pathogen and host. Invasion analysis shows that the \({\mathcal {R}}_0\) maximization principle holds for the vector-borne pathogen. For the host, we prove that evolution favors minimizing case fatality ratio (CFR). These results are utilized to compute host and pathogen evolutionary trajectories and to determine how model parameters affect evolution outcomes. We find that increasing the vector inoculum size increases the pathogen \({\mathcal {R}}_0\), but can either increase or decrease the pathogen virulence (the host CFR), suggesting that vector inoculum size can contribute to virulence of vector-borne diseases in distinct ways.  相似文献   

14.
How gene families evolve   总被引:8,自引:0,他引:8  
Theories and facts of gene family evolution are reviewed. Concerted evolution is commonly observed for gene families which originated a long time ago, however there are many different types of multigene families, from uniform to diverse. The rate of homogenization by unequal crossing-over, gene conversion, etc. has been evolutionarily adjusted for each gene family. When new functions are needed by organisms, gene families may evolve into superfamilies, in which no further concerted evolution takes place, and each member of the family may acquire an indispensable function. The homeobox-containing gene family is a most exciting example of such superfamily.  相似文献   

15.

Background

Gene conversion is the mechanism proposed to be responsible for the homogenization of multigene families such as the nuclear ribosomal gene clusters. This concerted evolutionary process prevents individual genes in gene clusters from accumulating mutations. The mechanism responsible for concerted evolution is not well understood but recombination during meiosis has been hypothesized to play a significant role in this homogenization. In this study we tested the hypothesis of unequal crossing over playing a significant role in gene conversion events within the ribosomal RNA cistron during meiosis, mitosis or both life stages in the fungal tree pathogen Ceratocystis manginecans.

Methods

Ceratocystis manginecans, a haploid ascomycete, reproduces homothallically and was found to have two distinct sequences within the internally transcribed spacer (ITS) region of the ribosomal RNA cistron. The different ITS types were scored using PCR-RFLP assays and chi-square analyses to determine the level of significance of the changes in the ratios of the ITS types.

Results

The relative ratios of the two ITS sequence types changed when the fungal isolates were cultured vegetatively or allowed to produced sexual structures and spores. These active changes were shown to occur more frequently during meiosis than mitosis.

Conclusion

The evidence presented provides concrete support for homogenization in the rRNA gene clusters found in this fungus and that the most reasonable explanation for this process is unequal crossing over.  相似文献   

16.
Dispersal is a key life‐history trait governing the response of individuals, populations and species to changing environmental conditions. In the context of global change, it is therefore essential to better understand the respective role of condition‐, phenotype‐ and genetic‐dependent drivers of dispersal behaviour. Although the importance of immune function and pathogen infestation in determining patterns of dispersal is increasingly recognised, no study to our knowledge has yet investigated the influence of immune gene variability on dispersal behaviour. Here, we filled this knowledge gap by assessing whether individual heterozygosity at five immune gene loci (one from the Major histocompatibility complex and four from encoding Toll‐like receptors) influences roe deer natal dispersal. We found that dispersal propensity was affected by immune gene diversity, suggesting potential pathogen‐mediated selection through over‐dominance. However, the direction of this effect differed between high and low quality individuals, suggesting that dispersal propensity is driven by two different mechanisms. In support of the condition‐dependent dispersal hypothesis, dispersal propensity increased with increasing body mass and, among high quality individuals only (standardized body mass > 18 kg), with increasing immune gene diversity. However, among poor quality individuals, we observed the opposite pattern such that dispersal propensity was higher for individuals with lower immune gene diversity. We suggest that these poor quality individuals expressed an emergency dispersal tactic in an attempt to escape a heavily infested environment associated with poor fitness prospects. Our results have potentially important consequences in terms of population genetics and demography, as well as host–pathogen evolution.  相似文献   

17.
Interactions between individuals such as hosts and pathogens are often characterized by substantial phenotypic plasticity. Pathogens sometimes alter their exploitation strategies in response to defensive strategies adopted by their host and vice versa. Nevertheless, most game-theoretic models developed to explain the evolution of pathogen and host characteristics assume that no such plasticity occurs. Allowing for phenotypic plasticity in these models is difficult because one must focus on the evolution of pathogen and host reaction norms, and then allow for the potentially indefinite reciprocal changes in pathogen and host behaviour that occur during an infection as a result of their interacting reaction norms. Here, we begin to address these issues for a simple host-pathogen system in which the pathogen exhibits a level of virulence and the host exhibits a level of immune clearance. We find, quite generally, that plasticity promotes the evolution of higher levels of cooperation, in this case leading to reduced levels of both virulence and clearance.  相似文献   

18.
Multiple laboratory studies have evolved hosts against a nonevolving pathogen to address questions about evolution of immune responses. However, an ecologically more relevant scenario is one where hosts and pathogens can coevolve. Such coevolution between the antagonists, depending on the mutual selection pressure and additive variance in the respective populations, can potentially lead to a different pattern of evolution in the hosts compared to a situation where the host evolves against a nonevolving pathogen. In the present study, we used Drosophila melanogaster as the host and Pseudomonas entomophila as the pathogen. We let the host populations either evolve against a nonevolving pathogen or coevolve with the same pathogen. We found that the coevolving hosts on average evolved higher survivorship against the coevolving pathogen and ancestral (nonevolving) pathogen relative to the hosts evolving against a nonevolving pathogen. The coevolving pathogens evolved greater ability to induce host mortality even in nonlocal (novel) hosts compared to infection by an ancestral (nonevolving) pathogen. Thus, our results clearly show that the evolved traits in the host and the pathogen under coevolution can be different from one‐sided adaptation. In addition, our results also show that the coevolving host–pathogen interactions can involve certain general mechanisms in the pathogen, leading to increased mortality induction in nonlocal or novel hosts.  相似文献   

19.
Gene families, which encode toxins, are found in many poisonous animals, yet there is limited understanding of their evolution at the nucleotide level. The release of the genome draft sequence for the sea anemone Nematostella vectensis enabled a comprehensive study of a gene family whose neurotoxin products affect voltage-gated sodium channels. All gene family members are clustered in a highly repetitive approximately 30-kb genomic region and encode a single toxin, Nv1. These genes exhibit extreme conservation at the nucleotide level which cannot be explained by purifying selection. This conservation greatly differs from the toxin gene families of other animals (e.g., snakes, scorpions, and cone snails), whose evolution was driven by diversifying selection, thereby generating a high degree of genetic diversity. The low nucleotide diversity at the Nv1 genes is reminiscent of that reported for DNA encoding ribosomal RNA (rDNA) and 2 hsp70 genes from Drosophila, which have evolved via concerted evolution. This evolutionary pattern was experimentally demonstrated in yeast rDNA and was shown to involve unequal crossing-over. Through sequence analysis of toxin genes from multiple N. vectensis populations and 2 other anemone species, Anemonia viridis and Actinia equina, we observed that the toxin genes for each sea anemone species are more similar to one another than to those of other species, suggesting they evolved by manner of concerted evolution. Furthermore, in 2 of the species (A. viridis and A. equina) we found genes that evolved under diversifying selection, suggesting that concerted evolution and accelerated evolution may occur simultaneously.  相似文献   

20.
Ticks are obligate blood-feeding parasites that secrete anti-hemostatic components during feeding to enable control of the hemostatic system of the host. Complex interactions at the tick-host interface are an indication of the important role that the host played during tick evolution. The question is to what extent interaction with the host and the environment influences tick evolution. Previously, two isoforms (97% sequence identity) of savignygrin, an alphaIIbbeta3 antagonist, have been described. The presence of both isoforms within 20 random individuals confirmed that these isoforms must be recent gene duplicates. Analysis of the sequence differences between the isoforms shows a Kn/Ks ratio of 1, which indicates neutral selection for the isoforms. However, the biased localization of differences within the 3' end of the genes suggests that concerted evolution acts on the isoforms. Calculation of the divergence date between the isoforms (1.6-5.2 MYA) also indicates purifying selection, as ample time had passed after duplication, for inactivation of one gene copy. We conclude that concerted evolution has functioned to maintain a high copy number of the savignygrins in order for Ornithodoros savignyi to parasitize a wide host range. This contrasts with O. moubata that expresses the savignygrin homolog, disagregin, as a single copy at lower concentration levels and correlates with the confined habitat and consequently narrow host range of O. moubata. Recent "domestication" of O. savignyi due to animal husbandry practices could however, have reduced the selection constraints acting to maintain the gene copies as evidenced by the structural instability of one of the isoforms. Our results suggest that environmental factors and host associations do play an important role in the evolution of anti-hemostatic components in ticks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号