首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Expression of urea transporter UT-B confers high urea permeability to mammalian erythrocytes. Erythrocyte membranes also permeate various urea analogues, suggesting common transport pathways for urea and structurally similar solutes. In this study, we examined UT-B-facilitated passage of urea analogues and other neutral small solutes by comparing transport properties of wildtype to UT-B-deficient mouse erythrocytes. Stopped-flow light-scattering measurements indicated high UT-B permeability to urea and chemical analogues formamide, acetamide, methylurea, methylformamide, ammonium carbamate, and acrylamide, each with Ps > 5.0 × 10− 6 cm/s at 10 °C. UT-B genetic knockout and phloretin treatment of wildtype erythrocytes similarly reduced urea analogue permeabilities. Strong temperature dependencies of formamide, acetamide, acrylamide and butyramide transport across UT-B-null membranes (Ea > 10 kcal/mol) suggested efficient diffusion of these amides across lipid bilayers. Urea analogues dimethylurea, acryalmide, methylurea, thiourea and methylformamide inhibited UT-B-mediated urea transport by > 60% in the absence of transmembrane analogue gradients, supporting a pore-blocking mechanism of UT-B inhibition. Differential transport efficiencies of urea and its analogues through UT-B provide insight into chemical interactions between neutral solutes and the UT-B pore.  相似文献   

2.
A new polyclonal antibody to the humanerythrocyte urea transporter UT-B detects a broad band between 45 and65 kDa in human erythrocytes and between 37 and 51 kDa in raterythrocytes. In human erythrocytes, the UT-B protein is the Kidd (Jk)antigen, and Jk(a+b+) erythrocytes express the 45- to 65-kDa band.However, in Jk null erythrocytes [Jk(ab)], only a faint band at55 kDa is detected. In kidney medulla, a broad band between 41 and 54 kDa, as well as a larger band at 98 kDa, is detected. Human and ratkidney show UT-B staining in nonfenestrated endothelial cells indescending vasa recta. UT-B protein and mRNA are detected in rat brain,colon, heart, liver, lung, and testis. When kidney medulla or liverproteins are analyzed with the use of a native gel, only a singleprotein band is detected. UT-B protein is detected in cultured bovineendothelial cells. We conclude that UT-B protein is expressed in morerat tissues than previously reported, as well as in erythrocytes.

  相似文献   

3.
Summary Regulation of urea transport by vasopressin in inner medullary collecting duct (IMCD) cells is thought to be important for the urinary concentrating mechanism. Isolated tubule perfusion studies suggest the existence of a saturable urea carrier. We have measured14C-urea efflux in IMCD cells which were freshly isolated and grown in primary culture. Cells were isolated from rat papilla by collagenase digestion and hypotonic shock. In suspended cells,14C-urea efflux (J urea from loaded cells was exponential with time constant 59±3 sec (sem,n=6, 23°C).J urea had an activation energy of 4.1 kcal/mole and was inhibited 42±7% by 0.25mm phloretin and 30–40% by the high affinity urea analogues dimethylurea and phenylurea.J urea was increased 40–60% by addition of vasopressin (10–8 m) or 8-bromo-cAMP (1mm); stimulatedJ urea was inhibited 55±8% by the kinase A inhibitor H-8. Phorbol esters and epidermal growth factor did not alterJ urea. IMCD cells grown in primary culture were homogeneous in appearance with>fivefold stimulation of cAMP by vasopressin. The exponential time constant for urea efflux was 610±20 sec (n=3).J urea was not altered by vasopressin, cAMP or phloretin. Another function of in vivo IMCD cells, vasopressin-dependent formation of endosomes containing water channels, was absent in the cultured cells. These results demonstrate presence of a urea transporter on suspended IMCD cells which is activated by cAMP and inhibited by phloretin and urea analogues. The urea transporter and its regulation by cAMP, and cAMP-dependent apical membrane endocytosis, are lost after growth in primary culture.  相似文献   

4.
Tritium-labeled dipeptide bestim (γ-D-Glu-L-Trp) with a specific activity of 45 Ci/mmol was obtained by the high-temperature solid-state catalytic isotope exchange (HSCIE) reaction. [3H]bestim was found to bind with high affinity to mouse peritoneal macrophages (K d 2.1 ± 0.1 nM) and thymocytes (K d 3.1 ± 0.2 nM) and also plasma membranes isolated from these cells (K d 18.6 ± 0.2 and 16.7 ± 0.3 nM respectively). The specific bonding of [3H]bestim with macrophages and thymocytes was inhibited by unlabeled dipeptide thymogen (L-Glu-L-Trp) (K i 0.9 ± 0.1 and 1.1 ± 0.1 nM respectively). Treatment of the macrophages and thymocytes with trypsin led to their loss of capacity to bind [3H]bestim. Bestim at concentrations range of 0.1–1000 nМ reduced the adenylate cyclase activity in macrophage and thymocyte membranes.  相似文献   

5.
Xylanase II, a key enzyme in the hydrolysis of xylan, was purified from cultures of Trichoderma reesei QM 9414 (anamorph of Hypocrea jecorina) grown on wheat straw as a carbon source. Xylanase treated with increasing guanidinium hydrochloride concentrations was denatured in a cooperative way regarding secondary and tertiary structures with midpoint transitions 5.6 ± 0.1 and 3.7 ± 0.1 M, respectively, whereas the enzymatic activity showed an intermediate state at 2–4 M denaturant. Treatment with urea showed that xylanase secondary structure was stabilized up to 4 M urea to be destabilized thereafter in a cooperative way with a transition midpoint Dm = 5.7 ± 0.2 M, but the ellipticity at 220 nm was greater than control in the presence of urea up to 6 M. Tertiary structure in the presence of urea showed also intermediate states with partial cooperative transitions with a midpoint: Dm = 2.7 ± 0.04 and 6.7 ± 0.3 M, respectively, whereas the enzymatic activity was enhanced about 40% at 2 M and inhibited above 4 M urea. Assays with the fluorescent probe 4,4′-bis-1-phenylamine-8-naphftalene sulfonate (bis-ANS) proved that the intermediate states had the characteristics of molten globule structures. The change of free energy for xylanase in absence of denaturants obtained from the spectral centre of mass (SCM) data at 298 K is \Updelta GH2 O0 \Updelta G_{{{\rm H}_{2} {\rm O}}}^{0}  = ~17 kJ mol−1. In the presence of increasing trifluoroethanol (TFE), the enzyme gained α-helix content and lose tertiary structure and catalytic activity. Changes in pH (2–9) had practically no effect on the secondary structure of the enzyme, whereas the SCM values indicated that tertiary structure is maintained above pH 4. Bis-ANS binds to xylanase at pH 2 and 2.5 and in the presence of 30–40% TFE (v/v) characterizing molten globule states in those environmental conditions.  相似文献   

6.
7.
Urea transporter UT-B has been proposed to be the major urea transporter in erythrocytes and kidney-descending vasa recta. The mouse UT-B cDNA was isolated and encodes a 384-amino acid urea-transporting glycoprotein expressed in kidney, spleen, brain, ureter, and urinary bladder. The mouse UT-B gene was analyzed, and UT-B knockout mice were generated by targeted gene deletion of exons 3-6. The survival and growth of UT-B knockout mice were not different from wild-type littermates. Urea permeability was 45-fold lower in erythrocytes from knockout mice than from those in wild-type mice. Daily urine output was 1.5-fold greater in UT-B- deficient mice (p < 0.01), and urine osmolality (U(osm)) was lower (1532 +/- 71 versus 2056 +/- 83 mosM/kg H(2)O, mean +/- S.E., p < 0.001). After 24 h of water deprivation, U(osm) (in mosM/kg H(2)O) was 2403 +/- 38 in UT-B null mice and 3438 +/- 98 in wild-type mice (p < 0.001). Plasma urea concentration (P(urea)) was 30% higher, and urine urea concentration (U(urea)) was 35% lower in knockout mice than in wild-type mice, resulting in a much lower U(urea)/P(urea) ratio (61 +/- 5 versus 124 +/- 9, p < 0.001). Thus, the capacity to concentrate urea in the urine is more severely impaired than the capacity to concentrate other solutes. Together with data showing a disproportionate reduction in the concentration of urea compared with salt in homogenized renal inner medullas of UT-B null mice, these data define a novel "urea-selective" urinary concentrating defect in UT-B null mice. The UT-B null mice generated for these studies should also be useful in establishing the role of facilitated urea transport in extrarenal organs expressing UT-B.  相似文献   

8.
9.

To the best of our knowledge, this study is the first evaluating the effects of probiotic honey intake on glycemic control, lipid profiles, biomarkers of inflammation, and oxidative stress in patients with diabetic nephropathy (DN). This investigation was conducted to evaluate the effects of probiotic honey intake on metabolic status in patients with DN. This randomized, double-blind, controlled clinical trial was performed among 60 patients with DN. Patients were randomly allocated into two groups to receive either 25 g/day probiotic honey containing a viable and heat-resistant probiotic Bacillus coagulans T11 (IBRC-M10791) (108 CFU/g) or 25 g/day control honey (n = 30 each group) for 12 weeks. Fasting blood samples were taken at baseline and 12 weeks after supplementation to quantify glycemic status, lipid concentrations, biomarkers of inflammation, and oxidative stress. After 12 weeks of intervention, patients who received probiotic honey compared with the control honey had significantly decreased serum insulin levels (− 1.2 ± 1.8 vs. − 0.1 ± 1.3 μIU/mL, P = 0.004) and homeostasis model of assessment-estimated insulin resistance (− 0.5 ± 0.6 vs. 0.003 ± 0.4, P = 0.002) and significantly improved quantitative insulin sensitivity check index (+ 0.005 ± 0.009 vs. − 0.0007 ± 0.005, P = 0.004). Additionally, compared with the control honey, probiotic honey intake has resulted in a significant reduction in total-/HDL-cholesterol (− 0.2 ± 0.5 vs. + 0.1 ± 0.1, P = 0.04). Probiotic honey intake significantly reduced serum high-sensitivity C-reactive protein (hs-CRP) (− 1.9 ± 2.4 vs. − 0.2 ± 2.7 mg/L, P = 0.01) and plasma malondialdehyde (MDA) levels (− 0.1 ± 0.6 vs. + 0.6 ± 1.0 μmol/L, P = 0.002) compared with the control honey. Probiotic honey intake had no significant effects on other metabolic profiles compared with the control honey. Overall, findings from the current study demonstrated that probiotic honey consumption for 12 weeks among DN patients had beneficial effects on insulin metabolism, total-/HDL-cholesterol, serum hs-CRP, and plasma MDA levels, but did not affect other metabolic profiles. http://www.irct.ir: IRCT201705035623N115.

  相似文献   

10.
Sixty-three patients with endemic fluorosis (36 males/27 females; mean age 33.9 ± 8.6 years) and 45 age-, sex-, and body mass index-matched healthy controls (30 males/15 females; mean age 32.7 ± 8.8 years) were included in this study. Aortic stiffness indices, aortic strain (AS), aortic distensibility (AD), and aortic strain index (ASI) were calculated from the aortic diameters measured by echocardiography and blood pressure obtained by sphygmomanometry. The urine fluoride levels of fluorosis patients were significantly higher than control subjects as expected (1.9 ± 0.1 mg/l vs. 0.4 ± 0.1 mg/l, respectively; P < 0.001). AS and AD were significantly lower in fluorosis patients than in the controls (for AS 5.3 ± 3.6 vs. 8.0 ± 3.4%; P < 0.001 and for AD 0.2 ± 0.1 vs. 0.3 ± 0.1 cm2 dyn−1 10−3; P < 0.001, respectively). In contrast, signicantly higher ASI was observed in fluorosis patients than in the controls (3.4 ± 0.6 vs. 3.0 ± 0.4; P < 0.001, respectively). The results of our study demonstrate that elastic properties of ascending aorta are impaired in patients with endemic fluorosis.  相似文献   

11.
Molecular Mechanisms of Urea Transport   总被引:6,自引:0,他引:6  
Physiologic data provided evidence for specific urea transporter proteins in red blood cells and kidney inner medulla. During the past decade, molecular approaches resulted in the cloning of several urea transporter cDNA isoforms derived from two gene families: UT-A and UT-B. Polyclonal antibodies were generated to the cloned urea transporter proteins, and their use in integrative animal studies resulted in several novel findings, including: (1) UT-B is the Kidd blood group antigen; (2) UT-B is also expressed in many non-renal tissues and endothelial cells; (3) vasopressin increases UT-A1 phosphorylation in rat inner medullary collecting duct; (4) the surprising finding that UT-A1 protein abundance and urea transport are increased in the inner medulla during conditions in which urine concentrating ability is reduced; and (5) UT-A protein abundance is increased in uremia in both liver and heart. This review will summarize the knowledge gained from studying molecular mechanisms of urea transport and from integrative studies into urea transporter protein regulation.  相似文献   

12.
The body temperature (T b) of Cape ground squirrels (Xerus inauris, Sciuridae) living in their natural environment during winter has not yet been investigated. In this study we measured abdominal T b of eight free-ranging Cape ground squirrels over 27 consecutive days during the austral winter. Mean daily T b was relatively stable at 37.0 ± 0.2°C (range 33.4 to 40.2°C) despite a marked variation in globe temperature (T g) (range −7 to 37°C). Lactating females (n = 2) consistently had a significantly higher mean T b (0.7°C) than non-lactating females (n = 3) and males. There was a pronounced nychthemeral rhythm with a mean active phase T b of 38.1 ± 0.1°C and a mean inactive phase T b of 36.3 ± 0.3°C for non-lactating individuals. Mean daily amplitude of T b rhythm was 3.8 ± 0.2°C. T b during the active phase closely followed T g and mean active phase T b was significantly correlated with mean active phase T g (r 2 = 0.3–0.9; P < 0.01). There was no evidence for daily torpor or pronounced hypothermia during the inactive phase, and mean minimum inactive phase T b was 35.7 ± 0.3°C for non-lactating individuals. Several alternatives (including nocturnal huddling, an aseasonal breeding pattern and abundant winter food resources) as to why Cape ground squirrels do not employ nocturnal hypothermia are discussed.  相似文献   

13.
The process of urea nitrogen salvaging plays a vital role in the symbiotic relationship between mammals and their intestinal bacteria. The first step in this process requires the movement of urea from the mammalian bloodstream into the gastrointestinal tract lumen via specialized proteins known as facilitative urea transporters. In this study, we examined both transepithelial urea fluxes and urea transporter protein abundance along the length of the rat gastrointestinal tract. Urea flux experiments that used rat gastrointestinal tissues showed significantly higher transepithelial urea transport was present in caecum and proximal colon (P < 0.01, n = 8, analysis of variance [ANOVA]). This large urea flux was significantly inhibited by 1,3,dimethylurea (P < 0.001, n = 8, ANOVA) and thiourea (P < 0.05, n = 6, unpaired t-test), both known blockers of facilitative urea transporters. Immunoblotting analysis failed to detect any UT-A protein within rat gastrointestinal tissue protein samples. In contrast, a 30-kDa UT-B1 protein was strongly detected in both caecum and proximal colon samples at significantly higher levels compared to the rest of the gastrointestinal tract (P < 0.01, n = 4, ANOVA). We therefore concluded that UT-B1 mediates the transepithelial movement of urea that occurs in specific distal regions of the rat gastrointestinal tract.  相似文献   

14.
Small-molecule inhibitors of urea transporter (UT) proteins in kidney have potential application as novel salt-sparing diuretics. The urea analog dimethylthiourea (DMTU) was recently found to inhibit the UT isoforms UT-A1 (expressed in kidney tubule epithelium) and UT-B (expressed in kidney vasa recta endothelium) with IC50 of 2-3 mM, and was shown to have diuretic action when administered to rats. Here, we measured UT-A1 and UT-B inhibition activity of 36 thiourea analogs, with the goal of identifying more potent and isoform-selective inhibitors, and establishing structure-activity relationships. The analog set systematically explored modifications of substituents on the thiourea including alkyl, heterocycles and phenyl rings, with different steric and electronic features. The analogs had a wide range of inhibition activities and selectivities. The most potent inhibitor, 3-nitrophenyl-thiourea, had an IC50 of ~ 0.2 mM for inhibition of both UT-A1 and UT-B. Some analogs such as 4-nitrophenyl-thiourea were relatively UT-A1 selective (IC50 1.3 vs. 10 mM), and others such as thioisonicotinamide were UT-B selective (IC50 > 15 vs. 2.8 mM).  相似文献   

15.
We reported increased water permeability and a low urea reflection coefficient in Xenopus oocytes expressing urea transporter UT-B (former name UT3), suggesting that water and urea share a common aqueous pathway (Yang, B., and Verkman, A. S. (1998) J. Biol. Chem. 273, 9369-9372). Although increased water permeability was confirmed in the Xenopus oocyte expression system, it has been argued (Sidoux-Walter, F., Lucien, N., Olives, B., Gobin, R., Rousselet, G., Kamsteeg, E. J., Ripoche, P., Deen, P. M., Cartron, J. P., and Bailly, P. (1999) J. Biol. Chem. 274, 30228-30235) that UT-B does not transport water when expressed at normal levels in mammalian cells such as erythrocytes. To quantify UT-B-mediated water transport, we generated double knockout mice lacking UT-B and the major erythrocyte water channel, aquaporin-1 (AQP1). The mice had reduced survival, retarded growth, and defective urinary concentrating ability. However, erythrocyte size and morphology were not affected. Stopped-flow light scattering measurements indicated erythrocyte osmotic water permeabilities (in cm/s x 0.01, 10 degrees C): 2.1 +/- 0.2 (wild-type mice), 2.1 +/- 0.05 (UT-B null), 0.19 +/- 0.02 (AQP1 null), and 0.045 +/- 0.009 (AQP1/UT-B null). The low water permeability found in AQP1/UT-B null erythrocytes was also seen after HgCl(2) treatment of UT-B null erythrocytes or phloretin treatment of AQP1 null erythrocytes. The apparent activation energy for UT-B-mediated water transport was low, <2 kcal/mol. Estimating 14,000 UT-B molecules per mouse erythrocyte, the UT-B-dependent P(f) of 0.15 x 10(-4) cm/s indicated a substantial single channel water permeability of UT-B of 7.5 x 10(-14) cm(3)/s, similar to that of AQP1. These results provide direct functional evidence for UT-B-facilitated water transport in erythrocytes and suggest that urea traverses an aqueous pore in the UT-B protein.  相似文献   

16.

The primary aim of our study was to determine the influence of taking chromium plus carnitine on insulin resistance, with a secondary objective of evaluating the influences on lipid profiles and weight loss in overweight subjects with polycystic ovary syndrome (PCOS). In a 12-week randomized, double-blind, placebo-controlled clinical trial, 54 overweight women were randomly assigned to receive either supplements (200 μg/day chromium picolinate plus 1000 mg/day carnitine) or placebo (27/each group). Chromium and carnitine co-supplementation decreased weight (− 3.6 ± 1.8 vs. − 1.0 ± 0.7 kg, P < 0.001), BMI (− 1.3 ± 0.7 vs. − 0.3 ± 0.3 kg/m2, P < 0.001), fasting plasma glucose (FPG) (− 5.1 ± 6.0 vs. − 1.1 ± 4.9 mg/dL, P = 0.01), insulin (− 2.0 ± 1.4 vs. − 0.2 ± 1.2 μIU/mL, P < 0.001), insulin resistance (− 0.5 ± 0.4 vs. − 0.04 ± 0.3, P < 0.001), triglycerides (− 18.0 ± 25.2 vs. + 5.5 ± 14.4 mg/dL, P < 0.001), total (− 17.0 ± 20.3 vs. + 3.6 ± 12.0 mg/dL, P < 0.001), and LDL cholesterol (− 13.3 ± 19.2 vs. + 1.4 ± 13.3 mg/dL, P = 0.002), and elevated insulin sensitivity (+ 0.007 ± 0.005 vs. + 0.002 ± 0.005, P < 0.001). In addition, co-supplementation upregulated peroxisome proliferator-activated receptor gamma (P = 0.02) and low-density lipoprotein receptor expression (P = 0.02). Overall, chromium and carnitine co-supplementation for 12 weeks to overweight women with PCOS had beneficial effects on body weight, glycemic control, lipid profiles except HDL cholesterol levels, and gene expression of PPAR-γ and LDLR. Clinical trial registration number: http://www.irct.ir: IRCT20170513033941N38.

  相似文献   

17.
The present experiments were designed to evaluate the effects of varying the osmolality of luminal solutions on the antidiuretic hormone (ADH)-independent water and solute permeability properties of isolated rabbit cortical collecting tubules. In the absence of ADH, the osmotic water permeability coefficient (cm s–1) Pfl→b, computed from volume flows from hypotonic lumen to isotonic bath, was 20 ± 4 x 10–4 (SEM); the value of Pfb→l in the absence of ADH, computed from volume flows from isotonic bath to hypertonic lumen, was 88 ± 15 x 10–4 cm s–1. We also measured apparent urea permeability coefficients (cm s–1) from 14C-urea fluxes from lumen to bath (PDDureal→b) and from bath to lumen (PDDureab→l). For hypotonic luminal solutions and isotonic bathing solutions, PDDureal→b was 0.045 ± 0.004 x 10–4 and was unaffected by ADH. The ADH-independent values of PDDureal→b and Pureab→l were, respectively, 0.216 ± 0.022 x 10–4 cm s–1 and 0.033 ± 0.002 x 10–4 cm s–1 for isotonic bathing solutions and luminal solutions made hypertonic with urea, i.e., there was an absolute increase in urea permeability and asymmetry of urea fluxes. Significantly, PDDureal→b did not rise when luminal hypertonicity was produced by sucrose; and, bathing fluid hypertonicity did not alter tubular permeability to water or to urea. We interpret these data to indicate that luminal hypertonicity increased the leakiness of tight junctions to water and urea but not sucrose. Since the value of Pfb→l in the absence of ADH, when tight junctions were open to urea, was approximately half of the value of Pfl→b in the presence of ADH, when tight junctions were closed to urea, we conclude that tight junctions are negligible paracellular shunts for lumen to bath osmosis with ADH. These findings, together with those in the preceding paper, are discussed in terms of a solubility-diffusion model for water permeation in which ADH increases water solubility in luminal plasma membranes.  相似文献   

18.
A urea-selective urine-concentrating defect was found in transgenic mice deficient in urea transporter (UT)-B. To determine the role of facilitated urea transport in extrarenal organs expressing UT-B, we studied the kinetics of [14C]urea distribution in UT-B-null mice versus wild-type mice. After renal blood flow was disrupted, [14C]urea distribution was selectively reduced in testis in UT-B-null mice. Under basal conditions, total testis urea content was 335.4 ± 43.8 µg in UT-B-null mice versus 196.3 ± 18.2 µg in wild-type mice (P < 0.01). Testis weight in UT-B-null mice (6.6 ± 0.8 mg/g body wt) was significantly greater than in wild-type mice (4.2 ± 0.8 mg/g body wt). Elongated spermatids were observed earlier in UT-B-null mice compared with wild type mice on day 24 versus day 32, respectively. First breeding ages in UT-B knockout males (48 ± 3 days) were also significantly earlier than that in wild-type males (56 ± 2 days). In competing mating tests with wild-type males and UT-B-null males, all pups carried UT-B-targeted genes, which indicates that all pups were produced from breeding of UT-B-null males. Experiments of the expression of follicle-stimulating hormone receptor (FSHR) and androgen binding protein (ABP) indicated that the development of Sertoli cells was also earlier in UT-B-null mice than that in wild-type mice. These results suggest that UT-B plays an important role in eliminating urea produced by Sertoli cells and that UT-B deletion causes both urea accumulation in the testis and early maturation of the male reproductive system. The UT-B knockout mouse may be a useful experimental model to define the molecular mechanisms of early puberty. urea transporter; Sertoli cell; testis; male sexual function; spermatogenesis  相似文献   

19.
Panting is a mechanism that increases respiratory evaporative heat loss (REHL) under heat load. Because REHL uses body water, it is physiologically and ecologically relevant to know under what conditions free-ranging animals use panting. We investigated whether the cranial arterio-venous temperature difference could provide information about REHL. We exposed sheep to environments varying in ambient dry bulb temperatures (Env 1: ~15°C, Env 2: ~25°C, Env 3: ~40°C, Env 4: ~40°C + infrared radiation) and measured REHL simultaneously with carotid arterial (T car) and jugular venous (T jug) blood temperatures, as well as brain (T brain) and rectal (T rec) temperatures. REHL increased significantly with ambient temperature, from 18.4 ± 4.5 W at Env 1 to 79.5 ± 12.6 W at Env 4 (P < 10−6). While there was no effect of environment on T car (P = 0.7) or T jug (P = 0.09), the difference between them (T a-v = T car − T jug) increased from Env 1 to Env 2 (P = 0.04) and from Env 3 to Env 4 (P = 0.008). T a-v reached a maximum of 0.7 ± 0.2°C at Env 4 and was positively correlated with REHL across environments (r 2 = 0.78, F = 34.7, P < 10−3). Calculated cranial blood flow changed only from Env 2 to Env 3 (P = 0.002). The increase in REHL maintained homeothermy when dry heat loss decreased. While REHL could increase without generating an increase in T a-v, any increase in T a-v was always associated with an increase in REHL. We conclude that the cranial T a-v provides useful information about REHL in panting animals.  相似文献   

20.
The present study aims to investigate the mechanism of phosphorylation of apoptotic proteins and tests the hypothesis that the hypoxia-induced increased tyrosine phosphorylation of apoptotic proteins Bcl-2 and Bcl-xl is Ca2+-influx-dependent. Piglets were divided in normoxic (Nx, n = 5), hypoxic (Hx, n = 5) and hypoxic-pretreated with clonidine (Clo + Hx, n = 4) groups. Hypoxic animals were exposed to an FiO2 of 0.06 for 1 h. Clonidine (12.5 μg/kg, IV) was administered to piglets 30 min prior to hypoxia. Hypoxia was confirmed by ATP and phosphocreatinine (PCr) levels. Cytosol was isolated and separated by 12% SDS–PAGE and probed with tyrosine phosphorylated (p) -Bax, Bad, Bcl-2 and Bcl-xl antibodies and bands were detected. The ATP levels (μmol/g brain) in the Nx, Hx, Clo + Hx were 4.3 ± 1.0 (P < 0.05 vs. Hx, Clo-Hx), 0.9 ± 0.8 and 1.5 ± 0.3, respectively. The PCr levels in the Nx, Hx, Clo + Hx were 2.7 ± 0.7 (P < 0.05 vs. Hx, Clo-Hx), 0.9 ± 0.2 and 0.9 ± 0.9, respectively. Ca2+-influx (pmoles/mg protein) was 4.96 ± 0.94 in Nx, 11.11 ± 2.38 in Hx, and 6.23 ± 2.07 in Clo + Hx (P < 0.05 Nx vs. Hx and Hx vs. Clo + Hx). p-Bcl-2 density was 21.1 ± 1.1 Nx, 58.9 ± 9.6 Hx and 29.5 ± 6.4 Clo + Hx (P < 0.05 vs. Hx). p-Bcl-xl density was 29.6 ± 1.5 Nx, 50.6 ± 7.4 Hx and 32.1 ± 0.1 Clo + Hx (P < 0.05 vs. Hx). p-Bax density was 38.6 ± 16.2 Nx, 46.1 ± 5.5 Hx and 41.6 ± 1.9 Clo + Hx groups (P = NS). p-Bad was 66.7 ± 12.8 Nx, 71.2 ± 6.8 Hx and 78.7 ± 22.5 Clo + Hx groups (P = NS). Results showed that clonidine administration prior to hypoxia prevents the hypoxia-induced increased nuclear Ca2+-influx and increased phosphorylation of Bcl-2 and Bcl-xl while phosphorylation of Bad and Bax was not altered. We conclude that post-translational modification of anti-apoptotic proteins Bcl-2 and Bcl-xl during hypoxia is nuclear Ca2+-influx-dependent. We propose that blockade of nuclear Ca2+-influx that prevents phosphorylation of antiapoptotic proteins may become a neuroprotective strategy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号